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The Python language enjoys widespread adoption in a wide variety of domains spanning machine learning,
scientific and high performance computing, and beyond. While implemented as libraries in Python, many
Python frameworks aspire to be a domain-specific language (DSL), and often aim to bypass the Python
interpreter. However, because Python’s inherent ability to overload built-in structures such as declarations,
conditionals, or loops is limited, these frameworks are often constrained to a suboptimal, API-centric inter-
face that replicates these built-ins with framework-specific semantics. Such an approach ultimately yields
productivity losses for programmers, especially when switching between or mixing frameworks, as users
must memorize an ever-expanding list of method calls for performing even simple tasks such as constructing
control flow. Furthermore, API designers are forced to create new, substituting abstractions for traditional
programming constructs, forcing a steep learning curve for users.

In this paper, we propose a structured methodology to allow DSL developers to use the whole of Python as
a front-end, rather than creating equivalent APIs or relying on shims. Our methodology provides an extensive
operator overloading and virtualization mechanism through the use of source code transformations, and
enables powerful mechanisms like type-based multi-stage programming (which is popular in statically typed
languages), without requiring explicit type information (e.g., via type annotations).

We implement this methodology in a system called Snek, which represents the first type-driven multi-stage
programming framework for a dynamic language which does not require extra-linguistic mechanisms, and
demonstrate the ability to quickly and easily provide new semantics for Python constructs.

1 INTRODUCTION
Python has become one of the most widely-used programming languages, in part due to its high-
level syntax and dynamic type system, and is currently the de facto language for numeric computing.
Frameworks exist which enable programmers to use Python to target nearly every domain, with
tools like Django [Django Contributors 2019] for web programming, PyTorch [PyTorch Contributors
2019] and TensorFlow [Abadi et al. 2016] for deep learning, Z3Py [Microsoft Research 2019] for SMT
solving [de Moura and Bjørner 2008], Dask [Dask Contributors 2019] for distributed programming,
and NumPy [van der Walt et al. 2011] for scientific computing.

However, despite this wide use, there exist a number of complications which cause difficulty for
designers of these frameworks. Python’s interpreter introduces nontrivial overhead [Al-Rfou et al.
2016], which runs counter to its role as a high performance numeric computing interface. While
work has been done to bypass this interpretive overhead [Palkar et al. 2018], Python’s limited
operator overloading, counterintuitive scoping, and lexical rules [Politz et al. 2013] complicate such
efforts. Indeed, such difficulties have led many of the above frameworks to rely almost entirely
on API calls (e.g., tf.cond and tf.while_loop in TensorFlow or z3py.If in Z3Py), with users unable to
express even simple control flow in idiomatic Python [Moldovan et al. 2018]. This is complicated
further by Python’s heavy reliance on mutation semantics. Python is also neither distributed nor
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inherently portable, preventing it from being run on embedded devices or on specialized hardware
like GPUs or TPUs [Jouppi et al. 2017].
Current efforts to circumvent these difficulties in Python while maintaining syntax as close to

idiomatic Python as possible vary in complexity, with some systems choosing to go so far as to
modify or replace the Python interpreter entirely [Jeong et al. 2019; MacroPy3 Contributors 2019;
RustPython Contributors 2019]. Others elect to bypass the Python interpreter altogether by adopting
a wholesale translation strategy [Behnel et al. 2011; PyTorch Contributors 2018; van Merrienboer
et al. 2018], and still others perform tracing (potentially as a translation strategy) [Frostig et al.
2018; PyTorch Contributors 2018, 2019]. Lastly, some systems [Moldovan et al. 2019] use source
code transformation to virtualize a subset of Python in order to generate specialized code.
Each of these strategies provides significant benefits for the end user, though they come at a

significant cost for the framework developer. Furthermore, the benefits of one strategy may not
be captured in another, and moving between systems is not always feasible for end users. In this
paper, we propose a structured methodology for source code transformations in Python in order to
provide custom behavior for Python constructs at run time. We demonstrate the use of extensive
operator overloading and virtualization of Python syntactic structures to construct a framework for
the rapid and easy development of new, overloaded semantics for Python which dispatch directly to
domain-specific libraries. This provides an easy mechanism for deep embeddings of DSLs in Python
in the style of Rompf et al. [2012], rather than the shallow embedding offered by an API-centric
approach. This strategy allows for tracing and translation as described above, but in a reusable,
general-purpose setting. While this does eschew the extensible syntax provided by modifying the
Python interpreter, we argue that the compatibility and portability benefits outweigh this limitation,
as well as the benefit of avoiding altering the interface with which programmers are accustomed.

This paper makes the following contributions:

• We present a survey of existing techniques for developing new frameworks in Python, and
motivate the use of virtualization in creating a general-purpose DSL framework (Section 2).
• We propose a structured methodology for performing source code transformations and
virtualizations in Python. We show that this virtualization strategy allows for a more com-
plete overloading of semantics in Python, as well as providing the ability to do multi-stage
programming in Python (Section 3).
• We describe an implementation of this methodology in a system called Snek. Snek represents
the first general-purpose, type-driven staging framework for a dynamic language (Section 4).
• We demonstrate using Snek to implement a DSL targeting the Z3Py interface. We show
that Snek follows the proposed methodology, while allowing users to call Z3Py-specific
calls where necessary, and idiomatic Python where possible (e.g., control flow). We further
demonstrate how Snek provides the ability to perform multi-stage programming based on
types (Section 5).
• We evaluate Snek by applying it to a wide variety of frameworks. We show that targeting a
new framework using Snek takes minimal effort for DSL developers and that dispatching to
that DSL requires a single decorator call for end users.We evaluate prototype implementations
in Snek, translating code targeting three different numeric computing front-ends to instead
target any of four different back-ends. We also show a more complete system which translates
PyTorch to Lantern [Wang et al. 2018], implemented using the same methodology (Section 6).

While the paper focuses on Python exclusively, the core of the approach generalizes to any language;
all that is required is a syntactic rewriting or pre-processing facility to replace uses of built-in
primitives with late-bound function calls.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2019.



Snek: Overloading Python Semantics via Virtualization 1:3

2 BACKGROUND
We begin by examining work which inspired the construction of a structured methodology for the
virtualization of Python. We focus this discussion primarily on current techniques which aim to
maintain the default Python interface while providing specialized runtime behavior.

2.1 Translation
A number of existing systems [Behnel et al. 2011; Lam et al. 2015; Palkar et al. 2018; PyTorch
Contributors 2018; van Merrienboer et al. 2018] make use of source-to-source translation in order
to bypass the overhead inherent in the Python interpreter [Al-Rfou et al. 2016] altogether. These
operate on Python ASTs, which are then translated to a different, generally lower-level, language.
We examine two systems which perform source-to-source translation targeting Python here, and
provide a more exhaustive analysis in Section 7.

Cython. Perhaps the most well-known Python translation tool is Cython [Behnel et al. 2011].
Cython accepts as input a Python program, and generates from it an equivalent program using C
as a “host” language. Cython is not a simple Python-to-C translation engine: it interfaces with the
Python runtime so as to enable the use of Python objects should Cython be unable to generate the
appropriate C code.
Given the Python program1 in Figure 1 (a) as input, Cython will produce a .c file which runs

approximately 35% faster than in Python [Bradshaw et al. 2011]. Notably, this file is just over 3300
LOC, with the majority of lines being constant definitions and other preprocessor directives (the
original Python code is contained within a comment, but is otherwise difficult to find). Cython is
able to generate even faster code if one supplies type annotations, as shown in Figure 1 (b).

def f(x): return x ** 2 - x
def integrate_f(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += f(a + i * dx)

return s * dx

def f(double x): return x ** 2 - x
def integrate_f(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N): s += f(a + i * dx)
return s * dx

(a) (b)

Fig. 1. Cython tutorial code without (left) and with (right) type annotations provided by users.

Running this annotated code with Cython yields slightly (~50 LOC) reduced code, but provides a
speedup of approximately 4× over the original Python version [Bradshaw et al. 2011].
While these results are impressive, even in the trivial example shown, there exist additional

optimization opportunities which are currently unavailable. If, for example, the value of N can
become known at compile time (i.e., when Cython is invoked), Cython would not need to generate
a for loop: rather, it could directly assign s = f(a) + f(a + dx) + ... + f(a + (N - 1) * dx), thus removing
the required jump operations inherent in the generated for loop.

TorchScript: torch.jit.script. Numeric computing libraries have also begun offering trans-
lation utilities. PyTorch’s TorchScript [PyTorch Contributors 2018] framework provides such a
translation mechanism: torch.jit.script. TorchScript’s torch.jit.script function behaves similarly
to Numba [Lam et al. 2015]: it takes as input a Python function which will be interpreted as a
specialized subset of Python, in this case, TorchScript. Whereas tools like Cython typically require
1Taken from http://docs.cython.org/en/latest/src/quickstart/cythonize.html.
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translation of entire programs (and, in the case of any errors, may require users to be proficient in
the generated language), torch.jit.script instead allows users to mix these translations into their
code where appropriate and with greater control (with errors appearing in a language similar to
the original function). TorchScript is intended to be used for machine learning tasks, and provides
the benefit of allowing users to more easily save machine learning models for later use in the form
of a computation graph.
In order to achieve this flexibility, TorchScript (at the time of writing) imposes a number of

limitations upon users. Of particular relevance here are the limitations that all functions decorated
(Python decorators may be viewed as analogous to Java annotations) with torch.jit.script must
return a value of type tensor, a function may only have a single return statement, and that control
flow conditionals are only defined over tensor values. For example, the following code throws an
error that x is a Number, rather than a tensor value:
@torch.jit.script
def foo():
x = 3
ret = None
if x > 2: # currently unsupported in TorchScript
ret = tensor.rand(1, 2)

else: ret = tensor.rand(2, 3)
return ret

Furthermore, although TorchScript in its current iteration does provide the benefit of increased
usability for users, as with Cython, torch.jit.script’s current method of translation does not utilize
any data independent information. Consider, for example, the function in Figure 2 (top). This
produces a computation graph expressible as the control flow graph in Figure 2 (c). A decision
point regarding args.train is present, despite the fact that this value will be static for the length of
the program. Indeed, such a branching statement can and should be entirely removed. It should be
noted that TorchScript already implements some dead code elimination through the use of liveness
analysis, but opportunities such as this are currently overlooked.

Downside: no multi-stage programming. Cython, TorchScript, and similar systems which perform
wholesale translation in this fashion are unable to utilize known data to specialize code generation
and to take advantage of the ability to execute code during the translation. However, this is a
well-studied technique known as multi-stage programming or staging, and existing work shows
that this technique can be successfully implemented in higher-level languages [Rompf 2012; Rompf
and Odersky 2010] (in addition to the translation techniques currently used by systems like Cython
and TorchScript) and crucially allows to delegate modularity and abstraction to the meta-language,
while keeping the DSL itself simple and easy for a compiler to optimize [Brown et al. 2011; Chafi
et al. 2011].

2.2 Tracing
Rather than performing the wholesale translation described above, other systems elect to perform
tracing: running operations and recording them in order to build up a representation of a program.
We examine perhaps the most well-known machine learning framework which performs tracing in
this fashion: PyTorch [PyTorch Contributors 2019].

TorchScript: torch.jit.trace. PyTorch [PyTorch Contributors 2019] performs tracing in the
traditional fashion, though in order to provide other opportunities for optimization, PyTorch has
also introduced a new method, torch.jit.trace (we refer to this as trace for the remainder of the
paper), as part of the TorchScript framework. As with script, trace allows users to create models to
be used at a later time, rather than, as with most tracing efforts, immediately upon completing the
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def foo(x):
ret = None
if args.train: # Check hyperparameter
if x > 0: ret = train(x)
else: ret = train(0)

else: ret = inference(x)
return ret

start

ret = train(5)

return ret

a)

start

x > 0

return ret

ret = train(0) ret = train(x)

b)

false true

start

args.train

ret = inf(x) x > 0

ret = train(0) ret = train(x)

return ret

c)

false true

false true

Fig. 2. Control Flow Graphs generated from function foo (top) using a) torch.jit.trace with a sample
value of x = 5 and args.train set to True, b) Snek with args.train set to True, and c) torch.jit.script.

trace. Tracing in this fashion is typically accomplished via operator overloading, thus requiring no
additional effort on the part of the user, though trace does require users to provide sample input
data for any traced functions.

Downside: no control flow. Consider the code in Figure 2 (top). Invoking trace on foo yields the
control flow graph shown in Figure 2 (a). As with all CFGs produced via tracing, this graph is
entirely linear; reusing a model generated in this fashion with a different value of x may produce
invalid results. Thus, while tracing achieves the specialization benefits of multi-stage programming,
it “overfits” and is unable to represent control-flow at the DSL level at all.

2.3 Virtualization
Chafi et al. [2010] proposed to “virtualize” built-in language features such as control-flow constructs
by making them overloadable as virtual methods, much like operator overloading. In this virtualized
form, language constructs yield the same high-level interface to which users are accustomed, but
are also able to provide custom behavior. Crucially, this enables to extend the key idea behind
tracing (just record operations) to control flow, thus removing its key limitation. Unfortunately,
such virtualization is not immediately available in Python. Unlike, for example, the __add__method
for overloading the + operator, there is no notion of overloading a magic __if__method, as it is not
associated with a particular class.
In this paper, we propose to extend the operator overloading capabilities of Python to allow

virtualization in the style of Rompf et al. [2012] through the use of source code transformations
on the original program, effectively choosing to generate Python (rather than e.g., TorchScript)
via preprocessing. In this generated, intermediate Python, we aim to produce constructs which
framework developers may “overload” by providing custom implementations of the virtualized
functions. Virtualization in this fashion allows for both tracing and translation as described in the
manner above. Notably, this also allows for the optimization opportunities missed by translation
efforts, while also capturing information which is lost by tracing efforts (see Figure 2 (b)). As shown
by Moors et al. [2012], virtualization in this fashion also enables “staging based on types” exhibited
by systems such as LMS (Lightweight Modular Staging) [Rompf and Odersky 2012]. We provide a
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detailed description on how the principles from LMS can be applied in a dynamic language such as
Python in Section 5.3.

AutoGraph. AutoGraph is a tool for TensorFlow that uses a limited form of virtualization to allow
programmers to instantiate TensorFlow graphs using pure-python syntax [Moldovan et al. 2019].
Unlike TorchScript, AutoGraph allows programmers to mix Python semantics and TensorFlow
semantics, dynamically deciding whether to stage an operation for later computation based on
run-time type. In the example below x > 2 is evaluated, if the result is a TensorFlow tensor (i.e. if x
is a Tensor) then the conditional will be staged, if x > 2 is a Python boolean then the code will be
evaluated immediately.
@tf.autograph.convert()
def foo(x):
ret = None
if x > 2: # Staged or unstaged, based on the type of (x > 2)
ret = 0

else:
ret = 1

return ret

Dynamically deciding whether to stage an operation based on runtime type information is
analogous to the static-type dispatch in systems like LMS. While the AutoGraph authors argue
for the generality of this approach, the actual system and design choices were targeted toward
making a specific back-end (TensorFlow) easier to program. For example, AutoGraph does not
virtualize function calls, local variable access, attribute access, and other Python features that are
not directly applicable. In addition AutoGraph’s code generation is specific to TensorFlow. Their
proof-of-concept example targeting the Lantern framework required rewriting most of the code
generation machinery in AutoGraph, and is not present in the open-source version of AutoGraph.
AutoGraph assumes a pure Python front-end targeting a single graph-based machine learning
framework. Non-machine-learning applications were not considered. AutoGraph was not designed
to target multiple frameworks within a single application, nor retarget from one framework to
another.
Our approach, as implemented in Snek (introduced fully in Section 4), is a generalization of

AutoGraph’s, making it easy to override the functionality of Python in isolated modules. Adding a
new back-end to Snek is essentially as easy as overloading an operator in Python. In addition, Snek
virtualizes almost all Python features and allows developers to pick and choose the features required
for their specific application. This extends, for example, to the type-based staging capabilities
enabled by Snek.

3 CORE METHODOLOGY
We implement a generic methodology for performing virtualization of Python constructs. Our
methodology makes it easy for a broad range of framework developers to override Python semantics
with their own behavior, and does so in such a way that has minimal impact on the users of those
frameworks. In order to achieve this latter goal, we establish the following criteria:

• The Python interpreter must remain unmodified. Providing a modified interpreter requires all
existing Python instances to be replaced to achieve the proposed benefits, which is prohibitive
for end users.
• As a byproduct of this first constraint, no new syntax may be added to the Python front-end.
• Following Language-Oriented Programming precepts, no extra-linguistic mechanisms should
be required (i.e., this methodology should be implementable in the host language) [Felleisen
et al. 2018].
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⟦p1⟧v,
p1 a top-level function

= def gen_func(overload):

⟦p1⟧v

⟦

def f1(p1,...,pn):
s1
⟧v

=

def f1(px,...,py):
p1 = overload.init('p1')
overload.assign(p1, px)

...

pn = overload.init('pn')

overload.assign(pn, py)

⟦ s1⟧v

⟦

if cond: s1
else: s2
⟧v

=
def if_cond(): ⟦ cond ⟧v
def if_body(): ⟦ s1⟧v
def if_orelse(): ⟦ s2⟧v
overload.if_stmt(if_cond, if_body, if_orelse, (local_writes,))

⟦

while cond: s1
else: s2
⟧v

=
def while_cond(): return ⟦cond⟧v
def while_body(): ⟦ s1 ⟧v
def while_orelse(): ⟦ s2 ⟧v
overload.while_stmt(while_cond, while_body, while_orelse, (local_writes,))

⟦

for s1 in ss: s3
else: s4
⟧v

=
def for_body(): ⟦s3⟧v
def for_else(): ⟦s4⟧v
overload.for_stmt(⟦s1⟧v, ⟦s2⟧v for_body, for_else, (local_writes,))

⟦ f1(s1,...,sn)⟧v = overload.call(⟦f1⟧v, ⟦s1⟧v,...,⟦sn⟧v)

⟦ op s1⟧v = overload.op_name(⟦s1⟧v) # e.g., not_

⟦ s1 op s2⟧v = overload.op_name(⟦s1⟧v, ⟦s2⟧v) # e.g., and_, or_

⟦ x = e1⟧v = x = overload.init('x') # upon first assignment only

overload.assign(x, ⟦e1⟧v)

⟦ x⟧v = overload.read(x)

⟦_⟧v = _

Fig. 3. Virtualization rules for Python constructs. We use fresh names for all extracted function names. All
statements listed may represent multiple statements; we elide proper Python whitespace rules for presentation
only.

• End users should be able to overload the semantics of individual functions independently,
including the use of multiple semantic overload objects in a single application.

With these requirements in place, we must look to an implementation based in Python which
modifies input programs at the source code level. Furthermore, all virtualizations which take
place should happen at the granularity of functions: this enables a clear scoping boundary for
transformation rules and framework developers (i.e., developers virtualizing source code using this
methodology), as well as providing an easy implementationmechanism for end users (i.e., developers
using the virtualized source code provided by the aforementioned framework developers).

3.1 Source Code Transformation and Virtualization Rules
We present the source code transformation rules required by our virtualization strategy in Figure 3.
In these rules, overload represents an object upon which the corresponding method is defined (see
Section 4) — an approach that has been described as tagless-final encoding [Carette et al. 2007],
polymorphic embedding [Hofer et al. 2008], or object-algebra representation [d. S. Oliveira and
Cook 2012; Guttag and Horning 1978] of program syntax. If overload contains functionality which
mirrors the default Python semantics for the given construct, these virtualizations do not modify
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the semantics of the original program (see Section 4.3 for a more formal examination). Furthermore,
one could dynamically choose whether to virtualize the listed constructs: that is, if overload does
not provide functionality for e.g., if statements, if statements need not be virtualized.

Control Flow. When virtualizing control flow structures, we extract the disparate computation
pieces into corresponding functions (e.g., the conditional and each branch of an if statement),
and create a call to overload.if_stmt. This virtualization is done as such for two primary purposes:
first, this is consistent with frameworks which expect Python control flow to be expressed in a
functional style, providing DSL developers with the intended structure; second, this is consistent
with common compiler techniques such as conversion to continuation-passing style [Appel and Jim
1989]. Due to the fact that control flow structures are statements in Python, rather than expressions,
there is no output to be captured (for a treatment on how return statements can be handled within
control flow structures, see Section 5.3).

Variable Virtualization. In order to allow DSL developers control over all uses of a variable,
including operations which are not by default overloadable in Python through “dunder” methods
(e.g., __add__), we virtualize reads and assignments of variables. We virtualize all variables local to a
function or which have been virtualized in an enclosing scope.

3.2 Virtualizing Function Calls
The virtualization of function calls is somewhat mechanical; the rules for doing so are provided
in Figure 3. In essence, all function calls are wrapped in an overload.call (e.g., print(x) becomes
overload.call(print, x)). This virtualization provides the powerful ability of replacing the runtime
behavior of functions, even functions for which the source code may be unavailable or unknown,
such as Python built-in functions (e.g., len, range).

To illustrate the benefits, consider the state-of-the-art numeric computing library, JAX [Frostig
et al. 2018]. JAX serves as a “drop-in” replacement for NumPy [van der Walt et al. 2011]: users may
take existing NumPy programs, rewrite the NumPy import statement (i.e., import numpy as np becomes
import jax.numpy as np), and use the facilities provided by JAX such as just-in-time (JIT) compilation
to specialized back-end hardware. In order to maintain the NumPy interface, the JAX developers
were required to reimplement each user-facing function available in NumPy such that it executes
JAX functionality in its place. Function call virtualization in the style described above allows for
this logic to be separated from the JAX back-end; we can perform replacement at the time user
code is run.
We note that JAX’s JIT capabilities do not currently allow for idiomatic Python control flow.

Indeed, the JAX developers have released documentation2 which details the functional manner in
which control flow must be constructed in order to avoid recompilation. As discussed in Section 6,
however, applying the methodology as shown here provides users idiomatic control flow, while
generating the corresponding functional-style control flow expected by JAX.

3.3 The Hard Parts
Scope. In perhaps the most comprehensive formal PL view of Python to date, Politz et al. [2013]

demonstrate a number of features in Python’s semantics which may appear counterintuitive to
many users; of particular interest is Python’s scoping mechanism. Python contains three types of
variables in relation to scoping rules: global, nonlocal, and local. A simplified view is that all scopes
have read-only access to all variables declared in any enclosing scopes (nonlocal variables), and
write access to all variables declared in the current scope (local). global variables are stored in a

2https://github.com/google/jax/blob/master/notebooks/Common_Gotchas_in_JAX.ipynb
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def g():
x = 'not affected'
def h():
x = 'inner x'
return x

return (h(), x)

g() # =⇒ ('inner x', `not affected')

def g():
x = 'not affected by h'
def h():
nonlocal x
x = 'inner x'
return x

return (h(), x)

g() # =⇒ ('inner x', 'inner x')

Fig. 4. Example of nested function scopes in Python (left) and the effect of nonlocal (right). Originally
appeared in Politz et al. [2013].

dictionary at the function level, which otherwise behave the same as nonlocal variables. For example,
consider the code in Figure 4, (left). Here, we can examine an assignment to x in h, which defines a
new variable (also named x), rather than updating the value of the outermost x. Using the nonlocal

keyword, however, provides h with write access on x (Figure 4, right).
To view this in our proposed transformation strategy, consider the following program:

def assign_in_if(x, condition):
if condition:
x = x + 1

else:
x = x + 2

return x

Transforming this code in this (naive) manner yields the following code:
def assign_in_if(x, condition):
def if_cond(): return condition
def if_body():
x = x + 1

def if_orelse():
x = x + 2

overload.if_stmt(if_cond, if_body, if_orelse)
return x

Upon invocation of either if_body or if_orelse, this will yield an error due to Python’s scoping
rules. Attempting to read from this variable results in an error, as the variable is an unbound local.
This is resolved through the use of variable virtualization, as described above. Whereas all

other virtualizations may take place without impacting the default Python semantics, control flow
virtualization necessitates that variable virtualization has already occurred.

When this order is respected, the following assign_in_if is generated:
def assign_in_if(x_1, condition_1):
x = overload.init('x')
overload.assign(x, x_1)
condition = overload.init('condition')
overload.assign(condition, condition_1)
def if_cond(): return overload.read(condition)
def if_body():
overload.assign(x, overload.read(x) + 1)

def if_orelse():
overload.assign(x, overload.read(x) + 2)

overload.if_stmt(if_cond, if_body, if_orelse)
return x

Due to these requirements, variable virtualization requires a separate pass to determine proper
scopes.
A naive approach may be to use the nonlocal keyword, which allows modifications of variables

declared outside the current block. However, such a solution is not viable for two primary reasons.
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First, this prevents these transformations from being applied in earlier versions of Python (nonlocal
was introduced in Python 3), as well as complicating the application of these rules to languages
which do not have a nonlocal construct. Second, this does not allow for the virtualization of accesses
and modifications for such variables.

Capturing local_writes in Control Flow Structures. It may be the case that all branches of a
control flow structure need to be evaluated (e.g., in tracing) during the dispatch to DSL code. In
such cases, the effects of this evaluation should be discarded, including writes to variables which
take place. We note that such instances occur in structures where some paths may not be executed
(e.g., control flow structures). Activity analysis, an analysis which crawls the AST and determines
syntactically where variables may be accessed, may be used to accurately inventory these instances.
This analysis can build a list of variables which may be written, which can then be passed to the
corresponding DSL code (in Figure 3, this is represented as the local_writes parameter passed in the
case of if, while, and for).
In essence, the proposed methodology virtualizes code blocks by transforming them into func-

tions/ Due to Python’s scoping mechanism, however, variables modified by the transformed block
become local to the created function. This violates the original Python semantics, in which these
variables must be treated as nonlocal variables (i.e., writes must affect variables in the original
scope). Crucially, the virtualization of variable writes mitigates this problem, but staged code may
not have a corresponding mechanism (e.g., staged control flow may use value semantics). As such,
this set of local_writes is required to retroactively supply the modified symbols.

Resolving Closures for overload. As shown in the first rule of Figure 3, upon applying our method-
ology to a program, the programmust be wrapped in a generated function which takes as parameter
the overload object containing the relevant DSL code. However, we must capture all “metadata” rel-
evant to the program p1 (e.g., global or closure variables) and attach this to the newly generated
function, gen_func. Python tracks this information at the code object level for functions, which
provides an easy interface for our purposes.

Return Statements. Virtualizing control flow in the manner described poses some difficulty when
return statements appear in branches. For example, consider the following code:
def abs(x):
if x < 0:
return -x

else:
return x

Transforming this code using the if virtualization rules in Figure 3 yields the following (we elide
variable virtualization for presentation):
def abs(x):
def if_cond():
return x < 0

def if_body():
return -x

def if_orelse():
return x

overload.if_stmt(if_cond, if_body, if_orelse)

In this function, the value returned by overload.if_stmt will be ignored and lost, causing abs to
always return None, rather than the intended value. This problem may be rectified in a number of
ways; we do not enforce one option over the other in our proposed methodology. One such solution
may be found in AutoGraph, which elects to track all values found in a return statement, and return
these values at the end of a function. Another solution may be to wrap the contents of generated
functions in a try/except block, and upon a virtualized function reaching a return statement, raise
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an Exceptionwhich contains the return value (this is described further in Section 6.2). We note that
both such strategies are expressible using the methodology as thus proposed.
Other forms of nonlocal control flow (e.g., break, continue) incur a similar problem. For break, one

may modify the containing loops such that they are conditioned on an additional boolean flag; this
flag represents whether break has been called, and may be set in place of the original break statement.
continue may be handled in a similar fashion. Another possibility for both break and continue is to
use an Exception-based mechanism which, upon reaching the statement, throws the corresponding
Exception. The appropriate action can then be taken in the handler of the Exception, provided in the
implementation of the virtualized function. Similar behavior can be implemented to handle raise

statements.

4 SNEK
In this section, we present an implementation of the proposed methodology as a system called
Snek. Snek works by parsing a Python function, walking its AST, and applying the corresponding
virtualization transformations as described in Figure 3. Users of Snek then provide an object
containing implementations of the virtualized functions to be invoked at run time in place of the
default Python semantics. Snek is agnostic to the type of this object: for presentation purposes,
we will assume this object represents a module containing the relevant functionality, though an
object-oriented approach based on Python classes is also possible.
In this section, we refer to users of Snek as “DSL developers”, as they provide domain-specific

logic which uses Python as a front-end. While a slight abuse in terminology (as these users are not
defining new syntax), Snek allows users to view Python as a DSL for which they provide a custom
interpretation.

4.1 Virtualizing Using Snek
Snek provides as its primary interface convert(func, overload), where func represents the function to
be converted and overload is the object containing the virtualized implementations for a subset
of transformations from Figure 3. In this manner, DSL developers are able to determine which
features are actually virtualized using the overload object. For example, a DSL developer may wish
to virtualize while loops but not if statements; in this case, they must simply provide an overload

object which does not have if_stmt defined, but does have while_stmt defined.

4.2 Default Implementations
As discussed in Section 3.3, virtualizing control flow requires that variable virtualizations have
taken place in order to have a correct virtualized program. However, it is undesirable to require DSL
developers to implement behavior for variable virtualization when the default Python behavior
exhibited in the original is the desired behavior. Furthermore, it can be difficult to accurately model
this behavior, with a number of possible implementations, with varying levels of complexity.

To accommodate situations like this, Snek provides a py_defaultsmodule which contains default
implementations for all virtualized constructs. These default implementations can then be used in
semantic overloads objects provided by DSL developers (e.g., assign = py_defaults.assign).
As an example, we show the py_defaults.if_stmt implementation, below.

def if_stmt(cond, body, orelse, _):
if cond():
body()

else:
orelse()
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4.3 Towards Proving Correctness
λπ as presented by Politz et al. [2013] is an executable small-step operational semantics written in
PLT Redex [Felleisen et al. 2009] for Python3, with an accompanying interpreter implemented in
Racket. λπ↓ is also provided in the current implementation4, which serves as a set of desugaring
rules capable of transforming any Python program into its core syntax.

As discussed in Section 3.3, Python’s scoping rules, in particular, cause difficulty in performing
transformations on Python code, requiring some form of variable lifting in order to correctly
capture the intended Python semantics. λπ introduces a special value,A, which is used to represent
uninitialized heap locations. All identifier declarations are lifted to the top of their enclosing scope
and given an initial value of A: if this value is ever read, it signals the use of an uninitialized
identifier. λπ provides a desugaring of nonlocal and global scopes and keywords, which serves to
fully capture the scoping semantics of Python.
In order to formally examine our virtualization transformation ⟦ ⟧v , we implement the rules

in Figure 3 in the form of reduction semantics. We accomplish this by adopting the reduction
semantics presented in λπ , and formulating our semantic preservation property in conformance
thereof. The general form of the reduction relation (→) is a pair of triples (e, ε, Σ) → (e, ε, Σ) where
e are expressions, ε are global environments, and Σ are heaps. We denote the multiple step relation
as→∗.

We begin by introducing dom, a return set of variable references given a heap object: Σ→ P(ref).
We also introduce two auxiliary functions which capture the side effects introduced in ⟦ ⟧v . Given
an expression, the first functionMV : e → P(ref) returns the existing variable references modified
by our transformation:
MV (x = e ) = {x }, MV (def f ...) = {f }, MV (_) = { }

The second function NV : e → P(ref) returns the variable references created by our transforma-
tions:
NV (i f ...) = {f r esh (then), f r esh (else ) }
NV (while ...) = {f r esh (body ), f r esh (cond ) }
NV (f or ...) = {f r esh (body ) }
NV (_) = { }

Definition (≃v ): given a well-formed Python program e , e ≃v ⟦e⟧v iff
(1) e diverges and ⟦e⟧v diverges, or
(2) e is stuck and ⟦e⟧v is stuck, or
(3) starting from ε and Σ, there exists some value v and heaps such that (e, ε, Σ) →∗ (v, ε ′, Σ′ ∪

ΣMV ) and (⟦e⟧v , ε, Σ) →
∗ (v, ε ′, Σ′ ∪ ΣMV ∗ ∪ ΣNV ), dom(Σ′) ∩ dom(ΣMV ) = ∅, dom(ΣMV ) =

dom(ΣMV ∗ ) = MV (e ), dom(Σ′) ∩ dom(ΣMV ∗ ) ∩ dom(ΣNV ) = ∅, and dom(ΣNV ) = NV (e ).
The third case specifies the behavior after transformation: First, Σ′, the variable references not

contained inMV (e ) ∪ NV (e ) remain untouched, and our transformation preserves the effects on
that part. Second, the variable references inMV (e ) will be updated to the new heap ΣMV ∗ . Third, the
variable references in NV (e ) exist in the new heap ΣNV , but not in the one before transformation.
And lastly, these heaps are disjoint (i.e., there is no overlap in the respective domains).

Proposition: ≃v is a congruence. If e is a well-formed Python program and e ≃v ⟦e⟧v , then for
any evaluation context E, we have E[e] ≃v E[⟦e⟧v ]. As an example of this, we provide ⟦ ⟧v for if
statements expressed as a reduction rule implemented in PLT Redex (Figure 5).

We note that λπ does not provide a proof of correctness. Rather, it provides an extensive suite of
test cases which serve to provide strong evidence that an implementation in PLT Redex functions

3Python version 3.2.3
4https://github.com/brownplt/lambda-py
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(→ ((in-hole E (if e_1 e_2 e_3)) ε Σ)
((in-hole E
(let (thn-f local = (fun () (no-var) e_2)) in
(let (els-f local = (fun () (no-var) e_3)) in
(app (fun (test thn els)

(no-var)
(if (id test local)

(return (app (id thn local) ()))
(return (app (id els local) ())))

(e_1
(id thn-f local)
(id els-f local))))))) ε Σ)

(where thn-f (gensym 'then))
(where els-f (gensym 'else))
"E-VirtIf")

Fig. 5. PLT Redex implementation of ⟦ ⟧v applied to a Python if/else statement in λπ .

in a manner equivalent to the default Python semantics. Furthermore, this evidence as it applies
to Snek provides information only about ⟦ ⟧v and the implementations supplied in the py_defaults

module; no other functionality in Snek or modules provided by DSL developers have been compared
against λπ in our current work. While this is a step toward a formal guarantee of correctness, such
a guarantee remains the subject for future work.

4.4 Current Limitations
Snek does not currently virtualize all Python constructs, though expanding coverage is simply an
engineering effort: as shown by the λπ work [Politz et al. 2013], there exist alternate implementations
of all Python constructs, assuming one constructs a correct model for Python’s scoping. For
completeness, we describe the constructs which are not yet supported by Snek, as well as the
appropriate implementation details necessary to support them.

4.4.1 Generators. Generators in Python may be virtualized in the same manner as return statements
(see Section 3.3), with an auxiliary data structure which models the stack such that repeated
execution of the statement yields the appropriate value. We note that implementing this in Snek is
possible without modifying the current implementation strategy: generator expressions exist as a
single AST node.

4.4.2 Exceptions. As discussed in Section 3.1, many of the transformation rules shown follow
standard continuation-passing style. It is thus trivial to provide an additional argument to generated
functions representing the exception handler(s) associated with the original, virtualized code block.
This would allow Snek to execute the generated function within a try/except, in which caught
exceptions are delegated to their appropriate (virtualized) handlers.

4.4.3 Classes. Section 4.3 discusses how λπ [Politz et al. 2013] desugars all Python constructs
into its core, PLT Redex-based, syntax. This includes the desugaring of classes into collections of
functions and properties, internally represented as a new type. This same approach can be taken
by Snek, and, indeed, has been shown in the implementation of AutoGraph [Moldovan et al. 2019].

4.4.4 Context Managers. Context managers in Python consist of with statements, of the structure:
with X(A) as Y:

S

In general, such statements can be desugared as follows:
X1 = X(A)
Y = X1.__enter__()
S
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def and_(p, qs):
ret = z3.And(p, qs[0])
if len(qs) > 1:
for q in qs[1:]:
ret = z3.And(ret, q)

return ret

def or_(p, qs):
ret = z3.Or(p, qs[0])
if len(qs) > 1:
for q in qs[1:]:
ret = z3.Or(ret, q)

return ret

def not_(p):
return z3.Not(p)

(a) (b) (c)

Fig. 6. Implementations of and (a), or (b), and not (c) for Z3Py.

X1.__exit__()

This can then be virtualized following the rules shown in Section 3.

4.4.5 async. Asynchronous statements such as async and await can be trivially virtualized as func-
tion calls. Correctly modeling these in the default implementation provided by Snek may be done
via the existing Python asynciomodule, though such statements would require special handling due
to their effectful nature (see Section 5.2 for a more complete discussion).

4.4.6 Native Bindings. Similar to asynchronous statements, native binding can be trivially trans-
formed via function call virtualization, and a default implementation may rely on the standard
modules provided by Python.

4.4.7 Staged Attribute Mutation. While Snek does not currently support staged attribute mutation
(e.g., data-dependent __getattr__ and __setattr__methods), the virtualization of these methods fol-
lows function call virtualization as shown in Figure 3. Providing a semantics-preserving default
implementation may be done by maintaining a virtual function table and utilizing the existing
function call virtualization capabilities.

4.4.8 Functions Without Source Code Information. Passing an object to a function into which Snek
has no visibility (i.e., variable virtualization as described in Section 3.3 has not been performed)
may result in an inconsistent state with respect to the original Python semantics if that object is
modified. It is possible to mitigate this in nearly all cases through the use of virtualized __getattr__

and __setattr__methods which, upon any modifications being performed to the object, dispatch to
the appropriate virtualized code. While there exist cases such that this is insufficient (e.g., the use of
object.__setattr__ in place of the assignment operator), this limitation comes as a result of the myriad
interfaces supplied by Python to accomplish similar tasks. We note that Snek provides support for
what are currently considered the acceptable (i.e., “Pythonic”) methods, and virtualization in the
proposed style may not be limited in the same fashion when targeting a different language.

We note that eval and exec are also currently unsupported in Snek, though virtualization of these
follows the function call virtualization rules described in Figure 3.

5 DESIGNING DSLS USING SNEK: Z3PY
In this section, we look at designing a new DSL using Snek to target the Z3Py [Microsoft Research
2019] interface. Z3Py is the Python front-end for the high performance theorem prover, Z3 [deMoura
and Bjørner 2008].

5.1 De Morgan’s Laws: and, or, and not

Consider the following definition of one of De Morgan’s laws5 written in Z3Py:
def z3_demorgan(p, q):
return z3.And(p, q) == z3.Not(z3.Or(z3.Not(p), z3.Not(q)))

5Adapted from https://ericpony.github.io/z3py-tutorial/guide-examples.htm.
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queens = [z3.Int('queens_%i' % (i + 1))
for i in range(8)]

ranks = [z3.And(1 <= queens[i], queens[i] <= 8)
for i in range(8)]

files = [z3.Distinct(queens)]
diagonals = [z3.If(i == j,

True,
z3.And(queens[i] - queens[j] != i - j,
queens[i] - queens[j] != j - i))

for i in range(8) for j in range(i)]

queens = [z3.Int('queens_%i' % (i + 1))
for i in range(8)]

ranks = [1 <= queens[i] and queens[i] <= 8
for i in range(8)]

files = [z3.Distinct(queens)]
diagonals = []
for i in range(8):
for j in range(i):
if i == j:
diagonals.append(True)

else:
diagonals.append(queens[i] - queens[j] != i - j \
and queens[i] - queens[j] != j - 1)

(a) (b)

Fig. 7. Naive implementation of Eight Queens problem targeting Z3Py using the Z3 interface (a), compared
with a naive implementation in idiomatic Python using Snek (b).

We can then use Z3 to prove the validity of this function, as follows:
def prove(f):
solver = z3.Solver()
solver.add(z3.Not(f))
return solver.check() == z3.unsat

p, q = z3.Bools('p q')
assert prove(z3_demorgan(p, q))

Examining the code in z3_demorgan, one may notice that all calls to Z3Py simply mirror constructs
already present in Python: and, not, and or. As such, one may imagine rewriting this function using
only Python constructs:
def demorgan(p, q):
return (p and q) == (not (not p or not q))

However, invoking this function using a z3.Bool value fails, as this would attempt to directly
evaluate the symbolic expressions, rather than build a Z3 representation as in z3_demorgan.

Snek provides a convertmethod which takes as parameters the function to be converted and the
overloads object containing the implementations of the virtualized constructs. We can thus provide
the implementations of and_, or_, and not_ as shown in Figure 66 in a z3py_overloads object. We can
then convert demorgan and see the same behavior as with z3_demorgan, as follows:
converted_demorgan = Snek.convert(demorgan, z3py_overloads)
p, q = z3.Bools('p q')
assert prove(converted_demorgan(p, q))

5.2 EightQueens: Control Flow and Isolated Execution
While the constructs demonstrated thus far are sufficient for linear programs in Z3, Z3 also
contains API calls for control flow. Z3 allows users to construct if statements of the following
form: z3.If(a, b, c) (Python equivalent: b if a else c). This is a useful abstraction, but becomes
cumbersome when nesting control flow. Consider, for example, the code in Figure 7 (a)7. Here, we
must satisfy three constraints: all queens must be on a valid rank (ranks), no queens may share a file
(files), and no queen may share a diagonal (diagonals). In constructing the constraint on diagonals,
users must provide a somewhat unwieldy set of conditions, including a “then-branch” which adds a
useless constraint of True due to the signature of z3.If. We note that this expression can actually be
6Note that in order to allow patterns such as a and b and c, Python constructs and and or operators as an operation on
the first operand, with all other operands in a list as the second operand.
7Adapted from https://ericpony.github.io/z3py-tutorial/guide-examples.htm.
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greatly simplified, as i == j here will always evaluate to false. We avoid such simplifications in our
presentation to stay true to the original presentation as possible, though it is arguable that such
trivial simplifications may be found more easily in idiomatic Python.
Using Snek, we can replace this expression using an idiomatic Python if statement, as well as

idiomatic Python logical operators (Figure 7 (b)). With a vision of the code we wish to write, as
well as a knowledge of the code we wish to generate (Figure 7 (a)), we look to implementing if_stmt.
However, the implementation of if_stmt is not as straightforward as those shown in Section 5.1.
Consider the following naive approach:
def if_stmt(cond, body, orelse):
return z3.If(cond(), body(), orelse())

z3.If requires Z3 values (i.e., not functions) for both the “then” and “else” branches, requiring our
implementation to evaluate both branches. Doing so, however, will cause both calls to diagonals.append

to take place, regardless of the result of i == j. Z3 does not allow, e.g., lambda functions to be passed
as parameters to z3.If: we must have some method of evaluating the branches and discarding
side effects. To accommodate this complication with control flow, Snek provides an execute_isolated

function, which takes as parameters a nullary function representing the control flow path to be
executed, and a list of free variables in that function which may be modified:
def execute_isolated(func, func_freevars):
original_vals = [var.val for var in func_freevars]
return_vals = func()
modified_vals = [var.val for var in func_freevars]
for var, val in zip(func_freevars, original_vals):
var.val = val

return modified_vals, return_vals

Note that while this function does protect against side effects which result from variable mutation,
it does not protect against side effects which may result from I/O operations. It is possible to
preemptively protect against such operations (e.g., one can imagine virtualizing these operations
and preventing them from occurring while in execute_isolated). Snek provides the mechanism to
virtualize said operations but the specific implementation must be provided by the DSL developer.

Utilizing execute_isolated, we can update our if_stmt as follows:
def if_stmt(cond, body, orelse, local_writes):
body_vals, _ = execute_isolated(body, local_writes)
orelse_vals, _ = execute_isolated(orelse, local_writes)

body_result, else_result, modified_var in zip(body_vals, orelse_vals, local_writes):
modified_var.val = z3.If(cond(), body_result, else_result)

With this in place, we can successfully convert the implementation in Figure 7 (b) and achieve
the expected behavior.

5.3 Staging
Multi-stage programming allows programs to be viewed in multiple execution phases, with earlier
phases informing the code generation (and specialization) of later phases. Of most relevance to Snek
is the Lightweight Modular Staging (LMS) [Rompf and Odersky 2010] framework, which performs
“staging based on types”. Programmers use a provided type constructor to explicit delineate between
information known at compile-time and that known at run time. LMS targets a Scala front-end,
and utilizes the fact that Scala is statically typed in order to allow this type-based differentiation of
stages.
Snek likewise separates programs into explicit execution phases: code as written by the user,

which is virtualized and rewritten; and the execution of that code. It is during this execution stage
that the code contained within an overload object is executed, rather than the code as originally
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def and_(a, b):
if isinstance(a, z3.BoolRef):
if len(b) > 1:
return_val = and_(b[0](), b[1:])

else:
return_val = b[0]()

if isinstance(return_val, z3.BoolRef):
return z3.And(a, return_val)

else:
if return_val:
return a

else:
return False

else:
if a:
if len(b) > 1:
return and_(b[0](), b[1:])

else:
return b[0]()

else:
return False

def or_(a, b):
if isinstance(a, z3.BoolRef):
if len(b) > 1:
return_val = or_(b[0](), b[1:])

else:
return_val = b[0]()

if isinstance(return_val, z3.BoolRef):
return z3.Or(a, return_val)

else:
if return_val:
return True

else:
return a

else:
if a:
return True

else:
if len(b) > 1:
return or_(b[0](), b[1:])

else:
return b[0]()

(a) (b)

Fig. 8. Staged implementations of and (a) and or (b) for Z3Py.

def foo(c):
x = 1

if c:
x = 2

else:
x = 3

print(x)

def foo(c: Rep[Boolean]) = {
var x = 1;

if (c) {
x = 2

} else {
x = 3

}

System.out.println(x) // Unstaged print: undefined behavior
print(x) // Staged print

}

(a) (b)

Fig. 9. Example showing undefined behavior in a) Python (Snek) and b) Scala (LMS), when printing.

written. Due to the fact that this code will be run on live objects, rather than on static code (as in
the case of the rewriting phase), type information is exposed to the DSL developer. This enables
“staging based on types” as presented in LMS, by directly dispatching based on the given dynamic
type and/or generating code.
Z3Py provides a deferred API : constructing a Z3Py object (e.g., z3.And) simply constructs an

object to be evaluated later, rather than performing any work in the call. This inherently breaks
computation phases into stages: Z3 expression construction phase, and a later phase in which the
Z3 runtime is invoked.
Consider the Z3Py implementations of and_, or_, and not_ as shown in Figure 6. The functions

z3.And, z3.Or, and z3.Not are able to accept Python bool objects as well as z3.BoolRef objects, but do not
perform any kind of specialization or optimization based on the parameters (e.g., if any parameter
in a z3.And expression is known to be False, the expression may be replaced with False). Attempting
to add these optimizations would traditionally require modifying the Z3 source code. However, by
providing an intermediate stage (in which the virtualized functions are evaluated), we can add these
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optimizationswithout modifying the Z3Py implementation. We provide implementations in Figure 8
of and_ and or_which bypass the Z3 runtime altogether where possible (a staged implementation of
not_ follows mechanically).

Difficulties in Staging. While staging as thus described seems straightforward, there exist some
difficulties which may not be obvious at first glance. For example, consider the code in Figure 9
(a). Here, we must determine how to treat x if c is staged. LMS enforces a policy that all mutable
variables are, by default, staged (i.e., x is lifted as a Rep[Int] in Figure 9 (b)). This is due to the fact
that in many cases, it is likely the desire that side effects (e.g., printing) appear at run time, rather
than at staging time. It is possible in LMS to override this default behavior by supplying an explicit
type annotation, but doing so introduces undefined (and likely undesired) behavior.
Due to Python’s dynamic type system, DSL developers may choose to modify the type of x

upon staging the if statement and replace it with a staged type. This, however, will cause the
print statement to execute on a staged value: without __repr__ defined on this staged type, this may
cause an error. As such, it becomes necessary to provide a method whereby we may safely print
(potentially) staged values. A naive solution may be to simply virtualize the print function in Python
such that it dispatches based on the type of the argument. Snek provides a RewritingCallOverload utility
which allows DSL developers to decorate implementations with call.replaces(f), where f represents
the front-end function which is being replaced. For example, virtualizing print to dispatch based on
type of the argument may look as follows;
call = RewritingCallOverload(py_defaults.call)
@call.replaces(print)
def my_print(s):
if should_stage(s):
staged_print(s)

else:
print(s)

However, this implementation may cause unintended behavior: it is now impossible to print any
current stage (i.e., known) values at run time! Due to the fact that Python’s print statement allows
an arbitrary number of parameters, we may adopt the solution proposed by Amin and Rompf [2018]
and require that users provide a file descriptor as the first argument to printwhich determines at
what point the value is output (i.e., whether the print statement executes or generates code). Such a
technique will produce the intended behavior, but note that this requires modifying user code.

Another method may be to provide an explicit staged printing function. This follows the pattern
of LMS (see Figure 9 (b)). This provides a natural solution, but does require users to modify existing
code and to know whether a value is staged.

Yet another potential solution may be to provide a new function which returns a staged version
of the given value (i.e., T ⇒ Rep[T] in LMS). Use of this function may be as follows:
print(rep('this will be staged!'))

Again, this requires modification of the original user code, and likewise requires the user to
know whether a value may be staged. It does, however, provide the benefit that the DSL developer
is able to determine the value returned by rep.
We note that any of these patterns is possible in Snek. Indeed, a DSL developer may elect to

override the __repr__ method of a staged type and simply print all values at staging time, with a
custom message informing the user that a value is not yet known.

5.4 Simplifying EightQueens with Virtualized Function Calls
Consider the implementation of the Eight Queens problem as shown in Figure 7 (b). While this
implementation makes use of idiomatic Python control flow, the if statement which encodes the
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queens = [z3.Int('queens_%i' % (i + 1))
for i in range(8)]

ranks = [1 <= queens[i] and queens[i] <= 8
for i in range(8)]

files = [z3.Distinct(queens)]
diagonals = []
for i in range(8):
for j in range(i):
if i != j:
diagonals.append(queens[i] - queens[j] != i - j \
and queens[i] - queens[j] != j - i)

queens = [z3.Int('queens_%i' % (i + 1))
for i in range(8)]

ranks = [1 <= queens[i] and queens[i] <= 8
for i in range(8)]

files = [z3.Distinct(queens)]
diagonals = []
for i in range(8):
for j in range(i):
if i != j:
diagonals.append( \
abs(queens[i] - queens[j]) != abs(i - j))

(a) (b)

Fig. 10. Simplifying the Z3Py implementation.

Table 1. Results of solving the EightQueens problem using the Z3Py interface. Results reported as the average
of 50 runs, in seconds.

Figure 7 (a) Figure 7 (b) Figure 10 (a) Figure 10 (b)
Eight Queens 0.060 0.060 0.059 0.068

constraint that no two queens reside on the same diagonal retains the undesirable code of adding
multiple (useless) True constraints. This can be rectified trivially by simply negating the condition
and removing the corresponding then branch, as shown in Figure 10 (a).
The astute reader will note that this can be simplified further, as follows:
if i != j:
diagonals.append(abs(queens[i] - queens[j]) != abs(i - j))

Without function call virtualization, this code results in an error at run time: z3.ArithRef (the
type of queens[i] - queens[j]) has no __abs__method defined, causing abs(queens[i] - queens[j]) to fail.
Whereas traditionally implementing this method would require a developer to modify the Z3
codebase, we may provide the desired abs functionality at run time using the replacement utility
described in Section 5.3:
@call.replaces(abs)
def z3_abs(x):
if isinstance(x, z3.ArithRef):
return z3.If(x < 0, -x, x)

else:
return abs(x)

With the ability to use abs on z3.ArithRef objects, we can reimplement the naive implementation in
Figure 7 (a) with a simplified version written using native Python control flow and Python built-in
functions, as shown in Figure 10 (b).

5.5 Performance
We show the results of running the Eight Queens implementations shown in Figures 7 and 10 in
Table 1. Unsurprisingly, the performance of the Z3Py implementation (Figure 7 (a)) match exactly
the performance of the naive Snek implementation (Figure 7 (b)), as the naive Snek implementation
generates the exact same Z3 representation. Figure 10 (a) produces slightly better performance,
as the generated Z3 representation is comprised entirely of z3.And expressions, rather than the
z3.If(False, True, ...) pattern present in the representation generated by the naive implementations
(Figure 7).

The simplified implementation presented in Figure 10 (b), on the other hand, runs more than 10%
slower than the naive implementations. This is due to our implementation of z3_abs: it generates z3.If
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Table 2. RNN Cell Performance (examples/sec, higher is faster)

Back-ends
PyTorch TF Eager NumPy TF Graph

Fr
on
t-
en
ds PyTorch 29.46 84.09 29.73 100.37

TF Eager 29.25 86.94 29.38 105.70
NumPy 29.42 80.30 29.54 109.78
TF Graph - - - 101.67
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Fig. 11. Relative performance for a dynamic RNN using Snek on PyTorch, TensorFlow Eager (TF Eager),
and NumPy as front-ends, with PyTorch, TensorFlow Eager, NumPy, and TensorFlow Graph as back-ends
in comparison to an unmodified front-end running on the same back-end (e.g., PyTorch code running on
PyTorch). Note that TensorFlow Graph has not been implemented as a front-end.

nodes which replace the z3.And nodes found in Figure 10 (a). Examining this node provides some clari-
fication: z3.If((queens[i] - queens[j]) < 0, -(queens[i] - queens[j]), (queens[i] - queens[j])).While Z3may
perform the equivalent of common subexpression elimination to avoid computing queens[i] - queens[j]

multiple times, this is still additional overhead which the other provided implementations are able
to avoid.

5.6 Applying Snek
To this point, we have examined using Snek as a DSL developer. The next step as such a developer
is to provide an interface to apply the conversion. As we do not wish to expose the convert function
provided by Snek, we may instead build a Python decorator, as follows:
def z3(func):
return Snek.convert(func, z3py_overloads)

Making this available to end users allows them to apply this, as follows:
@z3
def demorgan(p, q):
return (p and q) == (not (not p or not q))

No additional changes are required from users, as this decorator will apply the modification
in-place (i.e., all calls to demorganwill call the converted function).

6 EVALUATION
To demonstrate the flexibility of Snek we use it to define translations between several popular
numerical computing frameworks. This also allows us to quantify some of the performance effects
of virtualization. Each of these frameworks has a unique Python API, some even have different
execution semantics (e.g. PyTorch’s define-by-run semantics vs. TensorFlow’s define-then-run
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semantics). For this evaluation, we do not attempt to translate the entire API, but rather only the
subset needed to demonstrate proof of concept. We do virtualize control flow for all examples.

We also describe amore complete example, using Snek to generate code targeting the Lantern [Wang
et al. 2018] back-end. This example takes code written for PyTorch and translates it to target Lantern.
We demonstrate the effectiveness of this translation on a standard MNIST benchmark.

Nearly all experiments were conducted on a single machine with a dual-threaded 6-core Intel
Xeon E5- 1650 CPU. The one exception is the MNIST experiment, which was conducted on a single
NUMA machine with 4 sockets, 24 Intel Xeon Platinum 8168 CPUs per socket, and 750 GB of RAM
per socket. We used Python 2.7.18, GCC 5.4.0, TensorFlow 1.13.1, PyTorch 0.4.0, and Scala 2.11.6.

6.1 Dynamic RNN
We used Snek to retarget code from one numerical computing framework to another. As a running
example we implemented a simple recurrent neural network model in PyTorch, NumPy, and Ten-
sorFlow’s Eager mode. Each of these is targeted at several back-ends: PyTorch, NumPy, TensorFlow
Eager, and TensorFlow Graph. We report the performance of running the original and translated
code in Table 2. We also include a handwritten TensorFlow graph version for comparison. Note
that we do not translate this graph version; this is not a typical use case due to TensorFlow Graph’s
non-intuitive programming model. Each entry in the table is the average of 50 runs each with 50
batches of 32 randomly generated examples. Each example has a maximum sequence length of 64.
By reading a column of Table 2 we can compare the performance of untranslated code (where

the front-end and back-end are the same) with code targeted from a different framework. As can
be seen from Figure 11, for each back-end, performance does not depend on whether the code was
translated from a different front-end or written by hand.

6.1.1 PyTorch. The PyTorch implementation of a minimal RNN model can be seen below.
def rnn_model(inputs, seq_len, w, b, init_state):
"""Very basic RNN model, implemented in PyTorch."""
inputs_time_major = torch.transpose(inputs, 0, 1)
max_seq_len = torch.max(seq_len)
state = init_state
for i in torch.arange(max_seq_len):
x = inputs_time_major[i]
h = torch.cat((x, state))
state = torch.nn.tanh(torch.mm(h, w) + b) # Basic RNN cell

return state

We can see that this implementation, while minimal, has some features that would be challenging
in a syntactic approach to translation. First of all there are a number of calls into the PyTorch
API each of which has to be mapped to corresponding logic in the other frameworks. Second
there is data dependent control-flow. The for loop depends on a value max_seq_len that is computed
at run time. For define-by-run frameworks like PyTorch and TensorFlow Eager the control flow
is executed within the Python runtime. For define-then-run frameworks like TensorFlow Graph
data-dependent control flow must be embedded in the dataflow graph that will be executed.

Back-End: TensorFlow. We convert the PyTorch RNN implementation above to TensorFlow Eager
mode and TensorFlow Graph mode. Both of these translations require a Snek overload for function
calls that rewrites those targeting the PyTorch API to the corresponding TensorFlow API calls.
Consider the following implementation of max_, which replaces a call to the PyTorch torch.max function
with a call to TensorFlow’s tf.reduce_max instead:

8While the evaluation was performed using Python 2.7.1, Snek uses libraries which allow either Python 2 or Python 3 code
in a way that is transparent to users of Snek.
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call = RewritingCallOverload(default_call)
@call.replaces(torch.max)
def max_(input_data):
return tf.reduce_max(input_data)

The RewritingCallOverload.replaces decorator, a helper API provided by Snek, does the heavy lift-
ing. This decorator registers the max_ function as a replacement for torch.max. The argument to
RewritingCallOverload tells the virtualization code what to do when a replacement function has not
been registered, usually just call it as normal.

While this example is straightforward, a direct replacement for a given function will not always
exist. In such cases, the domain expert implementing the virtualized functions is able to provide
a conversion. For example the PyTorch and TensorFlow have different APIs for computing a
permutation of a tensor. Our implementation of the conversion function for torch.transpose is below:
@call.replaces(torch.transpose)
def transpose(x, dim0, dim1):
perm = []
for i in range(x.shape.rank):
if i == dim0:
perm.append(dim1)

elif i == dim1:
perm.append(dim0)

else:
perm.append(i)

return tf.transpose(x, perm)

Once we have defined the translation of API calls we can translate from PyTorch to TensorFlow
Eager mode. Both of these frameworks execute control flow within the Python interpreter calling
into their respective APIs as needed to compute any values needed to make control flow decisions.
TensorFlow Graph mode works differently, first building up a dataflow graph representing a
computation. Then giving the whole graph over to an executor which then computes the results.
This means that any data-dependent control flow must be embedded in this dataflow graph.
TensorFlow does not have a for loop so we override for_stmtwith code that produces the appropriate
tf.while_loop operation when the iterated object is a TensorFlow tensor.

Back-End: NumPy. The translation to NumPy corresponds directly with the translation to Tensor-
Flow Eager. We use the same call rewriting mechanism to replace PyTorch API calls with NumPy
API calls.

6.1.2 TensorFlow Eager. Our TensorFlow Eager implementation is similar to the PyTorch imple-
mentation seen above with calls to the TensorFlow API in place of the calls to the PyTorch API. We
then translate this implementation to PyTorch, NumPy, and TensorFlow Graph. We only discuss
this last translation as the others directly follow from the description in Section 6.1.1.

Comparison with AutoGraph. TensorFlow Eager to TensorFlow Graph is the same translation
performed by TensorFlow AutoGraph. Our goal is not to reproduce a production-level system like
AutoGraph in Snek, but to show that we can replicate its key features quickly and easily. While
AutoGraph converts many features of Python, we compare to the recommended configuration or
AutoGraph that includes conversions of if, for, and while statements.9 Our Snek translation also fully
supports the conversion of these three key control flow constructs. Below is an override of if_stmt
as implemented in Snek. We use the helper function execute_isolated as described in Section 5.2.
def if_stmt(cond, body, orelse, local_writes):
cond_result = cond()
if tf.is_tensor(cond_result):
def if_body(*_):

9https://www.tensorflow.org/alpha/guide/autograph
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modified_vals, _ = execute_isolated(body, local_writes)
return modified_vals

def if_orelse(*_):
modified_vals, _ = execute_isolated(orelse, local_writes)
return modified_vals

result_values = _tf_if_stmt(cond_result, if_body, if_orelse)

for var, val in zip(local_writes, result_values):
var.val = val

else:
py_defaults.if_stmt(lambda: cond_result, body, orelse, local_writes)

Running the AutoGraph in the recommended configuration on our simple RNN example produced
a throughput of 106.22 iterations per second which is comparable to the 105.70 iterations per second
we get with Snek.

6.1.3 NumPy. We implemented the same RNN in NumPy with translations to PyTorch, TensorFlow
Eager, and TensorFlow Graph. These follow the same pattern as those described in Section 6.1.1.

6.2 MNIST: PyTorch to Lantern

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 50)
self.fc2 = nn.Linear(50, 10)
self.activateFunc = args.activateFunc

def forward(self, x):
x1 = x.view([-1, 784])

if self.activateFunc == 1:
x2 = F.relu(self.fc1(x1))
x3 = self.fc2(x2)
x4 = F.log_softmax(x3, dim=1)
return x4

else:
x6 = F.tanh(self.fc1(x1))
x7 = self.fc2(x6)
x8 = F.log_softmax(x7, dim=1)
return x8

Fig. 12. Simplified implementation of MNIST in PyTorch, with optional hyperparameter to specify activation
function.

Using Snek, we built a system capable of taking PyTorch code as input, and generating s-
expressions representing this program to produce back-end agnostic code. We then used the parser
provided by Amin et al. [2015] to convert these s-expressions into a Scala AST upon which Lantern
may reason. Due to the fact that Lantern is built using Lightweight Modular Staging (LMS) [Rompf
2012], this provides additional opportunities for staging benefits beyond those provided by Snek.
We note that Lantern does not have a Python front-end; rather, we are able to easily construct

one using Snek to generate code, rather than dispatching to a staged computation. Furthermore, by
generating s-expressions, we can effectively create a Python front-end for any back-end system,
though this requires the writing of a parser capable of translating s-expressions to the desired
system. This requirement, however, becomes the responsibility of the back-end developer: the DSL
developer must only generate correct s-expressions, and the end user must only construct a valid
program. Indeed, with this pattern the back-end developer need not develop in Python, and may
instead implement a parser in the language of their choice.

Evaluating Snek and Lantern. In order to evaluate Snek and Lantern, we elected to convert
the code in Figure 12. This is a simplified (for presentation) implementation adapted from the
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implementation provided by PyTorch10, using a single fully-connected layer (consisting of two
Linear layers). This is a program which performs image classification on the MNIST [LeCun and
Cortes 2010] dataset, which is a standard introductory program for machine learning programmers.
MNIST consists of 70,000 handwritten digits (60,000 training examples, 10,000 test examples), which
machine learning models aim to learn to classify correctly (i.e., correctly identifying the number
pictured in an image). We elide all training details here for presentation.

Results. In order to provide a baseline for Snek, we implemented the equivalent program directly
in Lantern. In both cases, Lantern generates a C++ file containing the staged functionality. Running
these for both systems yields identical results, with both achieving an average of 21.5 seconds to
train 5 epochs (average of 5 runs reported). The accuracy was similarly unaffected. Running this
code in unmodified PyTorch code takes 122.4 seconds, while using Snek targeting PyTorch takes
124 seconds.

Due to the fact that Lantern heavily specializes the generated code, this result is unsurprising: a
faithful translation from Python will yield the same C++ code as that from Scala, as there do not
exist additional specialization opportunities.

7 RELATEDWORK
DSLs in Python. Despite the abundance of DSLs which exist in Python, very few frameworks exist

which aim to aid in the creation of new Python DSLs. One such framework is MacroPy [MacroPy3
Contributors 2019], which allows for user-defined macros to modify Python ASTs at import time.
This allows for easy extension of the default Python semantics, but requires a modified interpreter,
and does not provide any staging functionality due to its static behavior. Marrow [Marrow Contrib-
utors 2019b] similarly performs all translation at import time. Other systems like cinje [Marrow
Contributors 2019a], Django [Django Contributors 2019], and Jinja [Jinja Contributors 2019] per-
form Python templating which allows for embedding DSLs in Python, but does not allow for the
virtualization of Python constructs to provide new semantics. In particular, these systems require a
new parser to be used, rather than that of the Python interpreter.

Language-oriented Programming. Language-oriented programming is a programming paradigm
in which domain experts may design a DSL to solve a problem, rather than using a general-purpose
one. Racket [Felleisen et al. 2015] achieves this through an advanced macro system, and provides
users with an easy mechanism for designing new language constructs (both syntactic and semantic).
While the present work was designed following the tenets of language-oriented programming
as outlined by Felleisen et al. [2018], the proposed methodology intentionally does not provide a
mechanism for introducing new syntax. In short: while both Racket and Snek provide users with
the powerful abstractions available via DSLs [Hudak 1997], Racket is used for the construction of
new DSLs, whereas Snek repurposes Python as a DSL.

Multi-stage Programming. Multi-stage programming [Taha and Sheard 2000] is a well-studied
area. Tools like Terra [DeVito et al. 2013] showcase the ability to metaprogram to an intermediate
language specifically designed to integrate between user-facing code and highly-optimized machine
code. Similarly, code quotations in F# [Cisternino et al. 2007] allow for the explicit construction
of ASTs of the host language for later execution, including the ability to reference existing code
objects.
Of most relevance to Snek is Lightweight Modular Staging (LMS) [Rompf and Odersky 2012],

upon which the system presented in Section 6.2 is based. LMS uses a specialized type annotation
Rep[T] to allow users to mark values as being known at run time, with all other values known at
10https://github.com/pytorch/examples/blob/master/mnist/main.py
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compile time, and relies on virtualization of Scala built-ins [Rompf et al. 2012]. A number of existing
works have shown LMS’s ability to provide users with an extremely high-level interface while
generating highly specialized low-level code [Essertel et al. 2018; Rompf et al. 2013, 2014; Stojanov
et al. 2018; Tahboub et al. 2018]. Of most relevance here is Lantern [Wang et al. 2018; Wang and
Rompf 2018], which uses LMS to provide a differentiable programming interface. Amin and Rompf
[2018] also showed how multi-stage programming can be used to reduce the overhead inherent in
different interpreter boundaries.
These systems all rely on static type information, whereas Snek is the first system to provide

such capabilities in a dynamically typed setting.

Macros and other Dynamic Languages. Virtualization in the style of Snek is crucially different
frommacros in the style of Lisp, the prevalent metaprogramming technique in dynamic languages: a
macro receives unevaluated pieces of a host-language AST as arguments. A staging system based on
virtualized functions receives staged code fragments that are the result of host-language evaluation.
For DSL developers, this makes the difference between having to analyze host-language ASTs to
extract DSL expressions (a difficult task!) and receiving proper DSL expressions as arguments right
away.

However, syntactic macros with AST introspection and rewriting facilities appear to be enough
to implement Snek-style virtualization in other languages — in essence, the approach boils down to
rewriting built-in primitives into function calls that constitute a tagless-final [Carette et al. 2007]
or object algebra [d. S. Oliveira and Cook 2012; Guttag and Horning 1978] representation of the
language syntax. Taking the role of decorators in Python, macros could be used to implement
Snek’s source-to-source transform in Racket or other Lisp dialects, which would then enable a
similar form of virtualization in those languages. Likewise, the same approach could be applied
to Java using Recaf [Biboudis et al. 2016], or to JavaScript using a macro toolkit such as SweetJS
[Sweet.js Contributors 2019].

Partial Evaluation. Partial evaluation is closely related to multi-stage programming: both are
specialization approaches, but partial evaluation aims to be entirely automatic in this specializa-
tion [Jones et al. 1993]. Snek attempts to specialize based on user intent, with this intent expressed
through the use of decorators.

Python Semantics. λπ [Politz et al. 2013] is a formal system describing the core semantics in
Python as an executable small-step operational semantics. The work of λπ presents a number
of features within Python worthy of examination, especially in works like Snek which perform
source code transformations. λπ is not a formal proof of Python semantics, nor is conformance
to λπ a guarantee of a correct model of Python semantics. However, λπ exposes an extensive test
suite modeled after the Python unittest suite, including a number of tests which examine many
non-evident features in Python (e.g., functions declared within class definitions not having access
to variables declared within the enclosing classwithout the use of self). Other works include an
executable operational semantics for a subset of Python in Haskell [Guth 2013], as well as in the K
semantic framework [Guth 2013; Rosu and Serbanuta 2010].

8 CONCLUSIONS
We presented a general-purpose methodology for customizing the semantics of syntactic constructs
to enable linguistic reuse of Python. It enables deeply embedded DSLs in Python, and “staging
based on types,” without requiring additional type information. This is accomplished through virtu-
alization of Python’s built-in constructs which could not be otherwise overloaded, thus providing a
new stage for computation at which time types are known. We demonstrated these capabilities in a
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system called Snek, by providing sample implementations of typical DSLs. Virtualization as shown
in Snek unlocks the full expressive power of Python in DSLs, and can target arbitrary back-ends,
whether in Python or otherwise.
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