
Specializing Data Access in a Distributed File System
(Generative Pearl)

Pratyush Das
Purdue University
West Lafayette, USA
das160@purdue.edu

Anxhelo Xhebraj
Purdue University
West Lafayette, USA
axhebraj@purdue.edu

Tiark Rompf
Purdue University
West Lafayette, USA
tiark@purdue.edu

Abstract
We propose DDLoader, a system that embeds information
about data partitioning and data distribution in distributed
file systems using a metaprogramming framework.We demo-
nstrate that this technique has practical benefits for building
applications that interact with distributed file system applica-
tions. By using metaprogramming, we bring the traditional
benefits of staging, such as partial evaluation to the domain
of distributed file system access. Furthermore, this approach
also fuses the data access code with the computation code,
allowing end-to-end optimization. We test our framework
on a real-world use case and show that this approach allows
users to generate code that performs faster than traditional
data loading by up to 12.56x on a single thread and even
more when parallelized.

CCS Concepts: • Software and its engineering→ Source
code generation.

Keywords: Staging, Generative Programming, Distributed
File Systems
ACM Reference Format:
Pratyush Das, Anxhelo Xhebraj, and Tiark Rompf. 2024. Special-
izing Data Access in a Distributed File System (Generative Pearl).
In Proceedings of the 23rd ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (GPCE ’24),
October 21–22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3689484.3690736

1 Introduction
Modern distributed file systems partition and replicate data
amongst a cluster of participating nodes to enable process-
ing of larger-than-memory datasets and to provide fault
tolerance. Typically, these systems maintain designated co-
ordinator nodes that track the state of the cluster and route
user operations to the nodes holding the requested data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1211-1/24/10
https://doi.org/10.1145/3689484.3690736

One way to improve performance in this scenario is to pro-
vide the client with the cluster topology and data distribution
information so that they can bypass the designated coordi-
nator and directly access the data. Loading the files from the
underlying file system instead of having to go through high
level APIs can lead to significantly better performance.While
these might cause concerns due to missing added benefits
provided by these high level APIs such as fault tolerance,
this is useful for systems where fault tolerance is infrequent,
and in the rare case that it does happen, the computation
can be restarted.

In this paper, we propose a system, DDLoader, that embeds
the information about the data distribution into the language
using the Lightweight Modular Staging[17] metaprogram-
ming framework for Scala. Multi-stage programming tech-
niques allow developers to build applications while delegat-
ing the task of generating low-level file loading details to the
generated code. This hides the implementation details of the
underlying distributed file system while retaining the perfor-
mance of handwritten examples. Further, metaprogramming
erases the distinction between the data loading and data
processing phases of the applications typically built over dis-
tributed file systems, allowing whole program optimization,
which was not possible previously.

DDLoader presents a Scala frontend to the user while
generating low-level C code that bypasses a distributed file
system’s API abstractions to load data directly from the na-
tive file system. This abstracts the distributed file system
information away from the user while retaining the perfor-
mance of handwritten examples designed to operate over
the file optimally. Even though DDLoader is implemented in
Scala and LMS, the ideas can be generalized to other metapro-
gramming frameworks in both Scala (Squid [13, 14], Scala 3
[23]) and other languages (BuildIt [4], MetaOCaml [10]).

In traditional systems like Apache Spark that can load files
from a non-native file system such as the Hadoop Distributed
File System (HDFS) [21], the data loading and computation
are distinct and independent parts of the system architecture
(Figure 1a). DDLoader can query the file system information
and generates a unified executable that removes the bound-
ary between the workers and the Datanodes (Figure 1b);
thereby loading files faster than an overarching system that
uses Hadoop’s API abstractions. HDFS’ file system itself han-
dles part of fault tolerance by replicating a block on different

https://orcid.org/0000-0001-8140-0097
https://orcid.org/0009-0008-6670-6408
https://orcid.org/0000-0002-2068-3238
https://doi.org/10.1145/3689484.3690736
https://doi.org/10.1145/3689484.3690736

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Pratyush Das, Anxhelo Xhebraj, and Tiark Rompf

Master Node Cluster Manager

Worker Node

Worker Node

Worker Node

Namenode

Datanode

Datanode

Datanode

HDFS Data
Loader

Local
File System

Local
File System

Local
File System

(a) Architecture of Apache Spark loading files from HDFS

Master Node Cluster Manager

Specialized
Worker Node

Specialized
Worker Node

Specialized
Worker Node

Local
File System

Local
File System

Local
File System

(b) Apache Spark with a specialized backend to load files from HDFS

Figure 1. Example of a class of systems which could benefit from techniques discussed in this paper

nodes, and only the paths to blocks on live nodes would be
returned by DDLoader.

This paper makes the following contributions:
• We discuss the implementation of our new system,
DDLoader, that is aware of HDFS’ architecture at stag-
ing time and utilizes multi-stage programming tech-
niques to embed the information of the underlying
distributed file system in the Scala language using
LMS (Section 3).

• We demonstrate that DDLoader can operate on files up
to 12.56x faster compared to the available HDFS APIs
on a single core andmore when parallelized (Section 4).

Systems like Flare [9] have explored using metaprogram-
ming to accelerate data processing, but such systems still
need to load data through default abstractions such as ones
provided by HDFS. By accelerating the data access layer us-
ing a system such as DDLoader, this abstraction boundary
goes away, yielding potential performance benefits.

2 Background
2.1 Hadoop Distributed File System
HDFS is a distributed file system that is designed to store
extremely large datasets. In an HDFS cluster, there is a single

Namenode and multiple Datanodes (Figure 1a). The Namen-
ode contains metadata that keeps track of how the data is
split and stored in blocks across the Datanodes. The Namen-
ode receives instructions from user processes and uses them
to make decisions about allocating read and write operations
to specific Datanodes. The Namenode itself does not operate
on the data and instead instructs the Datanodes to move the
data if required and perform all of the computation.
HDFS Architecture: Let us assume that a user Alice has a
100 TB logical file and wants to store it on a HDFS cluster
of 20 machines – which in a typical case, would imply 20
Datanodes, each corresponding to a particular machine. A
HDFS cluster comprises a single Namenode which commu-
nicates with multiple Datanodes (Figure 1a). The 100 TB
file would be split into several blocks and stored across the
Datanodes (the sizes of these blocks can be configured by
Alice). Each block would in turn be replicated on multiple
Datanodes (the replication factor is configured by Alice) to
provide the reliability of the cluster. HDFS’ block placement
policy prioritizes the read bandwidth when deciding which
Datanode to replicate and store a block on.

Specializing Data Access in a Distributed File System (Generative Pearl) GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

The Namenode stores a snapshot of the current state of the
cluster in a file called the FSImage and records all modifica-
tions made to the cluster in an edit log, which is periodically
synced into the FSImage. The Namenode and the Datanodes
communicate with each other using heartbeats (which are a
report of the current status of the Datanode) to optimize file
storage such as ensuring that the Datanodes have a balanced
disk usage. When Alice wants to read or write a file into their
cluster, the HDFS client they are accessing the cluster from
would first query the Namenode for the available Datanodes
and then depending on the API that Alice decides to use,
either load the file parallelly on each Datanode in the case
of MapReduce or move the data from each Datanode to the
HDFS Client when using Hadoop’s general API (Hadoop can
transparently orchestrate network transfer among nodes in
the cluster).
Loading files from HDFS: All data stored in HDFS is
stored in the same serialization format as when it was moved
to HDFS on the Datanode’s native file system as blocks. Each
block name is prefixed by a number that denotes the se-
quence of blocks that make up a particular file to ensure
that a file is always read in the correct order. Hadoop has
several publicly available APIs that allow loading files from
HDFS, in Java (Figure 2a), C (Figure 2b) and Shell (Figure 2c).
It is important to note that the Java API is the canonical
API since HDFS (and the entirety of the Hadoop ecosystem)
is implemented in Java, and the other APIs call the Java
API internally – C by using the JNI and the Shell API being
Java functions that are executed using a bundled binary exe-
cutable. The performance of the Java API and the C API is
compared in Section 4 (the shell API is significantly slower
for our chosen operations).

2.2 Lightweight Modular Staging
Lightweight modular staging (LMS) [17] is a metaprogram-
ming framework written in Scala. The user has control over
the generated code by annotating the types, T for when the
value is known at compile time and Rep[T] for when the value
has to be computed at runtime.

For example, in the following example, the user has anno-
tated the type of b as Rep[Int] and n as Int:
1 def power(b: Rep[Int], n: Int): Rep[Int] =

2 if (n == 0) 1

3 else b * power(b, n-1)

Since n’s value is known at compile time, the generated
code will be specialized for the value of n.

1 int power5(int b) {

2 return b * b * b * b * b

3 }

Using LMS provides several advantages such as allow-
ing the user written code to be strongly typed as well as
being able to specialize expressive Scala code to generate
performant low level code [1, 15, 16, 18, 19, 22].

3 DDLoader
DDLoader is a system that utilizes LMS’s multi-staging com-
pilation to generate specialized code that eliminates HDFS
abstractions to load data directly from the native file sys-
tem. Since DDLoader contains information both about the
file system architecture as well as the specific computation,
it is able to make optimizations on the generated unified
executable.

3.1 Querying the file information
Hadoop provides a command (fsck) to query the health of
the disks where data is stored. This command generates in-
formation about the names of the blocks that make up a
particular file, the IP address of the physical machine where
a particular block is located, the replication factor for a par-
ticular file and a part of the path where the file is stored on
the physical machine’s underlying native file system, rela-
tive to the configured HDFS block storage directory on each
Datanode. The path of the block storage directory that is not
available in the fsck output can be retrieved by querying the
value of the dfs.datanode.data.dir configuration property of
the Datanode. Once the full path of each block is available,
the blocks can be loaded independently without having to
use the HDFS data loading API (Figure 1). Since the fsck

command generates the IPs of all the machines that a block
is replicated across, it is possible to choose the node which
would load and operate over a particular block, thus splitting
the computation across multiple nodes.

3.2 Interface
To write an operation, the user writes a class that extends
our DDLoader trait which is defined as -
1 trait DDLoader ... {

2 def HDFSExec(paths: Rep[Array[String]],

3 readFunc :(Rep[Int], Rep[LongArray[Char]],

4 Rep[Long]) => RepArray[Char]

5): Unit

6 }

Here, paths is an automatically filled (from first-stage com-
pilation) array where each element is a path to the ith block
that makes up the file stored over HDFS. readFunc can be ei-
ther mmapFile or readFile, which are both defined in DDLoader

.LMSMore. The former uses Linux’s mmap() command to read
the file, whereas the latter uses Linux’s read() command.

The user also implements their own HDFSExec function which
satisfies the signature of the abstract HDFSExec, inside some
user defined class UserClass.
Even though the provided API allows files to be loaded

using both mmap() and read() (neither of the two is optimal in
all cases [6]), our evaluations in Section 4 use mmap(), since
it yielded better performance for the operations compared
in this paper. They then create an object of DDLoader’s

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Pratyush Das, Anxhelo Xhebraj, and Tiark Rompf

1 Configuration conf = new Configuration ();

2 Path inFile = new Path(args [0]);

3 FSDataInputStream in = fs.open(inFile);

4 byte[] buffer = new byte[size];

5 in.readFully (0, buffer , 0, size);

6 for (i=0; i<size; i++) {

7 if (buffer[i] != 32) { count ++; }

8 }

(a) Java source code that loads files from HDFS

1 hdfsFS con = hdfsConnect("127.0.0.1" ,9000);

2 char *inFile = argv [1];

3 hdfsFile op = hdfsOpenFile(con ,inFile , 0, 0, 0, 0);

4 char *buffer = calloc(size , sizeof(char));

5 hdfsPread(con ,op ,0,buffer ,size);

6 for (int i = 0; i < size; i++) {

7 if (buffer[i] != ' ') { count ++; }

8 }

(b) C source code that loads files from HDFS

1 hdfs dfs -cat $filepath | tr -d '[:blank:]' | wc -m

(c) Bash source code that loads files from HDFS

Figure 2. Example programs that load files from HDFS and count the number of non-whitespace characters

1 @virtualize

2 class UserClass extends DDLoader {

3 override def HDFSExec (...) {

4 // Operation code here

5 }

6 }

7

8 object UserObject {

9 def main(args: Array[String]): Unit = {

10 val ops = new UserClass ()

11 val loadFile = ...// File to load from HDFS

12 val writeFile = ...// C file to generate

13 val driver = new DDLDriver(ops , loadFile ,

14 mmapFile) {}

15 driver.emitMyCode(writeFile)

16 }

17 }

Listing 1. DDLoader example

driver called DDLDriver and pass the relevant arguments to its
constructor. To generate code, call emitMyCode on the driver
object (Listing 1).

The users do not need to know any additional information
when writing a program over an HDFS file using DDLoader,
as compared to using one of the official Hadoop APIs. In
Listing 2, we demonstrate the body of the HDFSExec function
for a simple whitespace count program written in DDLoader.
As we can see, the program looks very similar to the Java or
C Hadoop API implementations in Figure 2.

3.3 Specializations
The benefit of a system such as DDLoader is that it can
be easily integrated into other systems that want to load
files from HDFS. DDLoader provides a high level API that
does not require any more programming effort than using
the Hadoop API, but automatically is able to apply a suite

1 val buf = NewLongArray[Char](getBlockLen ()+1,

2 Some (0))

3 var count = 0L

4 for (i <- 0 until paths.length) {

5 val block_num = open(paths(i))

6 val size = filelen(block_num)

7 val fpointer = readFunc(block_num , buf , size)

8 for (j <- 0 until fpointer.length) {

9 if (fpointer(j) == ' ') { count = count+1L }

10 }

11 close(block_num)

12 }

Listing 2. HDFSExec for whitespace count in DDLoader

of optimizations provided by the LMS framework when it
generates the code.
Static Data: Code generation can happen either at run time
(dynamic) or compile time (static). Multistage programming
(in our case, using LMS) allows a combination of the two
where DDLoader is able to query Hadoop’s Namenode and
retrieve the paths of the blocks which make up a file stored in
HDFS at stage 1 compile time (scala runtime that generates
native code), thereby effectively having zero cost for these
utilities.
In Listing 3, we can see that in the generated C code for

a simple whitespace count program, the HDFS abstraction
layer is no longer present (with no calls to the HDFS API),
and the paths to the individual blocks that make up a file are
hardcoded into the generated C code.
Dead Code Elimination: LMS allows explicit tracking of
effects, by allowing users to specify an operation as being
pure or effectful, which is made possible due to its graph
intermediate representation (Fig. 10 in Bracevac et al. [3]).
For example, if the user opens all the files in an HDFS di-
rectory but only operates on specific files in Stage 1, the
generated code would only open the relevant files instead

Specializing Data Access in a Distributed File System (Generative Pearl) GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

1 void Snippet(int x0) {

2 char** x1 = (char **) malloc (79* sizeof(char*));

3 x1[0] = "path_to_block_0";

4 x1[1] = "path_to_block_1";

5 ...

6 x1[77] = "path_to_block_77";

7 x1[78] = "path_to_block_78";

8 long x3 = 0L;

9 int x4 = 0;

10 while (x4 != 79) {

11 int x5 = open(x1[x4], 0);

12 long x6 = fsize(x5);

13 char* x7 = mmap(0, x6, PROT_READ |

PROT_WRITE , MAP_FILE | MAP_PRIVATE , x5, 0);

14 int x8 = (int)x6;

15 int x9 = 0;

16 while (x9 != x8) {

17 if (x7[(long)x9] == ' ') x3 = x3 + 1L;

18 x9 = x9 + 1;

19 }

20 close(x5);

21 x4 = x4 + 1;

22 }

23 printf("%ld\n", x3);

24 free(x1);

25 }

Listing 3. Generated C code for a whitespace count program

of all of them. Since the interface provided by DDLoader to
the user provides an array containing the paths to the blocks
that make up a file stored in HDFS (Listing 1), this is also ex-
tensible at a finer granularity and the user can decide to only
operate over some of the blocks, instead of the entire file,
and DDLoader would only generate code to open the relevant
blocks. Even though open is usually an operation with side
effects, LMS allows open to be modelled as a function that
returns a handle, that if unused, would not be propagated to
the generated code.
Parallelization: Since DDLoader is aware of the location
of blocks of the file through the paths parameter, the user
can decide to use MPI and write functions to operate over the
different blocks in parallel before aggregating information
from all the relevant computations if required. This often
yields significant performance benefits since data loading
is easily parallelizable. The parallelization is defined by the
user, and DDLoader provides a set of MPI APIs to make this
easier. This type of optimization is more difficult to make
when the API provided to the user only allows operations
over a single large file.

4 Evaluation
The paper demonstrates the speedups that DDLoader can
get by using a staging compiler (LMS) and by bypassing the

Hadoop API, over existing methods of loading files from
HDFS.

We have implemented different operations over files stored
on HDFS with increasing difficulty and have used this to test
different aspects of our code generation.

• Whitespace count: computes a single Long.
• Character Frequency: computes a fixed-size array.
• Word count: computes a variable length Map[String =>

Long]. A canonical MapReduce[7] example.

Although there is minimal novelty in implementing the
above operations, in the context of a metaprogramming
framework, the efficient loading of the file is entangled with
the computation. Since it is difficult to decouple the compu-
tation from the data loading when demonstrating the capa-
bilities of our system, we decided to include the computation
in the benchmarks. We have chosen computations that are
relatively simple to ensure that the computation time taken
for processing does not overshadow the data loading time.
The complexity of our experiments builds up to word count,
which might be a simple example in distributed settings, but
demonstrates techniques that are useful in real distributed
programs, such as fusing hashmaps across nodes.

The benchmarks have been executed on a NUMAmachine
featuring 4 sockets (comprising 8 NUMA nodes), each with
24 Intel(R) Platinum 8168 cores and 750GB RAM per socket.
Both theHDFS files and the native files are stored on amdraid
RAID 0 array made up of 6 NVME disks. Even though HDFS
is usually used in a distributed setting, our setup contains
several NUMA nodes where there is a higher penalty to
access remote memory regions, which is representative of
the fact that DDLoader can scale to real distributed system
workloads. The files stored in HDFS that have been used
for these evaluations have a mostly uniform distribution
of words. While benchmarking our programs, we start the
timer after the call to MPI_Init() to minimize MPI setup cost.

In Figure 3, we compare the time taken to perform white-
space count, character frequency and word count by Java
and C code (using the Hadoop API) and DDLoader. The plots
use the Java code which is the canonical Hadoop implemen-
tation as a baseline, and demonstrate the speedup of the
alternate implementations. The C code (using Hadoop’s C
API) is usually slightly faster, while DDLoader’s performance
is significantly faster than the alternatives. This is because
DDLoader bypasses Hadoop API overheads, which the C and
Java benchmarks incur, by moving some Hadoop operations
to the first stage compile time and generating a specialized
executable.

In our three sample programs (whitespace count, character
frequency and word count) implemented using DDLoader,
we have implemented distributed versions of our operations
using MPI. Although the benchmarks have been run on a
single node machine, thereby making the operations "par-
allel" instead of "distributed", the implementation has been

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Pratyush Das, Anxhelo Xhebraj, and Tiark Rompf

1G 10
G

50
G

Size of file

100

101

102

Whitespace count

1G 10
G

50
G

Size of file

Character Frequency

1G 10
G

50
G

Size of file

Word count

Sp
ee

du
p

(lo
g)

 o
ve

r J
av

a
Ha

do
op

C HDFS
DDLoader 1 Process

DDLoader 2 Processes
DDLoader 4 Processes

DDLoader 8 Processes
DDLoader 16 Processes

DDLoader 32 Processes
DDLoader 64 Processes

Figure 3. Different operations over files stored in HDFS - Hadoop API vs DDLoader

Table 1. Computing the number of white spaces in a file stored in HDFS

File
size

Java
Hadoop

C
Hadoop

DDLoader
1 proc

DDLoader
2 procs

DDLoader
4 procs

DDLoader
8 procs

DDLoader
16 procs

DDLoader
32 procs

DDLoader
64 procs

1 GB 4.63s 3.6s (1.29x) 0.37s (12.56x) 0.2s (23.15x) 0.11s (41.04x) 0.06s (82.93x) x x x
10 GB 40.02s 20.21s (1.98x) 3.54s (11.29x) 1.87s (21.4x) 1.06s (37.7x) 0.56s (71.28x) 0.28s (142.47x) 0.17s (236.32x) 0.11s (352.41x)
50 GB 206.35s 101.75s (2.03x) 17.5s (11.79x) 8.95s (23.05x) 4.73s (43.59x) 2.49s (83.02x) 1.31s (157.56x) 0.68s (301.45x) 0.37s (559.24x)

Table 2. Computing the frequency of each character in a file stored in HDFS

File
size

Java
Hadoop

C
Hadoop

DDLoader
1 proc

DDLoader
2 procs

DDLoader
4 procs

DDLoader
8 procs

DDLoader
16 procs

DDLoader
32 procs

DDLoader
64 procs

1 GB 5.89s 6.15s (0.96x) 3.18s (1.86x) 1.67s (3.53x) 0.89s (6.62x) 0.44s (13.28x) x x x
10 GB 54.87s 46.41s (1.18x) 28.29s (1.94x) 14.28s (3.84x) 7.39s (7.42x) 3.73s (14.71x) 1.97s (27.9x) 1.19s (46.08x) 0.8s (68.98x)
50 GB 283.61s 223.15s (1.27x) 141.81s (2.0x) 72.0s (3.94x) 36.46s (7.78x) 18.38s (15.43x) 9.85s (28.8x) 5.17s (54.82x) 2.78s (101.94x)

Table 3. Computing the frequency of each word in a file stored in HDFS

File
size

Java
Hadoop

C
Hadoop

DDLoader
1 proc

DDLoader
2 procs

DDLoader
4 procs

DDLoader
8 procs

DDLoader
16 procs

DDLoader
32 procs

DDLoader
64 procs

1 GB 34.99s 11.67s (3.0x) 5.92s (5.91x) 3.13s (11.17x) 1.58s (22.13x) 0.9s (38.78x) x x x
10 GB 284.45s 100.42s (2.83x) 54.7s (5.2x) 28.12s (10.12x) 14.25s (19.96x) 7.22s (39.42x) 3.87s (73.48x) 2.42s (117.46x) 1.71s (166.23x)
50 GB 1339.45s 489.58s (2.74x) 272.47s (4.92x) 135.5s (9.88x) 69.43s (19.29x) 35.24s (38.01x) 18.72s (71.56x) 9.86s (135.87x) 5.65s (237.02x)

designed with distribution as the goal and therefore does
not make assumptions such as all data being available lo-
cally. This is atypical for benchmarks over a distributed file
system, but in this case, the evaluations are meant to demon-
strate that it is possible to provide high level abstractions
while still being able to generate efficient code specialized
to the underlying file system infrastructure, instead of im-
proving communication between different nodes in a dis-
tributed setting. The whitespace count and the character
frequency distributed versions have been implemented us-
ing the MPI_Reduce intrinsic, whereas the more complicated

distributed version of word count required MPI_Send, MPI_Recv,
MPI_Allgather and MPI_Gatherv. We decided to use these par-
ticular APIs since they seem to represent how a user would
typically implement these operations while still expecting
performance benefits.
In Tables 1, 2 and 3, we can see that our implementation

scales with the addition of more processes for files as large
as 50GB. DDLoader gets the maximum speedup over the
Hadoop API implementations for the Whitespace count op-
eration (Table 1), since DDLoader’s generated C code was
vectorized by gcc. However, as we found out, using MPI_Reduce

Specializing Data Access in a Distributed File System (Generative Pearl) GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

on a variable updated in the to be vectorized loop can prevent
gcc from vectorizing the loop, and therefore care must be
taken when using MPI intrinsics – in this case, we copied
the variable into a new variable that we passed to MPI_Reduce

to enable vectorization of the loop.
The parallelization is at the granularity of the file blocks.

Under the default HDFS configuration, a 10 GB file is split
into 79 blocks. If we assign 64 processes to perform a com-
putation over the 10 GB file, 15 processes will perform the
operation over 2 blocks, while the remaining 49 processes
will perform the oepration over 2 blocks. This implies that
performance will not scale fully linearly if the number of
blocks is not exactly divisible by the number of processes.
Parallelization beyond 8 processes for a 1GB file was not
possible since a 1GB file is split into 8 blocks when stored in
HDFS under the default configuration.

5 Limitations
The system described in the paper is a minimal implemen-
tation to demonstrate how high level APIs over file system
abstractions can be provided as a programming model to the
user, while using ametaprogramming framework to generate
appropriate low level system calls.
As such, DDLoader has several limitations, such as no

built in fault tolerance. However, the system is still useful in
cases where resilience is implied or handled by a different
layer of the system, for eg. batch jobs where the job can
be restarted based on a checkpoint. As future work, it is
possible to extend DDLoader, where the runtime dispatches
to precompiled C functions. If a particular node is down, the
Namenode can be queried again for the new location of the
chunk, and the appropriate functions can be re-compiled and
then dispatched to.

Similarly, logic for parallel computation and co-ordination
over multiple nodes using MPI currently has to be handled
by the user provided code, instead of being automatically
inferred by DDLoader. While we have re-implemented a part
of the HDFS data loading infrastructure for DDLoader, it
is possible to re-implement more advanced HDFS features
such as encryption zones and distributed tracing as well.
This can either be done by implementing the HDFS algo-
rithms ourselves in LMS from scratch, finding correspond-
ing libraries in C, if they exist, that our generated program
could link with, or by calling into relevant portions of the
open source HDFS Java implementation from our generated
C code via JNI (which might have performance penalties
due to having to go through JNI, but would require lesser
re-implementation effort).

6 Related Work
The traditional technique for processingHDFS data isMapRe-
duce [7]. However, MapReduce has limitations [8, 11, 20],
such as certain programs being difficult to express and a

generic programming model like DDLoader might be a more
suitable alternative for HDFS data.

Although we decided to use LMS to implement DDLoader,
the ideas can be generalized to multiple other metaprogram-
ming systems in Scala (Squid [13, 14], Scala 3 [23]), C++
(BuildIt [4]), OCaml (MetaOCaml [10]) and others. Scala 3
provides better ecosystem support since the metaprogram-
ming framework is part of the language itself, however using
LMS allows DDLoader to generate C code that directly in-
vokes system calls. Compared to the othermetaprogramming
systems, LMS allows more fine grained tracking of effects
by allowing users to define operations as pure or effectful
nodes in a dependency graph as it uses a graph intermediate
representation [3, 5]. This can be replicated in a tree based
intermediate representation, but it would imply more im-
plementation effort in the form of writing an analysis (for
e.g. dataflow analysis) over the intermediate representation.
Scala 3, Squid andMetaOCaml rely on term level annotations
to make the distinction between stages explicit, while LMS
only requires type level annotations which allows the user to
write the same code for both staged and unstaged contexts.

Jet [1] is a DSL that uses LMS to generate code to per-
form MapReduce-like operations in Apache Spark [26] and
Apache Hadoop [2]. However, Jet and DDLoader have differ-
ent concerns – Jet accelerates the operations while DDLoader
performs optimizations to load data from HDFS faster. Addi-
tionally, Jet is only able to perform a certain set of operations
whereas DDLoader allows users to write any programs that
can be expressed using LMS. DiSh [12] uses similar tech-
niques as the ones proposed in this paper to query the HDFS
file topology, but whereas DDLoader focuses on accelerating
the data loading, DiSh implements efficient parallelization
of shell scripts that operate over files stored in HDFS.
Apache Spark [26] is a big-data processing system that

loads and operates over files stored in HDFS using Hadoop’s
API. Future work involves integrating DDLoader’s multi-
stage code generation into Spark’s backend for faster file
loading. Flare [9], an accelerator backend for Apache Spark
using LMS, demonstrates the use of multi-stage program-
ming to speed up computation for small to medium-sized
workloads. DDLoader has potential to extend Flare and im-
prove performance for large datasets across a cluster.

7 Conclusion
The paper demonstrates a system called DDLoader to load
files from HDFS faster than the provided Hadoop APIs. In
particular, using multi-stage programming techniques as
implemented in DDLoader allows compilers to optimize a
unified code representation that contains information about
loading native files as well as the operations to be performed
on them.

This paper focuses on a distributed file system like HDFS
to prototype our system, since the abstractions are all at the

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Pratyush Das, Anxhelo Xhebraj, and Tiark Rompf

user level. However, DDLoader could be extended to any
distributed file system such as Ceph [25] or local file system
such as FuseFS [24].

Acknowledgements
We would like to thank our anonymous reviewers for their
valuable feedback. We would also like to thank Supun
Abeysinghe, Patrick Lafontaine, Anmol Sahoo, Kirshanthan
Sundararajah and Guannan Wei for their comments on ear-
lier drafts. This work was supported in part by DOE award
DE-SC0018050.

References
[1] Stefan Ackermann, Vojin Jovanović, Martin Odersky, and Tiark Rompf.

2012. Jet: An embedded DSL for high performance big data processing.
In International Workshop on End-to-end Management of Big Data.
https://infoscience.epfl.ch/handle/20.500.14299/85985

[2] Apache Software Foundation. 2010. Hadoop. https://hadoop.apache.
org

[3] Oliver Bracevac, GuannanWei, Songlin Jia, SupunAbeysinghe, Yuxuan
Jiang, Yuyan Bao, and Tiark Rompf. 2023. Graph IRs for Impure Higher-
Order Languages: Making Aggressive Optimizations Affordable with
Precise Effect Dependencies. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 400–430. https://doi.org/10.1145/3622813

[4] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-
Based Multi-stage Programming Framework for Code Generation in
C++. In IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2021, Seoul, South Korea, February 27 - March 3,
2021, Jae W. Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, 39–51.
https://doi.org/10.1109/CGO51591.2021.9370333

[5] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Inter-
mediate Representation. In Proceedings ACM SIGPLAN Workshop on
Intermediate Representations (IR’95), San Francisco, CA, USA, January
22, 1995, Michael D. Ernst (Ed.). ACM, 35–49. https://doi.org/10.1145/
202529.202534

[6] Andrew Crotty, Viktor Leis, and Andrew Pavlo. 2022. Are You Sure
You Want to Use MMAP in Your Database Management System?.
In 12th Conference on Innovative Data Systems Research, CIDR 2022,
Chaminade, CA, USA, January 9-12, 2022. www.cidrdb.org. https:
//www.cidrdb.org/cidr2022/papers/p13-crotty.pdf

[7] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX
Association, 137–150. http://www.usenix.org/events/osdi04/tech/dean.
html

[8] Christos Doulkeridis and Kjetil Nørvåg. 2014. A survey of large-scale
analytical query processing in MapReduce. VLDB J. 23, 3 (2014), 355–
380. https://doi.org/10.1007/S00778-013-0319-9

[9] Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J.
Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare: Optimizing
Apache Spark with Native Compilation for Scale-Up Architectures and
Medium-Size Data. In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX
Association, 799–815. https://www.usenix.org/conference/osdi18/
presentation/essertel

[10] Oleg Kiselyov. 2023. MetaOCaml Theory and Implementation. https:
//doi.org/10.48550/ARXIV.2309.08207 arXiv:2309.08207

[11] Jimmy Lin and Chris Dyer. 2010. Data-Intensive Text Pro-
cessing with MapReduce. (2010). https://doi.org/10.2200/

S00274ED1V01Y201006HLT007
[12] Tammam Mustafa, Konstantinos Kallas, Pratyush Das, and Nikos

Vasilakis. 2023. DiSh: Dynamic Shell-Script Distribution. In 20th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2023, Boston, MA, April 17-19, 2023, Mahesh Balakrishnan
and Manya Ghobadi (Eds.). USENIX Association, 341–356. https:
//www.usenix.org/conference/nsdi23/presentation/mustafa

[13] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted
staged rewriting: a practical approach to library-defined optimizations.
(2017), 131–145. https://doi.org/10.1145/3136040.3136043

[14] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid:
type-safe, hygienic, and reusable quasiquotes. In Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala, SCALA@SPLASH
2017, Vancouver, BC, Canada, October 22-23, 2017, Heather Miller,
Philipp Haller, and Ondrej Lhoták (Eds.). ACM, 56–66. https://doi.org/
10.1145/3136000.3136005

[15] Tiark Rompf and Nada Amin. 2015. Functional pearl: a SQL to C
compiler in 500 lines of code. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Van-
couver, BC, Canada, September 1-3, 2015, Kathleen Fisher and John H.
Reppy (Eds.). ACM, 2–9. https://doi.org/10.1145/2784731.2784760

[16] Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth,
Manohar Jonnalagedda, Nada Amin, Georg Ofenbeck, Alen Stojanov,
Yannis Klonatos, Mohammad Dashti, Christoph Koch, Markus Püschel,
and Kunle Olukotun. 2015. Go Meta! A Case for Generative Pro-
gramming and DSLs in Performance Critical Systems. In 1st Sum-
mit on Advances in Programming Languages, SNAPL 2015, May 3-6,
2015, Asilomar, California, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav
Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 238–261.
https://doi.org/10.4230/LIPICS.SNAPL.2015.238

[17] Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging:
a pragmatic approach to runtime code generation and compiled DSLs.
In Generative Programming And Component Engineering, Proceedings
of the Ninth International Conference on Generative Programming and
Component Engineering, GPCE 2010, Eindhoven, The Netherlands, Oc-
tober 10-13, 2010, Eelco Visser and Jaakko Järvi (Eds.). ACM, 127–136.
https://doi.org/10.1145/1868294.1868314

[18] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin
Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. 2013. Optimizing data structures in high-level
programs: new directions for extensible compilers based on staging.
In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 497–510.
https://doi.org/10.1145/2429069.2429128

[19] Tiark Rompf, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Hassan Chafi, and Kunle Olukotun. 2014. Surgical precision JIT com-
pilers. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 -
11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 41–52.
https://doi.org/10.1145/2594291.2594316

[20] Sherif Sakr, Anna Liu, and Ayman G. Fayoumi. 2013. The Family of
Mapreduce and Large-Scale Data Processing Systems. ACM Comput.
Surv. 46, 1, Article 11 (jul 2013), 44 pages. https://doi.org/10.1145/
2522968.2522979

[21] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. In IEEE 26th
Symposium on Mass Storage Systems and Technologies, MSST 2012,
Lake Tahoe, Nevada, USA, May 3-7, 2010, Mohammed G. Khatib, Xu-
bin He, and Michael Factor (Eds.). IEEE Computer Society, 1–10.
https://doi.org/10.1109/MSST.2010.5496972

https://infoscience.epfl.ch/handle/20.500.14299/85985
https://hadoop.apache.org
https://hadoop.apache.org
https://doi.org/10.1145/3622813
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.1145/202529.202534
https://doi.org/10.1145/202529.202534
https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf
https://www.cidrdb.org/cidr2022/papers/p13-crotty.pdf
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1007/S00778-013-0319-9
https://www.usenix.org/conference/osdi18/presentation/essertel
https://www.usenix.org/conference/osdi18/presentation/essertel
https://doi.org/10.48550/ARXIV.2309.08207
https://doi.org/10.48550/ARXIV.2309.08207
https://arxiv.org/abs/2309.08207
https://doi.org/10.2200/S00274ED1V01Y201006HLT007
https://doi.org/10.2200/S00274ED1V01Y201006HLT007
https://www.usenix.org/conference/nsdi23/presentation/mustafa
https://www.usenix.org/conference/nsdi23/presentation/mustafa
https://doi.org/10.1145/3136040.3136043
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/2784731.2784760
https://doi.org/10.4230/LIPICS.SNAPL.2015.238
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/2429069.2429128
https://doi.org/10.1145/2594291.2594316
https://doi.org/10.1145/2522968.2522979
https://doi.org/10.1145/2522968.2522979
https://doi.org/10.1109/MSST.2010.5496972

Specializing Data Access in a Distributed File System (Generative Pearl) GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

[22] Alen Stojanov, Tiark Rompf, and Markus Püschel. 2019. A stage-
polymorphic IR for compiling MATLAB-style dynamic tensor expres-
sions. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences, GPCE
2019, Athens, Greece, October 21-22, 2019, Ina Schaefer, Christoph
Reichenbach, and Tijs van der Storm (Eds.). ACM, 34–47. https:
//doi.org/10.1145/3357765.3359514

[23] Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. 2018. A practi-
cal unification of multi-stage programming and macros. In Proceedings
of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, GPCE 2018, Boston, MA, USA,
November 5-6, 2018, Eric Van Wyk and Tiark Rompf (Eds.). ACM, 14–
27. https://doi.org/10.1145/3278122.3278139

[24] Miklos Szeredi. 2010. Fuse: Filesystem in Userspace. https://www.
kernel.org/doc/html/latest/filesystems/fuse.html

[25] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
and Carlos Maltzahn. 2006. Ceph: A Scalable, High-Performance
Distributed File System. In 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA, Brian N.
Bershad and Jeffrey C. Mogul (Eds.). USENIX Association, 307–320.
http://www.usenix.org/events/osdi06/tech/weil.html

[26] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gon-
zalez, Scott Shenker, and Ion Stoica. 2016. Apache Spark: a unified
engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.
https://doi.org/10.1145/2934664

Received 2024-06-18; accepted 2024-08-15

https://doi.org/10.1145/3357765.3359514
https://doi.org/10.1145/3357765.3359514
https://doi.org/10.1145/3278122.3278139
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
http://www.usenix.org/events/osdi06/tech/weil.html
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Background
	2.1 Hadoop Distributed File System
	2.2 Lightweight Modular Staging

	3 DDLoader
	3.1 Querying the file information
	3.2 Interface
	3.3 Specializations

	4 Evaluation
	5 Limitations
	6 Related Work
	7 Conclusion
	References

