
The Essence of Dependent Object Types?

Nada Amin∗, Samuel Grütter∗, Martin Odersky∗, Tiark Rompf †, and Sandro Stucki∗

∗EPFL, Switzerland: {first.last}@epfl.ch
†Purdue University, USA: {first}@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus, Dependent Types, Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to explain
to Phil Wadler why languages like Scala had foundations that were not directly
related via the Curry-Howard isomorphism to logic. This did not go over well.
As you would expect, Phil strongly disapproved. He argued that anything that
was useful should have a grounding in logic. In this paper, we try to approach
this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a key
from a string.

trait Keys {

type Key

def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {

type Key = Int

def key(s: String) = s.hashCode

}

? This is a revised version of a paper presented at WF ’16. The original publication is
available from Springer via http://dx.doi.org/10.1007/978-3-319-30936-1_14.

http://dx.doi.org/10.1007/978-3-319-30936-1_14

2 The Essence of DOT

Here is a function which applies a given key generator to every element of a list
of strings.

def mapKeys(k: Keys, ss: List[String]): List[k.Key] = ss.map(k.key)

The function returns a list of elements of type k.Key. This is a path-dependent
type, which depends on the variable name k. In general a path in Scala consists
of a variable name potentially followed by field selections, but in this paper
we consider only simple paths consisting of a single variable reference. Path-
dependent types give a limited form of type/term dependency, where types can
depend on variables, but not on general terms. This form of dependency already
gives considerable power, but at the same time is easier to handle than full term
dependency because the equality relation on variables is just syntactic equality.

There are three essential elements of a system for path-dependent types.
First, there needs to be a way to define a type as an element of a term, as in
the definitions type Key and type Key = Int. We will consider initially only type
tags, values that carry just one type and nothing else. Second, there needs to
be a way to recover the tagged type from such a term, as in p.Key. Third, there
needs to be a way to define and apply functions whose types depend on their
parameters.

These three elements are formalized in System D<:, a simple calculus for
path-dependent types that has been discovered recently in an effort to recon-
struct and mechanize foundational type system proposals for Scala bottom-up
from simpler systems (Rompf and Amin, 2015). One core aspect of our approach
to modeling path-dependent types is that instead of general substitutions we
only have variable/variable renamings. This ensures that paths always map to
paths and keeps the treatment simple. On the other hand, with substitutions
not available, we need another way to go from a type designator like k.Key to the
underlying type it represents. The mechanism used here is subtyping. Types of
type tags define lower and upper bound types. An abstract type such as type Key

has the minimal type ⊥ and the maximal type > as bounds. A type alias such
as type Key = T has T as both its lower and upper bound. A type designator is
then a subtype of its upper bound and a supertype of its lower bound.

The resulting calculus is already quite expressive. It emerges as a general-
ization of System F<: (Cardelli et al., 1994), mapping type lambdas to term
lambdas and type parameters to type tags. We proceed to develop System D<:
into a richer calculus supporting objects as first class modules. This is done in
three incremental steps. The first step adds records and intersections, the sec-
ond adds type labels, and the third adds recursion. The final calculus, DOT, is a
foundation for path-dependent object types. Many programming language con-
cepts, including parameterized types and polymorphic functions, modules and
functors, classes and algebraic data types can be modeled on this foundation via
simple encodings.

A word on etymology: The term “System D” is associated in English and
French with “thinking on your feet” or a “quick hack”. In the French origin of
the word, the letter ‘D’ stands for “se débrouiller”, which means “to manage” or

The Essence of Dependent Object Types 3

“to get things done”. The meaning of the verb “débrouiller” alone is much nicer.
It means: “Create order for things that are in confusion”. What better motto for
the foundations of a programming language?

Even if the name “System D” suggests quick thinking, in reality the devel-
opment was anything but quick. Work on DOT started in 2007, following ear-
lier work on higher-level formalizations of Scala features (Odersky et al., 2003;
Cremet et al., 2006). Preliminary versions of a calculus with path-dependent
types were published in FOOL 2012 (Amin et al., 2012) and OOPSLA 2014 (Amin
et al., 2014). Soundness results for versions of System D<: and DOT similar to
the ones presented here, but based on big-step operational semantics, were re-
cently established with mechanized proofs (Rompf and Amin, 2015).

The rest of this paper is structured as follows. Section 2 describes System
D<:. Section 3 shows how it can encode F<:. Section 4 extends D<: to DOT.
Sections 5 and 6 study the expressiveness of DOT and show how it relates to
Scala. Section 7 outlines the implementation of the DOT constructs in a full
Scala compiler. Section 8 discusses related work and Section 9 concludes.

2 System D<:

Figure 1 summarizes our formulation of System D<:. Its term language is es-
sentially the lambda calculus, with one additional form of value: A type tag
{A = T} is a value that associates a label A with a type T . For the moment we
need only a single type label, so A can be regarded as ranging over an alphabet
with just one name. This will be generalized later.

Our description differs from Rompf and Amin (2015) in two aspects. First,
terms are restricted to ANF form. That is, every intermediate value is abstracted
out in a let binding. Second, evaluation is expressed by a small step reduction re-
lation, as opposed to a big-step evaluator. Reduction uses only variable/variable
renamings instead of full substitution. Instead of being copied by a substitution
step, values stay in their let bindings. This is similar to the techniques used in
the call-by-need lambda calculus (Ariola et al., 1995).

We use Barendregt’s Variable Convention throughout. For example, in the
third evaluation rule, which un-nests let-bindings, we assume that we can appro-
priately α-rename the variable y which changes scope so that it is not captured
in the final term u.

The type assignment rules in Figure 1 define a straightforward dependent
typing discipline. A lambda abstraction has a dependent function type ∀(x :S)T .
This is like a dependent product Π(x :S)T in LF (Harper et al., 1993), but with
the restriction that the variable x can be instantiated only with other variables,
not general terms. Type tags have types of the form {A : S..U}, they represent
types labeled A which are lower-bounded by S and upper-bounded by U . A
type tag referring to one specific type is expressed by having the lower and
upper bound coincide, as in {A : T..T}. The type of a variable x referring to a
type tag can be recovered with a type projection x.A.

4 The Essence of DOT

Syntax

x, y, z Variable
v ::= Value
{A = T} type tag
λ(x :T)t lambda

s, t, u ::= Term
x variable
v value
x y application
let x = t in u let

S, T, U ::= Type
> top type
⊥ bottom type
{A : S..T} type declaration
x.A type projection
∀(x :S)T dependent function

Evaluation t −→ t

let x = v in e[x y] −→ let x = v in e[[z := y]t] if v = λ(z :T)t
let x = y in t −→ [x := y]t

let x = let y = s in t in u −→ let y = s in let x = t in u
e[t] −→ e[u] if t −→ u

where e ::= [] | let x = [] in t | let x = v in e

Type Assignment Γ ` t : T

Γ, x : T, Γ ′ ` x : T (Var)

Γ, x : T ` t : U x /∈ fv(T)
Γ ` λ(x :T)t : ∀(x :T)U

(All-I)

Γ ` t : T Γ, x : T ` u : U
x /∈ fv(U)

Γ ` let x = t in u : U
(Let)

Γ ` t : T Γ ` T <: U
Γ ` t : U

(Sub)

Γ ` x : ∀(z :S)T Γ ` y : S
Γ ` x y : [z := y]T

(All-E)

Γ ` {A = T} : {A : T..T} (Typ-I)

Subtyping Γ ` T <: T

Γ ` T <: > (Top)

Γ ` T <: T (Refl)

Γ ` x : {A : S..T}
Γ ` S <: x.A

(<:-Sel)

Γ ` S2 <: S1
Γ, x : S2 ` T1 <: T2

Γ ` ∀(x :S1)T1 <: ∀(x :S2)T2
(All-<:-All)

Γ ` ⊥ <: T (Bot)

Γ ` S <: T Γ ` T <: U
Γ ` S <: U

(Trans)

Γ ` x : {A : S..T}
Γ ` x.A <: T

(Sel-<:)

Γ ` S2 <: S1 Γ ` T1 <: T2

Γ ` {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Fig. 1. System D<:

The Essence of Dependent Object Types 5

The subtyping rules in Figure 1 define a preorder S <: T between types
with rules (Refl) and (Trans). They specify > and ⊥ as greatest and least
types (Top), (Bot), and make a type projection x.A a supertype of its lower
bound (<:-Sel) and a subtype of its upper bound (Sel-<:). Furthermore, the
standard co/contravariant subtyping relationships are introduced between pairs
of function types (All-<:-All) and tagged types (Typ-<:-Typ).

System D<: can encode System F<: as we will see in section 3. However, unlike
System F<:, System D<: does not have type variables. Instead, type definitions,
such as {A = T}, are first-class values of type {A : T..T}. Combined with
dependent functions, these path-dependent types can express the idioms of type
variables, such as polymorphism.

For example, take the polymorphic identity function in System F<::

` Λ(α <: >).λ(x : α).x : ∀(α <: >).α→ α

and in System D<::

` λ(a : {A : ⊥..>}).λ(x : a.A).x : ∀(a :{A : ⊥..>})∀(x :a.A)a.A

Like in System F<:, we can apply the polymorphic identity function to some
type, say T , to get the identity function on T :

` let f = . . . in let a = {A = T} in f a : ∀(x :T)T

The role of subtyping is essential: (1) the argument a of type {A : T..T} can
be used for the parameter a of type {A : ⊥..>}, (2) the dependent result type
∀(x :a.A)a.A can be converted to ∀(x :T)T because T <: a.A <: T .

2.1 Example: Dependent Sums

Dependent sums can be encoded using dependent functions, through an encoding
similar to that of existential types in System F.

Σ(x : S)T ≡ ∀(z :{A : ⊥..>})∀(f :∀(x :S)∀(y :T)z.A)z.A
pack [x, y] as Σ(x : S)T ≡ λ(z :{A : ⊥..>})λ(f :∀(x :S)∀(y :T)z.A)f x y

unpack x : S, y : T = t in u ≡ let z1 = t in let z2 = {A = U} in
let z3 = (λ(x :S)λ(y :T)u) in
let z4 = z1 z2 in z4 z3

z.1 ≡ unpack x : S, y : T = z in x

z.2 ≡ unpack x : S, y : T = z in y

where U is the type of u. The associated, admissible subtyping and typing rules
are easy to derive and can be found in Appendix A.1. Note that

1. unpacking via unpack x, y = t in u is only allowed if x and y do not appear
free in the type U of u,

6 The Essence of DOT

2. similarly, the second projection operator −.2 may only be used if x does not
appear free in T . In such cases, we have Σ(x : S)T = S × T , i.e. z is in fact
an ordinary pair.

These restrictions may come as a surprise: while they are similar to the hygiene
conditions imposed on existential types in System F/F<:, they do not apply
to dependent sums in (fully) dependently typed languages. In such languages,
the bound names x, y can be prevented from leaking into the overall type of an
unpack statement by substituting the projections t.1 and t.2 for occurrences of x
and y in U . The same is true for the return type of the second projection z.2,
which would be [x := z.1]T . Unfortunately, such substitutions are forbidden
in D<: because types may only depend on variables, as opposed to arbitrary
terms (like z.1 or t.2). For the same reason, the typing rule (Let) for let expres-
sions features a similar hygiene condition. Finally, note that the above encoding
allows for the unrestricted projection of “existential witnesses” via −.1, whereas
no such operation exists on existential types in System F/F<:.

3 Embedding F<: in D<:

System D<: initially emerged as a generalization of F<:, mapping type lamb-
das to term lambdas and type parameters to type tags, and removing certain
restrictions in a big-step evaluator for F<: (Rompf and Amin, 2015). We make
this correspondence explicit below.

Pick an injective mapping from type variables X to term variables xX . In
the following, any variable names not written with an X subscript are assumed
to be outside the range of that mapping. Let the translation ∗ from F<: types
and terms to D<: types and terms be defined as follows.1

X∗ = xX .A

>∗ = >
(T → U)∗ = ∀(x :T ∗)U∗

(∀(X <: S)T)∗ = ∀(xX :{A : ⊥..S∗})T ∗

x∗ = x

(λ(x : T)t)∗ = λ(x : T ∗)t∗

(Λ(X <: S)t)∗ = λ(xX : {A : ⊥..S∗})t∗

(t u)∗ = let x = t∗ in let y = u∗ in x y x, y fresh
(t[U])∗ = let x = t∗ in let yY = {A = U∗} in x yY x, Y fresh

1 The definition of t∗ assumes a countable supply of fresh names x, X /∈ fv(t).

The Essence of Dependent Object Types 7

Note that there are D<: terms that are not in the image of ∗. An example is
λ(x : {A :>..>})x. Typing contexts are translated point-wise as follows:

(X <: T)∗ = xX : {A : ⊥..T ∗}
(x : T)∗ = x : T ∗

Theorem 1. If Γ `F S <: T then Γ ∗ `D S∗ <: T ∗.

Proof. The proof is by straight-forward induction on F<: subtyping derivations.
The only non-trivial case is subtyping of type variables, which follows from (Var)
and (Sel-<:).

Γ ∗, xX : {A : ⊥..T ∗}, Γ ′∗ ` xX : {A : ⊥..T ∗}
(Sel-<:)

Γ ∗, xX : {A : ⊥..T ∗}, Γ ′∗ ` xX .A <: T ∗

Theorem 2. If Γ `F t : T then Γ ∗ `D t∗ : T ∗.

Proof (sketch). The proof is by induction on (System F) typing derivations. The
case for subsumption follows immediately from preservation of subtyping. The
only remaining interesting cases are type and term application, which are given
in detail in Appendix A.2.

4 DOT

Figure 2 presents three extensions needed to turn D<: into a basis for a full
programming language. The first extension adds records, the second adds type
labels, and the third adds recursion. For reasons of space, all three extensions
are combined in one figure.

4.1 Records

We model records by single field values that can be combined through intersec-
tions. A single-field record is of the form {a = t} where a is a term label and t
is a term. Records d1, d2 can be combined using the intersection d1 ∧ d2. The
selection x.a returns the term associated with label a in the record referred to
by x. The evaluation rule for field selection is:

let x = v in e[x.a] −→ let x = v in e[t] if v = . . . {a = t} . . .

It’s worth noting that records are “call-by-name”, that is, they associate labels
with terms, not values. This choice was made because it sidesteps the issue how
record fields should be initialized. The choice does not limit expressiveness, as
a fully evaluated record can always be obtained by using let bindings to pre-
evaluate field values before they are combined in a record.

New forms of types are single field types {a :T} and intersection types T ∧U .
Subtyping rules for fields and intersection types are as expected. The typing

8 The Essence of DOT

Syntax . . .

a, b, c Term member
A,B,C Type member
v ::= Value

ν(x :T)d object
λ(x :T)t lambda

s, t, u ::= . . . Term
x.a selection

d ::= Definition
{A = T} type definition
{a = t} field definition
d ∧ d′ aggregate definition

S, T, U ::= . . . Type
{a : T} field declaration
S ∧ T intersection
µ(x :T) recursive type

Evaluation . . . t −→ t′

let x = v in e[x.a] −→ let x = v in e[t] if v = ν(x :T) . . . {a = t} . . .

Type Assignment (terms) . . . Γ ` t : T

Γ, x : T ` d : T
Γ ` ν(x :T)d : µ(x :T)

({}-I)

Γ ` x : T
Γ ` x : µ(x :T)

(Rec-I)

Γ ` x : T Γ ` x : U
Γ ` x : T ∧ U

(And-I)

Γ ` x : {a : T}
Γ ` x.a : T

(Fld-E)

Γ ` x : µ(x :T)
Γ ` x : T

(Rec-E)

Type Assignment (definitions) Γ ` d : T

Γ ` {A = T} : {A : T..T} (Typ-I)

Γ ` t : T
Γ ` {a = t} : {a : T}

(Fld-I)

Γ ` d1 : T1 Γ ` d2 : T2
dom(d1) ∩ dom(d2) = ∅
Γ ` d1 ∧ d2 : T1 ∧ T2

(AndDef-I)

Subtyping . . . Γ ` T <: T

Γ ` T ∧ U <: T (And1-<:)

Γ ` T <: U
Γ ` {a : T} <: {a : U}

(Fld-<:-Fld)

Γ ` T ∧ U <: U (And2-<:)

Γ ` S <: T Γ ` S <: U
Γ ` S <: T ∧ U

(<:-And)

Fig. 2. DOT Extensions to D<:

The Essence of Dependent Object Types 9

rules (Fld-I) and (Fld-E) introduce and eliminate field types in the standard
way. The typing rule (AndDef-I) types record combinations with intersection
types. To ensure that combinations are consistent, it requires that the labels of
the combined records are disjoint.

There is also the general introduction rule (And-I) well known from lambda
calculus with intersections (Coppo et al., 1979). In the system with non-recursive
records, that rule is redundant, because it can be obtained from subsumption
and (<:-And). As demonstrated in Section 5, the rule does add expressiveness
once recursion is added.

4.2 Type labels

Records with multiple type fields are supported simply by extending the alphabet
of type labels from a single value to arbitrary names. In the following we let
letters A,B,C range over type labels.

4.3 Recursion

The final extension introduces objects and recursive types. An object ν(x :T)d
represents a record with definitions d that can refer to each other via the variable
x. Its type is the recursive type µ(x :T). Following the path-dependent approach,
a recursive type recurses over a term variable x, since type variables are absent
from DOT. Note that type tags are no longer terms in their own right: they
must now be wrapped in a ν binder like any other record definition.

The evaluation rule for records is generalized to the one in Figure 2. There,
when selecting x.a, the selected reference x and the self-reference in the object
ν(x :T)d are required to coincide (this can always be achieved by α-renaming).

The rule ({}-I) assigns a recursive type to an object by typing its definition.
Note that the definitions are typed without subsumption (which is only defined
on terms, and in this final extension, definitions d are syntactically not terms t).

The introduction and elimination rules (Rec-I) and (Rec-E) for recursive
types are as simple as they can possibly be. There is no subtyping rule between
recursive types (Amadio and Cardelli, 1993). Instead, recursive types of variables
are unwrapped with (Rec-E) and re-introduced with (Rec-I).

The choice of leaving out subtyping between recursive types represents a
small loss in expressiveness but a significant gain in simplifying the meta-theory.

4.4 Meta-Theory

This section presents the main type soundness theorems of DOT and outlines
their proofs, which have been machine-checked.2 The central results are the usual
small-step preservation and progress theorems.

Soundness results for slightly different versions of D<:, DOT, and a number
of variations were established previously with mechanized proofs by Rompf and
2 The full development on paper and in Coq is at http://wadlerfest.namin.net.

http://wadlerfest.namin.net

10 The Essence of DOT

Amin. These soundness results are phrased with respect to big-step evaluators.
The type systems are slightly more expressive than the ones presented here in
that they are not restricted to terms in ANF, and in including a subtyping
rule on recursive types. This particular rule poses lots of challenges, which are
described in detail in the technical report (Rompf and Amin, 2015).

Definition 1. An answer n is defined by the production

n ::= x | v | let x = v in n

Theorem 3. (Progress) If ` t : T then t is an answer or there is a term u such
that t −→ u.

Theorem 4. (Preservation) If ` t : T and t −→ u then ` u : T .

Note that the preservation property is weaker than normally stated in that
it demands an empty context. We will strengthen the theorem in the proofs to
get a useful induction property.

The central difficulty for coming up with proofs of these theorems was out-
lined in a previous FOOL workshop paper (Amin et al., 2012): it is possible to
arrive at type definitions with unsatisfiable bounds. For instance a type label A
might have lower bound > and upper bound ⊥. By subtyping rules (Sel-<:),
(<:-Sel) and transitivity of subtyping one obtains > <: ⊥, which makes every
type a subtype of every other type. So a single “bad” definition causes the whole
subtyping relation to collapse to one point, just as an inconsistent theory can
prove every proposition. With full type intersection and full recursion, it is im-
practical to rule out such bad bounds a priori. Instead, a soundness proof has
to make use of the fact that environments corresponding to an actual execution
trace correspond to types of concrete values. In a concrete object value any type
definition is of the form A = T , so lower and upper bounds are the same, and bad
bounds are excluded. Similar reasoning applied in the big-step proofs (Rompf
and Amin, 2015), where the semantics has a natural distinction between static
terms and run-time values. Here, we need to establish this distinction first.

We first define a precise typing relation Γ ` ! t : T as follows:

Definition 2. Γ ` ! t : T if Γ ` t : T and the following two conditions hold.

1. If t is a value, the typing derivation of t ends in (All-I) or ({}-I).
2. If t is a variable, the typing derivation of t consists only of (Var), (Rec-E)

and (Sub) steps and every (Sub) step makes use of only the subtyping rules
(And1-<:), (And2-<:) and (Trans).

Definition 3. A store s is a sequence of bindings x = v, with ε representing the
empty store.

Definition 4. The combination s | t combines a store s and a term t. It is
defined as follows:

x = v, s | t ≡ let x = v in (s | t)
ε | t ≡ t

The Essence of Dependent Object Types 11

Definition 5. An environment Γ = xi : Ti corresponds to a store s = xi = vi,
written Γ ∼ s, if Γ ` ! vi : Ti

A precise typing relation over an environment that corresponds to a store can
only derive type declarations where lower and upper bounds coincide. We make
use of this in the following definition.

Definition 6. A typing or subtyping derivation is tight in environment Γ if it
only contains the following tight variants of (Sel-<:), (<:-Sel) when Γ ′ = Γ :

Γ ′ ` ! x : {A :T..T}
Γ ′ ` T <: x.A

(<:-Sel-tight)
Γ ′ ` ! x : {A :T..T}
Γ ′ ` x.A <: T

(Sel-<:-tight)

For environments that extend Γ , full (Sel-<:) and (<:-Sel) are permitted. We
write Γ `# t : T or Γ `# S <: U if Γ ` t : T or Γ ` S <: U with a derivation
that is tight in Γ .

A core part of the proof shows that the full (Sel-<:) and (<:-Sel) rules are
admissible wrt `# if the underlying environment corresponds to a store.

Lemma 1. If Γ ∼ s and s(x) = ν(x : T)d and Γ ` # x : {A : S..U} then
Γ `# x.A <: U and Γ `# S <: x.A.

The next step of the proof is to characterize the possible types of a variable
bound in a store s in an environment that corresponds to s.

Definition 7. The possible types Ts(Γ, x, v) of a variable x bound in an envi-
ronment Γ and corresponding to a value v is the smallest set S such that:

1. If v = ν(x :T)d then T ∈ S.
2. If v = ν(x :T)d and {a = t} ∈ d and Γ ` t : T ′ then {a :T ′} ∈ S.
3. If v = ν(x : T)d and {A = T ′} ∈ d and Γ ` S <: T ′, Γ ` T ′ <: U then
{A :S..U} ∈ S.

4. If v = λ(x :S)t and Γ, x : S ` t : T and Γ ` S′ <: S and Γ, x : S′ ` T <: T ′
then ∀(x :S′)T ′ ∈ S.

5. If S1 ∈ S and S2 ∈ S then S1 ∧ S2 ∈ S.
6. If S ∈ S and Γ ` ! y : {A :S..S} then y.A ∈ S.
7. If T ∈ S then µ(x :T) ∈ S.
8. > ∈ S.

The possible types of a variable are closed under subtyping:

Lemma 2. If Γ ∼ s, s(x) = v, T ∈ Ts(Γ, x, v) and Γ ` T <: U , then U ∈
Ts(Γ, x, v).

The possible types of a variable include each of its typings:

Lemma 3. If Γ ∼ s and Γ ` x : T then T ∈ Ts(Γ, x, s(x)).

12 The Essence of DOT

These possible types lemmas are proved first for tight subtyping and typing, by
induction on the subtyping or typing derivation, and extended to standard sub-
typing and typing with Lemma 1, since (Sel-<:) and (<:-Sel) are admissible
for `# over Γ .

With the above lemmas it is easy to establish a standard canonical forms
lemma.

Lemma 4. (Canonical Forms) If Γ ∼ s, then

1. If Γ ` x : ∀(x : T)U then s(x) = λ(x : T ′)t for some T ′ and t such that
Γ ` T <: T ′ and Γ, x : T ` t : U .

2. If Γ ` x : {a :T} then s(x) = ν(x : S)d for some S, d, t such that Γ ` d : S,
{a = t} ∈ d, Γ ` t : T .

As usual, we also need a substitution lemma, the proof of which is by a standard
mutual induction on typing and subtyping derivations.

Lemma 5. (Substitution) If Γ, x : S ` t : T and Γ ` y : [x := y]S then
Γ ` [x := y]t : [x := y]T .

With (Canonical Forms) and (Substitution) one can then establish the following
combination of progress and preservation theorems by an induction on typing
derivations.

Proposition 1. Assume Γ ` t : T and Γ ∼ s. Then either

– t is an answer, or
– There exist a store s′ and a term t′ such that s | t −→ s′ | t′ and for

any such s′, t′ there exists an environment Γ ′ such that Γ, Γ ′ ` t′ : T and
Γ, Γ ′ ∼ s′.

Theorem 3 and Theorem 4 follow from Proposition 1, since the empty environ-
ment corresponds to the empty store.

5 Encodings

In this section, we explore the expressiveness of DOT by studying program frag-
ments that are typable in it. We start with an encoding of booleans, which is
in spirit similar to the standard Church encoding, except that it also creates
Boolean as a new nominal type. We use the abbreviation

IFT ≡ { if: ∀(x: {A: ⊥..>})∀(t: x.A)∀(f: x.A): x.A }

A first step defines the type boolImpl.Boolean as an alias of its implementation,
a record with a single member if.

The Essence of Dependent Object Types 13

let boolImpl =

ν (b: { Boolean: IFT..IFT } ∧ { true: IFT } ∧ { false: IFT })

{ Boolean = IFT } ∧
{ true = { if = λ(x: {A: ⊥..>})λ(t: x.A)λ(f: x.A)t } } ∧
{ false = { if = λ(x: {A: ⊥..>})λ(t: x.A)λ(f: x.A)f } }

in ...

In a second step, the implementation of Boolean gets wrapped in a function
that produces an abstract type. This establishes bool.Boolean as a nominal type,
which is different from its implementation. The type is upper bounded by IFT,
which means that the conditional if is still accessible as a member.

let bool =

let boolWrapper =

λ(x: µ(b: {Boolean: ⊥..IFT} ∧ {true: b.Boolean} ∧ { false: b.Boolean

})) x

in boolWrapper boolImpl

in ...

This example shows that that direct mappings into DOT can be tedious at times.
The following shorthands help.

5.1 Abbreviations

– We group multiple intersected definitions or declarations in one pair of
braces, replacing ∧ with ; or a newline. E.g.

{ A = T; a = t } ≡ { A = T } ∧ { a = t }

{ A: S..T; a: T } ≡ { A: S..T } ∧ { a: T }

– We allow terms in applications and selections, using the expansions

t u ≡ let x = t in x u

x u ≡ let y = u in x y

t.a ≡ let x = t in x.a

– We expand type ascriptions to applications:

t: T ≡ (λ(x: T)x)t

– We abbreviate ν(x: T)d to ν(x)d if the type of definitions d is given explicitly.
– We abbreviate type bounds by expanding A <: T to A:⊥..T, A >:S to A: S..>,

A = T to A: T..T, and A to A:⊥..>.

5.2 Example: A Covariant Lists Package

As a more involved example we show how to define a parameterized abstract
data type as a class hierarchy. A simplified version of the standard covariant
List type can be defined in Scala as follows:

14 The Essence of DOT

package scala.collection.immutable

trait List[+A] {

def isEmpty: Boolean; def head: A; def tail: List[A]

}

object List {

def nil: List[Nothing] = new List[Nothing] {

def isEmpty = true; def head = head; def tail = tail /* infinite loops */

}

def cons[A](hd: A, tl: List[A]) = new List[A] {

def isEmpty = false; def head = hd; def tail = tl

}

}

This defines List as a covariant type with head and tail members. The nil object
defines an empty list of element type Nothing, which is Scala’s bottom type. Its
members are both implemented as infinite loops (lacking exceptions that’s the
only way to produce a bottom type). The cons function produces a non-empty
list.

In the DOT encoding of this example, the element type A becomes an abstract
type member of List, which is now itself a type member of the object denoting
the package. From the outside, List is only upper-bounded, so that it becomes
nominal: the only way to construct a List is through the package field members
nil and cons. Also, note that the covariance of the element type A is reflected
because the tail of the List only requires the upper bound of the element type
to hold.

let scala_collection_immutable = ν(sci) {

List = µ(self: {A; isEmpty: bool.Boolean; head: self.A; tail: sci.List∧{A
<: self.A}})

nil: sci.List∧{A = ⊥} =

let result = ν(self) {

A = ⊥; isEmpty = bool.true; head = self.head; tail = self.tail }

in result

cons: ∀(x: {A})∀(hd: x.A)∀(tl: sci.List∧{A <: x.A})sci.List∧{A <: x.A} =

λ(x: {A})λ(hd: x.A)λ(tl: sci.List∧{A <: x.A})

let result = ν(self) {

A = x.A; isEmpty = bool.false; head = hd; tail = tl }

in result

}: { µ(sci: {

List <: µ(self: {A; head: self.A; tail: sci.List∧{A <: self.A}})

nil: sci.List∧{A = ⊥}
cons: ∀(x: {A})∀(hd: x.A)∀(tl: sci.List∧{A <: x.A})sci.List∧{A <: x.A}

})}

in . . .

As an example of a typing derivation in this code fragment consider the right
hand side of the cons method. To show that result corresponds to the given
result type sci.List∧{A <: x.A}, the typechecker proceeeds as follows. First step:

The Essence of Dependent Object Types 15

by typing of rhs
result: µ(self: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}})

by (Rec-E)
result: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}}

by (Sub), since self.A = x.A
result: { A = x.A, hd: self.A, tl: sci.List∧{A = self.A}}

by (Sub), since A: x.A..x.A <: A
result: { A, hd: self.A, tl: sci.List∧{ A = self.A}}

by (Rec-I)
result: µ(self: { A, hd: self.A, tl: sci.List∧{ A = self.A}})

by (Sub) via (<:-Sel) on sci.List
result: sci.List

Second step:

result: { A = x.A, hd: x.A, tl: sci.List∧{A = x.A}}

by (Sub)
result: {A <: x.A}

Combining both steps with (And-I) gives

result: sci.List∧{A <: x.A}

The explicit naming of the result was necessary so that we could “unwrap” the
recursive type on it, apply subsumption and then “rewrap” using (Rec-I) and
(And-I). In Scala, this sequence of steps can be an automatic conversion on the
value; no separate let-binding is needed.

How close is this encoding to actual Scala? Here’s legal Scala code which
closely mimicks the previous list encoding in DOT.

object scala_collection_immutable { sci =>

trait List { self =>

type A

def isEmpty: Boolean

def head: self.A

def tail: List{type A <: self.A}

}

def nil: sci.List{type A = Nothing} = new List{ self =>

type A = Nothing

def isEmpty = true

def head: A = self.head

def tail: List{type A = Nothing} = self.tail

}

def cons(x: {type A})(hd: x.A)(tl: sci.List{type A <: x.A})

: sci.List{type A <: x.A} = new List{ self =>

type A = x.A

def isEmpty = false

def head = hd

16 The Essence of DOT

def tail = tl

}

}

The main difference between the DOT and Scala versions concerns recursive
types. Scala does not support recusive types directly, but recursion is employed
indirectly in the definition of traits and objects. Consequently, List in now a trait
instead of a type definition, and scala_collection_immutable is an object instead
of a let-bound variable. Otherwise, there are only minor syntactic differences.

6 Dependent Types in Scala

The previous section showed how generic types can be encoded as path-dependent
types in DOT. So it established that DOT is sufficiently expressive to encode
standard abstraction patterns we expect in programming languages today. In
this section we show by means of an example3 that path-dependent types are
themselves a useful programming concept.

The example models command line options using heteregoenous maps. Say,
you want to represent the settings given in the bash command line

ls -l --sort time --width=120

There are two settings: sort is associated with the string "time" and width is
associated with the integer 120. We’d like to store these settings in a map in a
typesafe way. This map is necessarily heterogenous: if the key is "sort" it should
accept and return a string as value, whereas for the "width" key it should accept
and return integer values.

Here is the interface of a HMap trait for heterogenous maps in Scala:

trait Key { type Value }

trait HMap {

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value): HMap

}

Type dependencies are expressed with the Key type which contains a single type
field Value to indicate the type of the value associated with that key. HMap con-
tains two methods, get and add with result types that depend on the passed key

argument.
To represent command line settings as HMap keys, we define a class Setting

that extends Key and that defines a str field:

class Setting(val str: String) extends Key

Settings for sort and width define the setting name and the type of the values
associated with the setting.
3 The example is based on a talk by Jon Pretty (2015).

The Essence of Dependent Object Types 17

val sort = new Setting("sort") { type Value = String }

val width = new Setting("width") { type Value = Int }

The settings in the command line above can now be represented as:

val params = HMap.empty

.add(width)(120)

.add(sort)("time")

The system keeps track of the type associated with a setting, so the following
two accesses of the params map both typecheck:

val x: Option[Int] = params.get(width)

val y: Option[String] = params.get(sort)

Here is a minimally complete implementation of HMap that makes this work:

trait HMap { self =>

def get(key: Key): Option[key.Value]

def add(key: Key)(value: key.Value) = new HMap {

def get(k: Key) =

if (k == key) Some(value.asInstanceOf[k.Value])

else self.get(k)

}

}

object HMap {

def empty = new HMap { def get(k: Key) = None }

}

Note the asInstanceOf cast in the definition of get. This is necessary because
the type checker cannot conclude that k == key implies k.Value == key.Value,
i.e. that equality is extensional. Equality (==) is user-defined in Scala, so ex-
tensionality needs to be ensured in the definitions of the actual key types and
values.

If we compare this to Haskell’s HMap (van der Ploeg, 2013) we notice several
differences. First, Haskell, lacking dependent method types, expresses a depen-
dent method type with an additional polymorphic parameter. Second, the type
of keys in Haskell’s implementation is fixed, whereas in Scala’s approach it can
be augmented with new information through subclassing, as was seen in the case
of Setting. Third, in Haskell key creation is a monadic operation, so all code
manipulating HMap has to be placed in a monad. By contrast, the Scala code is
Monad-free (and also side-effect-free).

7 Implementation

The DOT calculus is at the core of the new dotty compiler for Scala (Odersky
et al., 2013), which has been under development since 2013. dotty is currently

18 The Essence of DOT

used as an experimental platform to develop future versions of Scala. One of the
first changes, influenced by DOT, is the introduction of true intersection types.

Unlike nsc, the current reference compiler for Scala, dotty does not maintain
parameterized types and type applications. Instead, parameterized types in Scala
sources are immediately mapped to types with abstract type members, and type
applications are mapped to type refinements, very similar to what is shown in
Section 5.

An important benefit of this reductionist approach is that it gives for the first
time a satisfactory explanation of wildcard types, which arise when modeling type
parameter variance. If we combine generics and subtyping, we inevitably face the
problem that we want to express a generic type where the type argument is an
unknown type that can range over a set of possible types. The prototypical case is
where the argument ranges over all subtypes or supertypes of some type bound,
as in List[_ <: Fruit] (or List<? extends Fruit> in Java).

Such partially undetermined types come up when we want to express vari-
ance. We would like to have that List[Apple] is a subtype of List[Fruit] since
Apple is a subtype of Fruit. An equivalent way to state this is to say that the
type List[Fruit] includes lists where the elements are of an arbitrary subtype
of Fruit. The wildcard type List[_ <: Fruit] expresses that notion directly.
Definition-site variance can be regarded as a user-friendly notation that expands
into use-site variance expressions using wildcards.

The problem is how to model a wildcard type such as List[_ <: Fruit] in
a formal type system. The original proposal of wildcard types by Igarashi and
Viroli (Igarashi and Viroli, 2002) interpreted them as existential types. However,
the implementation of the feature in Java uses subtyping rules that are not expli-
cable using just existential types. A tentative formalization exists with WildFJ
(Torgersen et al., 2004), but the issues look quite complicated. Tate, Leung and
Learner have explored some possible explanations (Tate et al., 2011); however
their treatment raises about as many questions as it answers.

Say, C is a class with type parameter A, which can be declared nonvariant,
covariant, or contravariant. The scheme used in dotty is to model C as a class
with a single type member

class C { type A }

A type application C[T] is then expressed as C & { type A = T } if A is nonva-
riant, as C & { type A <: T } if C is covariant and as C & { type A >: T } if C
is contravariant.

Wildcard type applications are mapped as they are written. For instance,
C[_ <: T] would be expressed as C & { type A <: T }. So the previously thorny
issue how to model wildcards has an almost trivially simple solution in this
approach.

The Essence of Dependent Object Types 19

8 Related Work

The DOT calculus represents the latest development in a long-standing effort to
formalize the core features of the Scala programming language. Previous for-
malizations include the νObj calculus (Odersky et al., 2003), Featherweight
Scala (Cremet et al., 2006) and Scalina (Moors et al., 2008). The νObj calculus
features a rich type language, including distinct notions of singleton types, type
selections, record types, class types and compound types. However, this richness
makes νObj rather unwieldy in practice and somewhat unsuitable as a core cal-
culus. Furthermore, subtyping in νObj lacks unique upper or lower bounds, and
mixin composition is not commutative. Type checking in νObj was shown to be
undecidable, prompting the development of Featherweight Scala (Cremet et al.,
2006) as an attempt at a calculus with decidable type checking. Scalina (Moors
et al., 2008) was proposed as a formal underpinning for introducing higher-kinded
types in Scala. Among these three systems, only the νObj has been proven sound,
and its proof has not been machine-verified.

A common theme among earlier systems is their complexity, which makes
them hard to reason about and extend with new features. The goal of DOT is to
provide a more streamlined calculus that could serve as a basis for mechanized
proofs of various extensions. To this end, DOT focuses on the essence of path-
dependent types and reduces complexity as far as having only variables as paths.
Despite and due to such restrictions, DOT is more general than previous models
as it does not assume a class-based language or any other particular choice of
implementation reuse. A preliminary version of DOT was formalized using a
small-step operational semantics with a store (Amin et al., 2012) without giving
a soundness proof. The first mechanized soundness proof was established for a
more restricted variant (µDOT) using a closure-based big-step semantics (Amin
et al., 2014). Soundness results with mechanized proofs for versions of System
D<: and DOT similar to the ones presented here (but still based on big-step
semantics) were only recently established (Rompf and Amin, 2015).

Our work shares many goals with recent work on ML modules. In this con-
text, path-dependent types go back at least to SML (Macqueen, 1986), with
foundational work on transparent bindings by Harper and Lillibridge (1994) and
Leroy (1994). Unlike DOT, their systems are stratified, i.e. definitions can only
depend on earlier definitions in the same type. This ensures well-formedness of
definitions by construction, but rules out recursive definitions. Also, type bounds
are not considered. MixML (Dreyer and Rossberg, 2008) drops the stratification
requirement between module and term language and enables modules as first
class values as well as mixin-style recursive definitions. More recent work models
key aspects of modules as extensions of System F (Montagu and Rémy, 2009;
Rossberg et al., 2014). The latest development, 1ML (Rossberg, 2015), unifies
the ML module and core languages through an elaboration to System Fω. Our
work differs from these in its integration of subtyping and recursive definitions,
as well as an overriding focus on keeping the formalism minimal.

In object-oriented programming languages, Ernst first proposed path-dependent
types for family polymorphism (2001) and virtual classes (2003) in gbeta. Calculi

20 The Essence of DOT

for virtual classes include vc (Ernst et al., 2006) and Tribe (Clarke et al., 2007).
Virtual classes abstract not only over types, but also over classes and inheritance
– requiring additional restrictions or type machinery to control interactions be-
tween statically unknown class hierarchies. In contrast, the core DOT calculus
does not model inheritance by design.

Abstract type tags {A : S..T} provide a form of first-class subtyping con-
straints in DOT. As illustrated in Section 3, this subsumes the type of bounded
polymorphism found in e.g. F<:. However, unlike F<:, DOT allows abstract types
to be lower-bounded, and even to assume absurd bounds, such as {A : >..⊥}.
This makes the type system more expressive, but complicates the meta theory
and renders reduction under abstraction unsafe in general (see Section 4). In
DOT, these issues are solved by adopting a weak-reduction strategy and ensur-
ing type safety only in run-time typing contexts (i.e. those that correspond to a
store). Cretin, Scherer and Rémy propose an alternative approach in their Fcc

and Fth systems (Cretin and Rémy, 2014; Scherer and Rémy, 2015). They con-
sider a more general notion of coercion constraints which come in two flavors:
consistent constraints, under which reduction is safe, and (potentially) inconsis-
tent constraints, under which reduction is forbidden. Their approach thus regains
a more flexible reduction strategy at the expense of a considerably more complex
type system.

9 Conclusion and Future Work

We have developed DOT, a minimal formal foundation for Scala. The calculus
departs from standard practice in that it places type names related by subtyping
constraints and path-dependent types at the center and regards type parame-
terization as a secondary feature that can be expressed through encodings.

Developing a sound meta-theory for DOT has been difficult because the issues
were at first poorly understood. In retrospect, the main difficulty came from the
fact that the combination of upper and lower type bounds4 allows programmers
to define their own subtyping theory and that theory might well be inconsistent.
An inconsistent subtyping theory arises from bad bounds, where the lower bound
of a type is not a subtype of its upper bound. Through transitivity of subtyping,
bad bounds can turn every type into a subtype of every other type, which makes
the progress part of type soundness fail. Because of recursion and intersection
types, it’s impossible to stratify the system so that bad bounds are ruled out a
priori.

We solve the issue by carefully distinguishing values that can arise at run-
time from other terms. Run-time values carrying types are always constructed
using a ν-term and its typing rule makes sure that every type member is defined
as an alias of a concrete type. So run-time values cannot have bad bounds. The
tricky aspect of the meta theory was how to exploit this intuition in the formal
proofs.
4 Having both kind of bounds is essential in DOT to model type aliases; if we would
replace bounds by aliases we would run into the same problems.

The Essence of Dependent Object Types 21

The intuitions gained by DOT feed into Scala in several ways. For one, Scala
is set to adopt constructs studied in DOT, such as full intersection types. Further-
more, the dotty Scala compiler has an internal type representation that generally
resembles DOT and in particular encodes type parameterization as membership.

We also plan to study several extensions of DOT with the aim of bridging the
gaps between the calculus and the programming language. Areas to be studied
include formalizations of type parameters, variance, traits and classes, as well as
inheritance. We expect that most of these extensions will be formalized through
encodings into the base calculus. Their soundness will likely be established by
proving type preservation of the encodings instead of adding to the meta-theory
of DOT itself.

Acknowledgments

Adriaan Moors, Donna Malayeri and Geoffrey Washburn have contributed to
previous versions of DOT. We thank the anonymous reviewers of Wadlerfest
for helpful comments on this paper. For insightful discussions we thank Amal
Ahmed, Derek Dreyer, Erik Ernst, Matthias Felleisen, Paolo Giarrusso, Scott
Kilpatrick, Grzegorz Kossakowski, Alexander Kuklev, Viktor Kuncak, Jon Pretty,
Didier Rémy, Lukas Rytz, Miles Sabin, Ilya Sergey, Jeremy Siek, Josh Suereth
and Phil Wadler. Contributors to the Dotty project include Dmitry Petrashko,
Guillaume Martres, Vladimir Nikolaev, Ondřej Lhoták, Vera Salvisberg and Ja-
son Zaugg. This research was supported by the European Research Council
(ERC) under grant 587327 DOPPLER and the Swiss National Science Founda-
tion under grant “Foundations of Scala”.

References

Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Trans. Program.
Lang. Syst. 15(4), 575–631 (1993)

Amin, N., Moors, A., Odersky, M.: Dependent object types. In: FOOL (2012)
Amin, N., Rompf, T., Odersky, M.: Foundations of path-dependent types. In:
OOPSLA (2014)

Ariola, Z.M., Maraist, J., Odersky, M., Felleisen, M., Wadler, P.: A call-by-need
lambda calculus. In: POPL (1995)

Cardelli, L., Martini, S., Mitchell, J.C., Scedrov, A.: An extension of system F
with subtyping. Inf. Comput. 109(1/2), 4–56 (1994)

Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Tribe: a simple virtual
class calculus. In: AOSD (2007)

Coppo, M., Dezani-Ciancaglini, M., Sallé, P.: Functional characterization of some
semantic equalities inside lambda-calculus. In: Automata, Languages and Pro-
gramming, 6th Colloquium (1979)

Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for Scala type
checking. In: MFCS (2006)

Cretin, J., Rémy, D.: System F with coercion constraints. In: CSL-LICS (2014)

22 The Essence of DOT

Dreyer, D., Rossberg, A.: Mixin’ up the ML module system. In: ICFP (2008)
Ernst, E.: Family polymorphism. In: ECOOP (2001)
Ernst, E.: Higher-order hierarchies. In: ECOOP (2003)
Ernst, E., Ostermann, K., Cook, W.R.: A virtual class calculus. In: POPL (2006)
Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM
40(1), 143–184 (Jan 1993)

Harper, R., Lillibridge, M.: A type-theoretic approach to higher-order modules
with sharing. In: POPL (1994)

Igarashi, A., Viroli, M.: On variance-based subtyping for parametric types. In:
ECOOP (2002)

Leroy, X.: Manifest types, modules and separate compilation. In: POPL (1994)
Macqueen, D.: Using dependent types to express modular structure. In: POPL
(1986)

Montagu, B., Rémy, D.: Modeling abstract types in modules with open existen-
tial types. In: POPL (2009)

Moors, A., Piessens, F., Odersky, M.: Safe type-level abstraction in Scala. In:
FOOL (2008)

Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects
with dependent types. In: ECOOP (2003)

Odersky, M., Petrashko, D., Martres, G., others.: The dotty project (2013),
https://github.com/lampepfl/dotty

van der Ploeg, A.: The HMap package.
https://hackage.haskell.org/package/HMap (2013)

Pretty, J.: Minimizing the slippery surface of failure. Talk at Scala World (2015),
https://www.youtube.com/watch?v=26UHdZUsKkE

Rompf, T., Amin, N.: From F to DOT: Type soundness proofs with definitional
interpreters. Tech. rep., Purdue University (2015), http://arxiv.org/abs/

1510.05216
Rossberg, A.: 1ML - core and modules united (f-ing first-class modules). In:
ICFP (2015)

Rossberg, A., Russo, C.V., Dreyer, D.: F-ing modules. J. Funct. Program. 24(5),
529–607 (2014)

Scherer, G., Rémy, D.: Full reduction in the face of absurdity. In: ESOP (2015)
Tate, R., Leung, A., Lerner, S.: Taming wildcards in java’s type system. In:
PLDI (2011)

Torgersen, M., Ernst, E., Hansen, C.P.: WildFJ. In: FOOL (2004)

A Additional Rules and Detailed Proofs

A.1 Typing of Dependent Sums / Σs

There are one subtyping rule and four typing rules (all admissible in D<:) asso-
ciated with the encoding of dependent sums given in Section 2.1.

Γ ` S1 <: S2 Γ, x : S1 ` T1 <: T2

Γ ` Σ(x : S1)T1 <: Σ(x : S2)T2
(Σ-<:-Σ)

https://github.com/lampepfl/dotty
https://hackage.haskell.org/package/HMap
https://www.youtube.com/watch?v=26UHdZUsKkE
http://arxiv.org/abs/1510.05216
http://arxiv.org/abs/1510.05216

The Essence of Dependent Object Types 23

Γ ` x : S Γ ` y : T x /∈ fv(S)
Γ ` pack [x, y] as Σ(x : S)T : Σ(x : S)T

(Σ-I)

Γ ` t : Σ(x : S)T Γ, x : S, y : T ` u : U x, y /∈ fv(U)
Γ ` unpack x : S, y : T = t in u : U

(Σ-E)

Γ ` z : Σ(x : S)T
Γ ` z.1 : S

(Σ-Proj1)

Γ ` z : Σ(x : S)T x /∈ fv(T)
Γ ` z.2 : T

(Σ-Proj2)

The proofs of admissibility are left as an (easy) exercise to the reader.

A.2 Proof of Theorem 2

We want to show that the translation −∗ preserves typing, i.e. if Γ `F t : T
then Γ ∗ `D t∗ : T ∗.

We start by stating and proving two helper lemmas. Write [x.A := U]T for
the capture-avoiding substitution of x.A for U in T .

Lemma 6. Substitution of type variables for types commutes with translation of
types, i.e.

([X := U]T)∗ = [xX .A := U∗]T ∗

Proof. The proof is by straight-forward induction on the structure of T .

Lemma 7. The following subtyping rules are admissible in D<:

Γ ` x : {A : U..U}
Γ ` [x.A := U]T <: T

Γ ` x : {A : U..U}
Γ ` T <: [x.A := U]T

Proof. The proof is by induction on the structure of T .

Proof (Theorem 2). Proof is by induction on (F<:) typing derivations. The
case for subsumption follows immediately from preservation of subtyping (The-
orem 1). The only remaining non-trivial cases are type and term application.

Term application case. We need to show that

Γ ∗ ` s∗ : ∀(z :S∗)T ∗ Γ ∗ ` t∗ : S∗

Γ ∗ ` let x = s∗ in let y = t∗ in x y : T ∗

is admissible. First note that z is not in fv(T ∗), hence [z := y]T ∗ = T ∗ for all y.
In particular, using (Var) and (All-E), we have

24 The Essence of DOT

Γ ′ ` x : ∀(z :S∗)T ∗ Γ ′ ` y : S∗
(All-E)

Γ ′ ` x y : T ∗

where Γ ′ = Γ ∗, x : ∀(z : S∗)T ∗, y : S∗. Applying the induction hypothesis,
context weakening and (Let), we obtain

Γ ∗, x : ∀(z :S∗)T ∗ ` t∗ : S∗ Γ ′ ` x z : T ∗
(Let)

Γ ∗, x : ∀(z :S∗)T ∗ ` let y = t∗ in x y : T ∗

The result follows by applying the induction hypothesis once more:

Γ ∗ ` s∗ : ∀(z :S)∗T ∗ Γ ∗, x : ∀(z :S)∗T ∗ ` let y = t∗ in x y : T ∗
(Let)

Γ ∗ ` let x = s∗ in let y = t∗ in x y : T ∗

Type application case. By preservation of subtyping, we have Γ ∗ ` U∗ <: S∗,
hence it suffices to show that

Γ ∗ ` t∗ : ∀(xX :{A : ⊥..S∗})T ∗ Γ ∗ ` U∗ <: S∗

Γ ∗ ` let x = t∗ in let yY = {A = U∗} in x yY : ([X := U]T)∗

is admissible. By context weakening, (Typ-<:-Typ), (Bot) and (Sub), we have

Γ ′ ` yY : {A : U∗..U∗}
Γ ′ ` ⊥ <: U∗ Γ ′ ` U∗ <: S∗

(Typ-<:-Typ)
Γ ′ ` yY : {A : ⊥..S∗}

(Sub)
Γ ′ ` yY : {A : ⊥..S∗}

where Γ ′ = Γ ∗, x : ∀(xX : {A : ⊥..S∗})T ∗, yY : {A : U∗..U∗}. By (Var) and
(All-E), we have

Γ ′ ` x : ∀(xX :{A : ⊥..S∗})T ∗ Γ ′ ` yY : {A : ⊥..S∗}
(All-E)

Γ ′ ` x yY : [xX := yY]T ∗

Next, we observe that, by Lemma 6

([X := U]T)∗ = [xX .A := U∗]T ∗

= [yY .A := U∗][xX := yY]T ∗

By Lemma 7, (Var) and (Sub), we thus have

Γ ′ ` xyY : [x :=] XyY T
∗

Γ ′ ` yY : {A : U∗..U∗}
(Lemma 7)

Γ ′ ` [xX := yY]T ∗ <: ([X := U]T)∗
(Sub)

Γ ′ ` x yY : ([X := U]T)∗

The result follows from applying (Let) twice. Note that, being fresh, neither x
nor yY appear free in ([X := U]T)∗, hence the hygiene condition of (Let) holds.

	The Essence of Dependent Object Types

