
Efficient Incrementialization of Correlated Nested Aggregate
Queries using Relative Partial Aggregate Indexes (RPAI)

Supun Abeysinghe, Qiyang He, Tiark Rompf

{tabeysin,he615,tiark}@purdue.edu

Purdue University

West Lafayette, Indiana

Abstract
Incrementalization of queries is imperative in cases where data ar-

rives as streams and output is latency-critical and/or desired before

the full data has been received. Incremental execution computes

the output at a given time by reusing the previously computed out-

puts or maintained views rather than re-evaluating the query from

scratch. There are various approaches to perform this incremental-

ization ranging from query-specific algorithms and data structures

(e.g., DYN, AJU) to general systems (e.g., DBToaster, Materialize).

DBToaster is a state-of-the-art system that comes with an appeal-

ing theoretical background based on the idea of applying Incremen-

tal ViewMaintenance (IVM) recursively, maintaining a hierarchy of

materialized views via delta queries. However, one key limitation of

this approach is its inability to efficiently incrementalize correlated

nested-aggregate queries due to an inefficient delta rule for such

queries. Moreover, none of the other specialized approaches have

shown efficient ways to optimize such queries either. Nonetheless,

these types of queries can be found in many real-world application

domains (e.g., finance), for which efficient incrementalization re-

mains a crucial open problem. In this work, we propose an approach

to incrementalize such queries based on a novel tree-based index

structure called Relative Partial Aggregate Indexes (RPAI). Our ap-

proach is asymptotically faster than other systems and shows up

to 1100× speedups in workloads of practical importance.

CCS Concepts
• Theory of computation → Data structures and algorithms
for data management; • Information systems→ Query opti-
mization.

Keywords
incremental processing; nested aggregate queries; aggregate in-

dexes; parent-relative trees

ACM Reference Format:
Supun Abeysinghe, Qiyang He, Tiark Rompf. 2022. Efficient Incrementializa-

tion of Correlated Nested Aggregate Queries using Relative Partial Aggre-

gate Indexes (RPAI). In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3517889

This work is licensed under a Creative Commons

Attribution International 4.0 License.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3517889

1 Introduction
Many real-world systems perform analytical queries on continu-

ously arriving streams of data that result in dynamic datasets with

high update rates. These types of workloads are prevalent in many

modern big data application domains including finance, social me-

dia, etc., and generally focus on extracting insights, trends, and

anomalies from data streams [22]. For example, in algorithmic trad-

ing, such queries are performed on fast arriving streams of data to

compute key metrics that drive trading decisions [22].

This is generally done in the form of incremental processing

where, given a query 𝑄 , a database 𝑑𝑏, the task is to efficiently

compute 𝑄 (𝑑𝑏 + Δ𝑑𝑏) under updates Δ𝑑𝑏 using 𝑄 (𝑑𝑏) (i.e., the
previous result) and any additionally maintained auxiliary data

structures. Incremental processing is not just useful for processing

streams of data, but also in other use cases such as, producing

low-latency approximate results for batch queries by operating

on mini-batches of data [46], and eager processing of queries (i.e.,

before all the data is ready) to produce faster results with limited

resources [40], intermittent query processing [39], etc.

Traditional relational databases (DBMS) perform this in the form

of Incremental View Maintenance (IVM) when maintaining materi-

alized views. Specifically, users can materialize query outputs (e.g.,

for faster retrieval) and the DBMS engine maintains these views

under updates to the underlying data sources by incrementally

updating the view accordingly (via delta queries). This is generally
faster compared to evaluating the query from scratch on the up-

dated database. Although these traditional IVM techniques handle

simple queries well, they fall back to re-computation for complex

queries with nested and correlated subqueries [24].

DBToaster [22, 24] is a state-of-the-art incremental query evalu-

ation system that takes this notion of delta queries and applies it

recursively (i.e., delta of delta queries and so on) so that the views

are maintained by not just a single materialized structure, but a set

of auxiliary views corresponding to each level of the recursive delta

query. This notion of higher-order delta queries works well in prac-

tice and has shown significant performance gains over commercial

DBMS and Stream Processing systems [25].

However, this recursive approach is only effective for a class of

queries that is guaranteed to have delta queries simpler than the

higher-level query (further discussed in Section 2.1.2). Importantly,

queries with nested aggregates do not satisfy this key property.

Specifically, the delta of such queries is simply running the query

twice and computing𝑄 (𝑑𝑏+Δ𝑑𝑏) −𝑄 (𝑑𝑏) which is worse than sim-

ply re-evaluating the query [29]. Therefore, systems like DBToaster

fall back to re-computing for such queries. In Section 2.2, we show

that DBToaster takes𝑂 (𝑛2) time to maintain such a query under up-

dates which is the same asymptotic time as re-computation whereas

https://doi.org/10.1145/3514221.3517889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3514221.3517889

we demonstrate the same can be done in𝑂 (log𝑛) time by using an

additional index to maintain partial aggregates.

Follow-up work on DBToaster [29] presented a technique called

domain extraction for specifically optimizing this re-evaluation strat-

egy by narrowing down the iteration space. However, this only

works for cases where the nested aggregates are correlated to the

outer query on equality predicates. Even for the queries that use

this technique, we show in Section 2.1.2 that this approach yields

sub-optimal asymptotic performance (e.g., takes 𝑂 (𝑛) where 𝑂 (1)
is possible). Another line of related work focuses on building spe-

cialized data structures and algorithms to efficiently incrementalize

certain classes of queries (e.g., acyclic conjunctive queries (CQ) with

equalities [16] or inequalities [17], acyclic foreign key joins [42]

etc.). However, the presented specialized data structures either do

not support or do not efficiently handle nested aggregate queries.

In this work, we focus on improving the incrementalization

efficiency of aggregate queries containing nested aggregate sub-

queries in their predicates. First, we introduce a general algorithm

that is based on the idea of identifying and updating only the ag-

gregate values affected by a tuple insertion (or deletion). This is

done by analyzing the correlated columns of inner queries and

the corresponding uncorrelated columns used in the inner query

predicates. Second, we focus on a specific subset of queries that ap-

pear commonly in practice (especially in finance-related use cases)

and propose a way to further optimize them. Specifically, we build

additional index structures that are indexed by aggregate values

such that a range of aggregate values can be shifted efficiently,

providing the ability to compute the final result directly from these

indexes. We observe that none of the existing data structures sup-

port the required operations in a reasonable time, and hence, design

a novel tree-based data structure called relative partial aggregate

index (RPAI) that stores aggregate values (i.e., keys) in a parent-

relative manner to enable range key shifting in logarithmic time.

Our analysis shows that the use of these aggregate indexes result

in significant asymptotic speedups (e.g., 𝑂 (𝑛2) to 𝑂 (log𝑛)) and up

to 1100× speedups in workloads of practical importance.

This paper makes the following specific contributions.

• We present a case study with two examples of nested aggre-

gate queries and analyze how existing approaches handle those

queries. Then, we motivate our approach of using aggregate in-

dexes (PAI Maps and RPAI Trees) and demonstrate how such

structures can improve the incrementalization (Section 2).

• We design an efficient tree-based data structure for RPAI and

present algorithms for the key operators with an analysis of their

time complexity (Section 3).

• We present a novel general algorithm for incrementalizing corre-

lated nested aggregate queries, followed by further optimizations

using PAI Maps and RPAI Trees. Then, we discuss the limitations

and overheads associated with our approach. (Section 4).

• We evaluate the performance of our algorithm against DBToaster,

a state-of-the-art system that supports incremental execution

of SQL queries, and show that our approach performs signifi-

cantly better in real-world datasets in line with the expected

performance behaviors due to asymptotic speedups (Section 5).

We discuss related work in Section 6 and present concluding re-

marks in Section 7.

2 Incrementalization of Nested Aggregates
In this section, we consider two example nested aggregate queries

of different forms and explore how existing systems and approaches

handle these queries. Then, we identify the key limitations of these

approaches, which motives the ideas presented in this work. Specifi-

cally, we demonstrate how our approach can improve the efficiency

of incrementalization of these queries.

2.1 Nested Aggregate with Equality
Example 2.1. Consider the following simple nested aggregate

query that only consists of equality predicates. This computes an
aggregate of values that is responsible for a given fraction (1

2
in this

case) of all the records. Queries of this structure are commonly found
in many use cases [22, 38].

Q = SELECT Sum(r.A * r.B) FROM R r
WHERE
 0.5 * (SELECT Sum(r1.B) FROM R r1) =

 (SELECT Sum(r2.B) FROM R r2 WHERE r2.A = r.A)

lhs_sum

rhs_sum

The query operates on a single relation 𝑅(𝐴, 𝐵) and consists of

two nested aggregate queries. The inner query on the left-hand

side is not correlated with the outer query whereas the right-hand

sub-query is correlated implying that the corresponding aggregate

value varies for different records from the outer query.

2.1.1 Naive Re-evaluation Strategy Figure 1a shows a naive re-

evaluation computation of the given query in Python. The code

is self-explanatory and follows the same structure as the query

(i.e., nested loops for the subqueries). Notice that this computation

happens every time 𝑅(𝐴, 𝐵) gets updated (i.e., tuple insertions, or

deletions). That is, when updates to 𝑅 is Δ𝑅, 𝑄 (𝑅 + Δ𝑅) is evalu-
ated from scratch irrespective of the fact that 𝑄 (𝑅) was previously
computed. Due to the presence of nested loops, overall asymptotic

time complexity of producing the final result upon updates to 𝑅

comes down to 𝑂 (|𝑅 |2) where |𝑅 | is the number of tuples in 𝑅.

2.1.2 DBToaster Incremental Query Execution As discussed in Sec-

tion 1, DBToaster falls back to recomputation due to the lack of an

efficient delta query for queries containing aggregate subqueries in

the predicates. Figure 1b shows the code generated by DBToaster for

the query in Example 2.1. We converted the generated C++ code to

Python to improve readability and combined the tuple addition and

deletion triggers into a single (equivalent) trigger to make the code

more concise (𝑡 .𝑋 = 1 for insertions and 𝑡 .𝑋 = −1 for deletions).
The code shows that even though it relies on re-evaluation for

connecting the nested aggregate with the outer query, other parts

of the query are efficiently incrementalized (compared to naively re-

evaluating). For instance, the lhs_sum computation which required

iterating through all the records (line 8-11 in Figure 1a), is now

computed in constant time by incrementally maintaining the sum

of B values using map2. Since rhs_sum depends on the 𝑟 .𝐴 values

from the outer query, map3maintains the relevant 𝑠𝑢𝑚(𝐵) values for
different 𝑟 .𝐴 values. Here, rather than re-evaluating all the rhs_sum
values (lines 13-16 in Figure 1a), only the sum affected by the new

tuple is updated. map1 maintains the 𝑠𝑢𝑚(𝐴 ∗ 𝐵) for each 𝐴 value

and is used to compute the final aggregate sum. Specifically, once

lhs_sum and rhs_sum are computed, the set of𝐴 values that satisfy

the condition are found and the corresponding 𝑠𝑢𝑚(𝐴 ∗ 𝐵) values
are summed up. Lines 9-11 in Figure 1b correspond to updating

the maps based on the incoming tuple and lines 16-20 show the

1 R = []

2 def on_new_R(t: R):

3 R.append(t)

4 # re-evaluate from scratch

5 res = 0.0

6 for r in R:

7 # evaluate lhs nested aggregate

(uncorrelated)

8 lhs_sum = 0.0

9 for r1 in R:

10 lhs_sum += r1.B

11 lhs_sum *= 0.5

12 # evaluate rhs nested aggregate

(correlatead)

13 rhs_sum = 0.0

14 for r2 in R:

15 if r2.A = r.A:

16 rhs_sum += r2.B

17 # evaluate the predicate and

update aggregate

18 if (lhs_sum == rhs_sum):

19 res += r.A * r.B

𝑂 (|𝑅 |2)

(a) Naive Re-evaluation (Section 2.1.1)

1 # materialized views

2 map1 = {} # A -> sum(A * B)

3 map2 = 0.0 # -> sum(B)

4 map3 = {} # A -> sum(B)

5

6 def on_new_R(t: R):

7 res = 0.0

8 # update the maps

9 map1[t.A] += t.A * t.B * t.X

10 map2 += t.B * t.X

11 map3[t.A] += t.B * t.X

12

13 # compute lhs_sum

14 lhs_sum = 0.5 * map2

15 # find each rhs_sum

16 for a in map1:

17 rhs_sum = map3(a)

18 # evaluate the predicate and

update aggregate

19 if lhs_sum == rhs_sum:

20 res += map1(a)

21 return res

𝑂 (|𝑅 |)

(b) DBToaster (partially incremental;
Section 2.1.2)

1 # primary maps

2 map1 = {} # A -> sum(A * B)

3 map2 = 0.0 # -> sum(B) [lhs_sum]

4 map3 = {} # A -> sum(B) [rhs_sum]

5 # aggregate maps

6 aggrMap = {} # rhs_sum -> sum(A * B)

7

8 def on_new_R(t: R):

9 oldSumB = map3[t.A] # old rhs_sum for t.A

10 oldFinalAggSum = map1[t.A]

11

12 # update the maps

13 map3[t.A] += t.B * t.X

14 map2 += t.B * t.X

15 map1[t.A] += t.A * t.B * t.X

16 aggrMap[oldSumB] -= oldFinalAggSum

17 aggrMap[oldSumB + t.X * t.B]

18 += oldFinalAggSum + t.A * t.B * t.X

19

20 #compute the final result

21 res = aggrMap[map2 * 0.5]

22 return res

𝑂 (1)

(c) Our approach based on aggregate indexes (fully incre-
mental; Section 2.1.3)

Figure 1: Code corresponding to different execution strategies for the query in Example 2.1 (assuming𝑂 (1) hash map access).

computation of the final result. The overall time complexity of

maintaining the final result under updates to 𝑅 is 𝑂 (|𝑅 |).

2.1.3 Using Aggregate Indexes A key observation at this point

is that even though lhs_sum changes with incoming tuples, the

aggregate value remains a fixed value for all the outer tuples as

lhs_sum is not correlated to the outer query. Therefore, if we have

an additional index that maps different rhs_sum values to the cor-

responding final aggregate sums (in this case SUM(A * B)), we can
query that map using the current (updated) lhs_sum to compute

the updated final result in constant time. However, populating such

an aggregate index naively by computing rhs_sum for each tuple

(using map3) would still leave the overall time complexity at𝑂 (|𝑅 |).
Now the key question is, rather than populating this aggregate

index by iterating and computing rhs_sum for all the tuples in

𝑅, is it possible to maintain it in less than 𝑂 (|𝑅 |) time. Observe

that whenever a new tuple 𝑡 arrives, three things change. First, the

lhs_sum gets incremented by 𝑡 .𝐵 ∗ 𝑡 .𝑋 which can be updated in

constant time. Second, the new record has a corresponding rhs_sum
and that needs to be added to the aggrMap. This can also be done

in constant time by computing the rhs_sum using map3 as we saw

before and updating the corresponding entry in aggrMap.
Third, the addition of the new tuple to 𝑟2 (in the right subquery)

will trigger a change of rhs_sum values of all tuples having the same

𝐴 value as 𝑡 .𝐴 (because the condition of the nested query predicate

is 𝑟 .𝐴 = 𝑟2.𝐴). Therefore, all the tuples with the same 𝐴 value will

have the same rhs_sum because the set of tuples responsible for

their respective rhs_sum are only the ones having the same𝐴. That

is, with the addition of 𝑡 , the rhs_sum corresponding to 𝑡 .𝐴 gets

incremented by 𝑡 .𝐵 ∗ 𝑡 .𝑋 and we need to update the aggrMap to

reflect this change. We can do this by moving the corresponding

sum(A*B) from the old rhs_sum key to rhs_sum+𝑡 .𝐵∗𝑡 .𝑋 . However,

we cannot simply move the value for rhs_sum to rhs_sum+𝑡 .𝐵∗𝑡 .𝑋

because there can be the same rhs_sum for different 𝐴 values (i.e.,

different groups of tuples can have the same aggregate value). We

can handle this by using map3 to move the respective portion of

the value from aggrMap[old_rhs_sum] (i.e., only 𝑠𝑢𝑚(𝐴 ∗ 𝐵) of
records having 𝑡 .𝐴 in A) to aggrMap[new_rhs_sum].

We call indexes of type aggrMap, Partial Aggregate Indexes (PAI)
since they store aggregates values as keys and map to aggregates.

Figure 1c shows the implementation based on the PAI Map based

approach. The entire update routine only contains updates to hash

maps and does not require any form of iteration. Therefore, the

query in Example 2.1 can be incrementally maintained in 𝑂 (1)
time using our approach which is more efficient than re-evaluation

which takes 𝑂 (|𝑑𝑏 |2) time, and DBToaster which takes 𝑂 (|𝑑𝑏 |).

2.2 Nested Aggregate with Inequalities
In the previous example, we demonstrated how a query that has

an 𝑂 (|𝑅 |2) re-evaluating cost and an 𝑂 (|𝑅 |) incremental mainte-

nance cost (in DBToaster) can be incrementalized in 𝑂 (1) time by

using PAI Maps. The query consisted of just equality predicates,

making it possible to use hash maps to maintain the aggregate in-

dexes under updates in constant time. In this section, we consider a

real-world query of a similar structure having inequality predicates.

Example 2.2. The query computes the volume-weighted average
price (VWAP) over bids that is in the final quartile (i.e, more than
75%) of total stock volume [22].

SELECT Sum(b.price * b.volume) FROM bids b

WHERE

0.75 * (SELECT Sum(b1.volume) FROM bids b1)

< (SELECT Sum(b2.volume) FROM bids b2

WHERE b2.price <= b.price)

Example 2.2 is a query from the finance benchmark which is

used in multiple other related works [22, 24, 25] to evaluate the

performance of incrementalization. The query operates on traces

1 bids = []

2 def on_new_bids(t: record):

3 # update the base table

4 bids.addRecord(t)

5 # re-evaluate from scratch

6 res = 0.0

7 for b in bids:

8 # evaluate the lhs nested

aggregate (uncorrelated)

9 lhs_sum = 0.0

10 for b1 in bids:

11 lhs_sum +=

12 b1.volume * b1.X

13 lhs_sum *= 0.75

14

15 # evaluate the rhs nested

aggregate (correlated)

16 rhs_sum = 0.0

17 for b2 in bids:

18 if b2.price <= b.price:

19 rhs_sum +=

20 b2.volume * b2.X

21

22 # evaluate the predicate and

update the aggregate

23 if (lhs_sum < rhs_sum):

24 res +=

25 b.price * b.volume * b.X

𝑂 (|𝑏𝑖𝑑𝑠 |2)

(a) Naive Re-evaluation (Section 2.2.1)

1 map1 = {}

2 # price -> sum(price*volume)

3 map2 = 0.0

4 # sum(volume)

5 map3 = {}

6 # price -> sum(volume)

7

8 def on_new_bids(t: record):

9 # update the maps

10 map1[a.price] += t.X * t.price

11 * t.volume

12 map2 += t.X * t.volume

13 map3[a.price] += t.X

14 * t.volume

15 # evaluating correlated nested

aggregate for each outer

distinct price

16 res = 0.0

17 for b_price in map1:

18 rhs_sum = 0.0

19 for b2_price in map1:

20 if b2_price <= b_price:

21 rhs_sum += map3[b2_price]

22 # evaluating condition

23 if 0.75 * map2 < rhs_sum:

24 res += map1[t.price]

25 return res

𝑂 (|𝑏𝑖𝑑𝑠 |2)

(b) DBToaster (partially incremental;
Section 2.1.2)

1 aggrIndex = {}

2 # <rhs_sum > --> sum(price * volume)

3 map2 = 0.0

4 # sum(volume)

5 map3 = {}

6 # price --> sum(volume)

7

8 def on_new_bids(t: record):

9 # rhs_sum for new record (before update)

10 rhs_sum = getSum(map3 , t.price)

11 volume = map3[t.price]

12 # update the aggregate index

13 shiftKeys(aggrIndex , rhs_sum -volume ,

14 t.X * t.volume)

15 # update the maps

16 map3[t.price] += t.volume*t.X

17 map2 += t.volume*t.X

18 aggrIndex[rhs_sum + t.X * t.volume]

19 += t.X * t.price * t.volume

20 #compute the output

21 return compute ()

22

23 def compute ():

24 lhs_sum = map2 * 0.75

25 res = getSum(aggrIndex , inf)

26 - getSum(aggrIndex , lhs_sum)

27 return res

PAI Map RPAI Tree

𝑂 (|𝑏𝑖𝑑𝑠 |) 𝑂 (log |𝑏𝑖𝑑𝑠 |)

(c) Our approach based on aggregate indexes (fully incre-
mental; Section 2.1.3)

Figure 2: Code corresponding to different execution strategies for the query in Example 2.2.

of records from order books that contain information about bids

and asks for shares (or any other asset) in a financial market. These

trades occur at rapid rates making it extremely important to have

fast refresh rates as the queries compute key metrics that drive

efficient algorithmic trading [22]. Moreover, the transactions in

these financial markets often contain updates or retractions of older

transactions, requiring the incremental query engines to maintain

these queries incrementally under both insertions and deletions.

The bids relation consists of five attributes timestamp, id, bro-
ker_id, volume, price, plus an additional attribute (bids.X) to dis-

tinguish between record deletion (-1) and insertion (+1). Similar

to Example 2.1, this query contains two nested aggregate queries

with one of them being correlated to the outer query. The main

difference is the use of inequality predicates in the query.

2.2.1 Naive Re-evaluation Strategy Figure 2a shows the code for a

naive re-evaluation approach to compute the output of this query.

Here, the bids is updated as records arrive and the result is com-

puted from scratch by looping through the records while computing

lhs_sum and rhs_sum using nested loops. The overall asymptotic

time complexity is 𝑂 (|𝑏𝑖𝑑𝑠 |2) where |𝑏𝑖𝑑𝑠 | is the cardinality of the

bids relation at the given point.

2.2.2 DBToaster Incremental Query Execution Figure 2b shows the

code generated by DBToaster for the Example 2.2 query. DBToaster

creates a set of maps representing intermediate materialized views

to incrementally maintain the query. The two nested subqueries

are fully incrementalized using two maps map2 (for lhs_sum) and
map3 (for rhs_sum). map1 maintains the sum of price * volume

per each price. This is useful when computing the final result as

we need to accumulate price * volume based on a set of price
that satisfies the given conditions.

Similar to the previous example, DBToaster fails to incremental-

ize the computation of the final result that requires finding records

from the outer query that satisfy the query conditions. Therefore, it

falls back to computing the final result by iterating through records

which is essentially similar to the naive re-evaluation strategy in

Figure 2a (Lines 16-20). Hence, the asymptotic time complexity

remains at the same level as naive re-evaluation, at 𝑂 (|𝑏𝑖𝑑𝑠 |2).

2.2.3 Using Aggregate Indexes to Fully Incrementalize To further

incrementalize this query, we can follow a similar intuition to the

previous example where we introduced the use of PAI Maps to

index the final aggregate sum using rhs_sum as a key. Assuming

such an index can be efficiently maintained, finding the final aggre-

gate can be done in linear time by iterating through rhs_sum keys

that are greater than lhs_sum and accumulating the corresponding

sum(price * volume) values. For that purpose, we can define a

getSum(key) method for hash maps that finds the sum of values

having keys less than or equal to a given key by simply iterating

over the keys. The compute() method in Figure 2c (lines 23-27)

shows how to use getSum to compute the final result.

Now the question is: can we efficiently maintain the aggrIndex
under updates? We cannot simply follow the same approach as

before to shift the aggregates as the predicate inside the correlated

nested subquery (i.e., b2.price <= b.price) is not an equality.

Specifically, insertion (or deletion) of a new record 𝑡 does not only

increment (or decrement) the rhs_sum of outer records having the

same price as t.price but also the ones with price > t.price.
This update cannot be done by simply iterating over the price values

since the aggrIndex does not store the corresponding price values.

For this, we can potentially use an additional index that maps price
to the corresponding rhs_sum value (similar to map1 in Figure 2b).

Alternatively, rather than relying on an additional index, we

can exploit a key characteristic of rhs_sum to do this mapping.

Specifically, the rhs_sum will grow monotonically in the order of

increasing price values since rhs_sum for a given t.price is the

sum of all volume value of records having a smaller or equal price

compared to t.price (based on the correlated predicate). Therefore,
when a new record arrives, we can first compute the corresponding

rhs_sum for that particular record (without considering the new

record) and then we know that every rhs_sum greater than or equal
to that value must be incremented by the new t.volume. For this,
we can define a method shiftkeys(key, offset) that will shift
all the keys greater than the given key by the given offset.

Figure 2c shows the final code for this approach.We first compute

the rhs_sum for the new record using the getSummethod (Line 10).

Then, we shift all the keys (i.e., aggregate values) that are greater

than or equal to rhs_sum using shiftKeys (Line 13). Since we

defined shiftKeys to shift the keys that are strictly greater than

a given key 𝑘 , we pass the immediate lesser key (i.e., rhs_sum -
volume) to shift all qualifying keys including rhs_sum (Lines 11-13).

Overall, the final code consists of a set of constant time hash

map lookups, and linear time getSum and shiftKeys method calls.

Hence, the total time complexity is 𝑂 (|𝑏𝑖𝑑𝑠 |) which is asymptoti-

cally faster than DBToaster and re-evaluation that took 𝑂 (|𝑏𝑖𝑑𝑠 |2).
In the next section, we design a new tree-based index structure

called Relative Partial Aggregate Indexes (RPAI) that can perform

getSum and shiftKeys operators in logarithmic running time,

bringing the overall time complexity down to 𝑂 (log |𝑏𝑖𝑑𝑠 |).

3 Relative Partial Aggregate Indexes (RPAI)
In Section 2.2, we saw how the use of PAI Maps that are indexed on

aggregate values can improve the incrementalization efficiency of

nested aggregate queries. Specifically, for queries with inequality

correlated predicates, we identified getSum and shiftKeys as two

main operations and showed that PAI Maps can support those

operations in linear time. In this section, we design a tree-based

data structure called the Relative Partial Aggregate Index (RPAI)

that can support both of these operations in logarithmic time. Our

data structure needs to be a map (i.e., maintains key-value pairs

with unique keys) and should support getSum and shiftKeys in

addition to the regular map operations (i.e., get and put).

3.1 Optimizing getSum
Although hash maps support the regular map operations in con-

stant time, getSum and shiftKeys require iterating through all

the keys in the map. Alternatively, tree-based data structures are

known to be efficient for operations similar to getSum. For instance,
Segment Trees [8] and Binary Indexed Trees (Fenwick Trees) [10]

can perform range sum queries in logarithmic time which require

finding the sum of all elements between two given indices.

We follow a similar intuition and augment a typical TreeMap data

structure [30] to maintain the required information in the nodes of

<40, 2>
31

<20, 3>

12
<60, 8>

17

<10, 3>
3

<30, 6>
6

<50, 2>
2

<70, 7>
7

Rule 3

Rule 1

Rule 2

Figure 3: An example run of the getSum(50). The red lines
show the traversal path, and the values in green color con-
tributes to the final answer which is 12+2+2. Each node
shows <key, value> and the subtree sum.
the tree. Specifically, we create a Binary Search Tree (BST) indexed

by the keys of the map and in each node, store the sum of values

of its subtree in addition to storing respective value. Now, we can

perform getSum in logarithmic time (assuming the tree is balanced)

by recursively traversing the tree leveraging the BST property and

calling getSum recursively on the corresponding subtrees.

Figure 3 shows an example run of the algorithm where it finds

the sum of all values having keys less than or equal to 50 (i.e.,

getSum(50)). Having access to subtree sums avoids exhaustive it-

eration of nodes of subtrees that are known to have keys less than

or equal to the given key. For example, in Figure 3, the algorithm

avoids traversing the left subtree of the root node by directly ex-

tracting the corresponding subtree sum. This enables the algorithm

to perform the complete getSum operation in logarithmic time.

3.2 Optimizing shiftKeys
shiftKeys(key, offset) shifts all the keys > key by the given

offset (can be negative). Performing this operation on the tree-

based data structure is not as trivial as PAI Maps where we iterate

through the keys and update the qualifying keys. The complexity

comes from the need to ensure that the BST property is intact

whenever keys are updated. For cases where offset > 0, we can

simply update all qualifying keys since shiftkeys shifts all the

keys greater than key without the need for restructuring. That is,

the resultant tree (after updating) is guaranteed to satisfy the BST

property because (1) for the keys that get updated, they will be

shifted by the same value, and (2) for the remaining keys, the set of

keys that got incremented were originally greater than them. For

cases where offset < 0, special care is needed as the tree structure

may need to be changed after the update (discussed in Section 3.2.3).

Nonetheless, the overall asymptotic time complexity remains at

𝑂 (𝑛) since it still needs to update all the nodes with satisfying keys.

3.2.1 Parent-Relative Keys To improve the time complexity beyond

𝑂 (𝑛), we must design an approach that does not require visiting

each qualifying node to perform the update. For that, rather than

simply storing the respective key in the node, we can augment the

tree structure so that each node stores the key relative to its parent.

Specifically, in this setting, the actual key of a node will be the sum

of keys along the path from root to the current node. With such

a structure in place, changing the key of a node is equivalent to

updating the keys of the entire subtree rooted by that node (e.g.,

incrementing root key by 1 is equivalent to incrementing all keys

by 1). Note that this changes the semantics of the raw keys stored

in the node, therefore, we need to update the operations (i.e. get,
put, and getSum) to take this change into account. Specifically,

Algorithm 1: Shift Keys Operation (for d > 0)

Result: All the keys > 𝑘 increased by d

1 def shiftKeys(node , k, d):

2 if (k < node.key):

3 node.left = shiftKeys(node.left , k - node.key , d)

4 node.key += d

5 node.left.key -= d

6

7 node.minKey -= d

8 node.maxKey -= d

9 else:

10 node.right = shiftKeys(node.right , k-node.key , d)

11 node.minKey = node.left.minKey + node.key

12 node.maxKey = node.right.maxKey + node.key

13 return node

this is done by replacing the key in any recursive call with (key -
node.key) (similar to lines 3 and 10 in Algorithm 1).

3.2.2 shiftKeys for Positive Offsets Now that we have a way to

update the value of multiple nodes in constant time (ignoring traver-

sal time), we need to design an algorithm that performs shiftKeys
better than𝑂 (𝑛) time. Since negative values can trigger changes in

the tree structure which can be nontrivial to handle, we will first

look at the case where the given offset value is positive. Algorithm

1 shows the implementation for the shiftKeys operator for that
case (ignore minKey and maxKey related operations, we will get

back to them later). The algorithm relies on the basic BST property.

That is, if a node has a key greater than or equal to the given key,

then that node and all the keys on the right subtree need to be

incremented with the given offset (lines 2-5). However, unlike a

normal tree where we would traverse the entire subtree to update

the keys individually, we can simply update the key of the subtree

root (line 4). This update also indirectly shifts all the keys of the left

subtree which has already shifted the qualifying keys (because of

the function call in line 3). Therefore, it is important to make sure

that this is corrected by updating the key of the left node (line 5).

Figure 4 shows an example run of the Algorithm 1. Specifically, it

runs getSum(k=9, d=10) on the input tree where all keys strictly

greater than 9 is shifted by 10. This example demonstrates the

benefit of storing keys relative to their parent. For instance, notice

that all keys on the right subtree of the node with key=13 are shifted
without visiting any of the nodes individually. The overall time

complexity of this approach is 𝑂 (log𝑛) which is an improvement

over the complexity of the PAI Map data structure, 𝑂 (𝑛).

3.2.3 shiftKeys for Negative Offsets As discussed before, han-

dling the case where the offset is negative is tricky due to the

fact that the tree structure may have to change after shifting. For

example, if the right child of a node gets shifted by a large negative

value such that it is no longer greater than the parent, the resulting

tree will not hold the BST property.

We follow a similar intuition to Algorithm 1 to come up with

an algorithm for the negative offset case. Specifically, we traverse

down the tree and perform the key updates as before. However,

after every update, we explicitly check for the BST property and

fix the tree if it is violated. For that, in addition to the attributes

we have discussed above, we maintain two more attributes in each

node. Those are minKey and maxKey which represent the minimum

7
13

9 19

8 11 14 20

7
6

-4 6

-1 2 -5 1

7
6

-4 6

-1 2 -5 1

7
6

-4 6

-1 2 -5 1

7
6

-4 6

-1 12 -5 1

7
6

-4 6

-1 12 -5 1

7
16

-14 6

-1 12 -5 1

7
23

9 29

8 21 24 30

Figure 4: Example run of the Algorithm 1 which runs
shiftKeys(k=9, d=10) on the given graph. This increments
all the keys > 9 by 10. Two leftmost trees are not parent-
relative trees and just shown for clarity.

and the maximum keys present in the subtree rooted by the cor-

responding node. Note that these are based on the parent relative

keys (not the actual keys). Although we do not use these attributes

when performing shiftKeys with positive offset values, we need

to make sure that we correctly maintain them during updates to

the keys (Lines 7-8 and 12-13 in Algorithm 1).

Algorithm 2 shows the implementation for the shiftKeys with

a negative offset value. The code looks almost the same as the

positive offset case except for the included checks to ensure the

BST property is preserved (lines 8 and 12). The first case is when

the current node has a key greater than the given 𝑘 . In that case, the

current node and all the nodes in the right subtree will get updated

by the same offset value, hence, no violation arising from the right

side. However, the left subtree may contain one or more nodes

that are less than or equal to the given 𝑘 , meaning their original

keys remaining unchanged. Therefore, there is a possibility that

those unchanged nodes having a larger key compared to the subtree

root of which the key got decreased, violating the BST property. In

our algorithm, this is detected by checking the maxKey of the left
subtree and calling fixTree if the BST property is violated. The

same intuition applies to the second case.

Algorithm 2 lines 18-25 shows the pseudo-code for the fixTree
operator for fixing a subtree having a left subtree that violates the

BST property. First, the subtree branch causing the violation of

the BST property is removed from the original tree which results

in a proper BST. Then, we simply iterate through all the removed

nodes and re-insert them into the tree using the add operation. The
semantics of add guarantees that the newly inserted nodes will be

put into correct locations. The implementation for the right-side

case follows the same idea (omitted due to space limitations).

Figure 5 shows how this algorithm works for an example input.

We use actual keys in the figure instead of the parent-relative values

to improve clarity. In this example, we shift the largest key of the

tree by a large negative value so that the algorithm invokes fixTree
at each step of theway up. First, shiftKeyswill recursively traverse
the tree to identify the keys that need to be shifted. Then, it shifts

the key 5 and then returns back to key 19. Now, the right subtree

contains a smaller key (i.e., 5 < 9) and hence, violates the BST

property at that node. Therefore, fixTreeFromRight is invoked

where the right subtree (in this case just 5) is removed and then

re-inserted back to the tree. This continues to happen until the root

at which the resulting tree becomes correct.

Algorithm 2: Shift Keys Operation (for d < 0)

Result: All the keys > 𝑘 shifted by d

1 def shiftKeys(node , k, d):

2 if (k < node.key):

3 node.left = shiftKeys(node.left , k - node.key , d)

4 node.key += d

5 node.left.key -= d

6 node.minKey -= d

7 node.maxKey -= d

8 if (node.key <= node.left.maxKey + node.key):

9 return fixTreeFromLeft(node)

10 else:

11 shiftKeys(node.right , k - node.key , d)

12 if (node.key >= node.right.minKey + node.key):

13 return fixTreeFromRight(node)

14 node.minKey = node.left.minKey + node.key

15 node.maxKey = node.right.maxKey + node.key

16 return node

17

18 def fixTreeFromLeft(tree):

19 leftSubtree = tree.left

20 tree.left = None

21 tree.minKey = tree.key

22 tree.sum -= leftSubtree.sum

23 for (key , value) in leftSubtree:

24 tree.add(key , value)

25 return tree

In fact, this is the worst-case scenario for this algorithm. That

is, this example requires traversing to the leaf level of the tree and

performs fixTree at every level. To analyze the time complexity of

the algorithm, we consider a tree with 𝑛 nodes. Consider a similar

scenario as the above example. First, one node will be inserted into

a tree with two nodes. Then, three nodes will be inserted into a tree

with four nodes and so on. Therefore, we can derive the total time

complexity as follows
1
(assuming balanced trees):

1 × log 2 + (1 + 2) × log 4 + (1 + 2 + 2
2) × log 8 + . . .

= Σ
log𝑛

𝑖=1
(2𝑖 − 1) ∗ 𝑖 = 𝑂 (𝑛 log𝑛)

Therefore, the overall time complexity of shiftKeys comes to

𝑂 (𝑛 log𝑛) for the negative offset case. This is not ideal since our
PAI Map based approach can perform this operation in 𝑂 (𝑛) time.

3.2.4 Special Case for shiftKeys with Negative Offsets This worst-

case time complexity is applicable for the general shiftKeys oper-

ation with an arbitrary offset value. However, in our context, we

use this data structure to index aggregate values. For instance, in

Example 2.2, we index the rhs_sum which corresponds to the sum-

mation of volume values of the bids relation. Moreover, we rely

on shiftKeys when these aggregate values change as a result of

tuple insertion (positive offset) or deletion (negative offset). A key

realization is that, due to the monotonic nature of the aggregates,

deletion of a tuple can only make two aggregate values (i.e., keys in

the index) equal in the worst case. Therefore, we can simply extract

the corresponding value and then delete the duplicate node from

the right subtree. This can be done using the delete operation in

the normal BST data structures that takes𝑂 (log𝑛) time. Therefore,

although the worst-case time complexity of the general shiftKeys
is 𝑂 (𝑛 log𝑛), in the context of applying that to optimize nested

aggregate queries, it becomes 𝑂 (log𝑛).
1
Summation was solved using https://www.wolframalpha.com/

7
13

9 19

8 11 14 20

7
13

9 19

8 11 14 5

7
13

9 19

8 11 14
5

7
13

9 19

8 11 14
5

7
13

9 19

8 11
14
5

7
13

9 19

8 11 14
5

1 1 1 1

11

7

13
9 19

8 11 14
5

17
13

9 19

8 11 14

1

5

Figure 5: Example run of the Algorithm 2 for
shiftKeys(k=19, d=-15) which represents the worst-
case input. Actual keys are shown instead of parent-relative
values to improve clarity. Green node is the node that gets
its key shifted. Red nodes are places where fixTree is called
for BST property violation. In such cases, nodes in the blue
background are removed and re-inserted to the subtree in
the green background.
3.2.5 Balanced Trees Whenever tree-based data structures are used

in practice, it is vital to make the trees balanced to achieve good

runtime performance (e.g., TreeMap implementation in Java uses

Red-Black Trees [13]). Similarly, we implement a Left-Leaning Red-

Black Tree [35] structure and make the necessary changes to the

relevant operations (e.g., rotations) to make sure our added at-

tributes (e.g., minKey, maxKey, sum) are maintained properly.

In summary, in this section, we have designed a new tree-based in-

dex structured called Relative Partial Aggregate Index (RPAI) trees

that supports all the required operations get, put, add, getSum,
and shiftKeys in logarithmic time. We note that we used binary

trees in our discussion and implementation, but the same principles

would apply to B-trees [3] as well.

4 Incrementalizing Algorithm and
Implementation

In the previous section, we have introduced PAI Maps and RPAI

Trees and demonstrated how building such index structures on

aggregates can improve the performance of correlated nested ag-

gregate queries. In this section, we generalize our approach and

present algorithms for incrementalizing different types of aggregate

queries with correlated nested subqueries in their join predicates.

4.1 Supported Queries
We specifically target aggregate queries that contain correlated or

uncorrelated aggregate subqueries in their join predicates. We con-

struct a formal grammar (shown below) to represent such queries

in a concise manner instead of relying on the general relational

algebra which might make the representation more verbose.

𝐴𝑔𝑔𝑟𝑄 → 𝐴𝑔𝑔𝑟 [𝑐𝑜𝑙𝑠] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)
𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐 → 𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐 𝒐𝒑 𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐

𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐 → (𝑆𝑈𝑀 |𝐶𝑂𝑈𝑁𝑇 |𝐴𝑉𝐸𝑅𝐴𝐺𝐸 |𝑀𝐼𝑁 |𝑀𝐴𝑋) 𝑓 (𝑐𝑜𝑙𝑠)
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 → 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 | 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 → 𝑄 | 𝑅

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 → 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 | 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝐴𝑁𝐷 |𝑂𝑅) 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒
𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 → 𝑉𝑎𝑙𝑢𝑒 𝜽 𝑉𝑎𝑙𝑢𝑒 𝜽 → > | >= | < | <= | =

𝑉𝑎𝑙𝑢𝑒 → 𝑉𝑎𝑙𝑢𝑒 𝒐𝒑 𝑉𝑎𝑙𝑢𝑒 𝒐𝒑 → +| − | × |÷
𝑉𝑎𝑙𝑢𝑒 → 𝐶𝑜𝑛𝑠𝑡 | 𝐶𝑜𝑙 | 𝐴𝑔𝑔𝑟 [] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠)

Any given query mainly contains four parts. First, there is a

top-level aggregate function that corresponds to the final aggre-

gate value that needs to be computed. This can be any arbitrary

function that uses aggregates of any computations on columns

(e.g., SUM(r.A) + COUNT(r.B)). Second, there is a set of relations
(base tables or other subqueries) that are joined in the query. Third,

there is a set of predicates (that are connected by AND or OR). Each
predicate can contain nested aggregate queries, constant values, or

columns from one of the join relations. Finally, the query specifies a

set of group-by columns for which the final aggregate values need

to be grouped. Shown below is the query in Example 2.2.

𝑞1 = 𝐴𝑔𝑔 [] (𝑆𝑈𝑀 (𝑏.𝑝𝑟𝑖𝑐𝑒 × 𝑏.𝑣𝑜𝑙𝑢𝑚𝑒), (𝑏𝑖𝑑𝑠 𝑏), 𝑞2 < 𝑞3)
𝑞2 = 𝐴𝑔𝑔 [] (𝑆𝑈𝑀 (𝑏1.𝑣𝑜𝑙𝑢𝑚𝑒), (𝑏𝑖𝑑𝑠 𝑏1), ∅)
𝑞3 = 𝐴𝑔𝑔 [] (𝑆𝑈𝑀 (𝑏2.𝑣𝑜𝑙𝑢𝑚𝑒), (𝑏𝑖𝑑𝑠 𝑏2), 𝑏2.𝑝𝑟𝑖𝑐𝑒 ≤ 𝑏.𝑝𝑟𝑖𝑐𝑒)

We also define a utility function 𝑓 𝑟𝑒𝑒 that finds all the columns

that are referred within 𝑞 and that are not from relations used inside

the query (𝑓 𝑟𝑒𝑒𝑟 represents the subset corresponding to relation

𝑟). That is, in the case of correlated subqueries, this will be the set

of correlated columns. Similarly, we define 𝑏𝑜𝑢𝑛𝑑 to retrieve the

rest of the columns used in predicates. For example, in the query

above 𝑓 𝑟𝑒𝑒𝑏𝑖𝑑𝑠 (𝑞1) = ∅, 𝑓 𝑟𝑒𝑒𝑏𝑖𝑑𝑠 (𝑞3) = {𝑝𝑟𝑖𝑐𝑒}, 𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑑𝑠 (𝑞1) =
∅, and 𝑏𝑜𝑢𝑛𝑑𝑏𝑖𝑑𝑠 (𝑞3) = {𝑝𝑟𝑖𝑐𝑒}. Then, we define another utility
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑃𝑟𝑒𝑑𝑉𝑎𝑙𝑠 function that extracts the predicate values, given

a query. For example 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑃𝑟𝑒𝑑𝑉𝑎𝑙𝑠 (𝑞1) = {𝑞2, 𝑞3}.
We only focus on aggregate queries that may contain nested

aggregate queries in their join predicates since these are the type

of queries other systems fail to handle efficiently (as discussed in

Section 1). For cases where such queries occur as subqueries of

other larger queries, our approach can be used incrementalize the

respective portion whereas the rest of the query can be handled by

already existing approaches (e.g., DBToaster).

4.2 General Incrementalization Algorithm
We first look at a general incrementalization algorithm that works

for arbitrary queries and has better asymptotic runtime properties

compared to existing approaches. In the subsequent sections, we

will look at several specific commonly occurring query patterns

where we further optimize using PAI Maps and RPAI Trees. We

will use the query in Example 2.2 to illustrate each step.

4.2.1 Execution Model We follow a similar approach to DBToaster

for the query execution model. Specifically, given a query and a

set of base relations (i.e., data stream sources), we first identify

a set of maps that needs to be maintained to compute the final

result incrementally. Then, we construct update triggers for each

relation that would maintain those maps upon new tuple arrivals

(or deletions). Whenever a new tuple arrives, the corresponding

trigger will be called and the final result is computed after updating

the indexes (similar to Figure 1c and 2c).

4.2.2 Initializing the required maps Although we follow a similar

execution model to that of DBToaster, we do not rely on delta

rules (that does not work for nested aggregates) to construct the

required maps. Instead, we come up with a new algorithm to find

the required indexes for queries with nested aggregates.

Our algorithm works on a simple intuition. For an aggregate

query with correlated subquery predicates, whenever a new tuple

arrives, two things happen. First, if the base relation corresponding

to the new tuple is used in the outer query, then, there will be a

new tuple for the outer relation. Hence, the predicates must be eval-

uated for this new tuple and if it satisfies the predicates, it should

be considered in the final result. For instance, for VWAP (Example

2.2) an insertion to bids will result in a new tuple for the outer bids
b relation for which the predicates must be evaluated. Second, the

addition of this new tuple affects the nested aggregate predicate

values of other outer tuples, hence, affecting their predicate evalua-

tions. For example, in VWAP, insertion to bids will result in change

of aggregate value of the left-side (because of new tuple in b1) and
the right-side (because of new tuple in b2). Therefore, now for each

tuple in the outer relation b, both sides of the predicate may have

been changed, hence, need to be reevaluated to construct the result.

For any predicate value that is a constant or an uncorrelated

nested aggregate, the value will be fixed for all the tuples, hence, can

be computed independently. For example, the left side of the VWAP

query will be a fixed value for all the outer tuples. Moreover, in the

case where the value simply refers to a computation of columns

from the outer tables, tuples from the outer relation would not

have an impact on the other tuples. However, in the other case,

where the nested aggregate query is correlated to the outer query,

the addition of new tuples could change predicate evaluations of

other outer tuples as well. We need to maintain index structures

to efficiently keep track of these changes and compute the result

without recomputing from scratch. Specifically, for each of the

correlated nested aggregate predicates, we create two separate maps

thatmap to the nested aggregate value from free and bound columns

separately. Moreover, we construct a set of indexes that maps from

the union of bound and free variables (off all predicate subqueries)

to the final result aggregate. In the subsequent subsections, we will

see how these maps are used to compute the final result. For any

nested aggregate predicate value that contains multi-level nesting,

we apply this approach recursively and initialize the relevant maps.

Consider the VWAP query. The left side in the predicate is not

a correlated query, therefore the aggregate value can be indepen-

dently maintained (e.g., in variable lhs_sum). For the right side

aggregate subquery, both free and bound variables are the same

{𝑝𝑟𝑖𝑐𝑒}. Therefore, we need to create two maps mapping price to

the aggregate sum (e.g., freeMapRhs: price → rhs_sum and

boundMapRhs: price → rhs_sum). Finally, we need a map that

maps 𝑓 𝑟𝑒𝑒∪𝑏𝑜𝑢𝑛𝑑 to the final aggregate value (e.g., resMap: price
→ resSum). These are shown in Figure 6, lines 1-4. We will walk

through the rest of the code and observe how these maps are main-

tained and used in the next subsection.

4.2.3 Creating Update Triggers Once the required maps are con-

structed, we need to generate triggers for each base relation that

maintain these maps under updates. Algorithm 3 shows how such

a trigger is created for relation 𝑅𝑖 . First, we iterate through free and

bound column values of all relations except 𝑅𝑖 . This is done because

the predicate values (hence, the respective indexes) of all those rela-

tions only depend on the respective free and bound column values.

Then, there are mainly three maps that need to be updated.

First, the addition of a new tuple changes the bound maps of

any predicate that has columns from 𝑅𝑖 as bound variables. Lines

8-11 show how this update is performed. Specifically, we iterate

through all the predicate values that use columns from 𝑅𝑖 and check

whether it is a correlated subquery. Note that this and other similar

Algorithm 3: Creating the update triggers

1 def trigger_Ri(t):

2 for vR1 in freeAndBoundIters[R1]:

3 for vR2 in freeAndBoundIters[R2]:

4 # skip Ri

5

6 for vRn in freeAndBoundIters[Rn]:

7 values = {vR1 , vR2 , .., vRn}

8 for Vi in extractPredValues(Q, Ri):

9 if (isCorrelatedAggr(Vi)):

10 # update the bound maps

11 predBoundMaps[Vi][Ri].add(t,

12 Vi.aggrSum(values , t))

13 # update affected aggr values

14 for key in predFreeMaps[Vi][Ri].get(values):

15 if Vi.evaluatePredicate(values , t, key):

16 predFreeMaps[Vi][Ri].add(values + key ,

17 Vi.aggrSum(values , t, key))

18 # find the aggr value for the newTuple

19 if not predFreeMaps[Vi][Ri]. exists(values + t):

20 aggr = 0.0

21 for key in predBoundMaps[Vi][Ri].get(values):

22 if Vi.evaluatePredicate(values , key , t):

23 aggr += Vi.aggrSum(values , key , t)

24 predFreeMaps[Vi][Ri]. update(values + t, aggr)

25 # update the result maps

26 for reqRes in resMaps[Ri]:

27 resMaps[Ri][reqRes].add(values + t,

28 compute(reqRes , t))

checks have to be done only once (i.e., during trigger generation)

as at runtime, the constructed triggers are specialized for a given

query. Then, we retrieve the corresponding map and update the

relevant entry. Here, we directly pass t as a key to add and omit the

code for extracting the correct key (i.e., values of bound columns in

this case). For VWAP (Figure 6), boundMapRhs is updated in line 9.

Second, we need to update the aggregate values (in free maps)

that are affected by the addition of the new tuple to the inner

relations (shown in lines 14-17). We iterate through the keys in

the corresponding free map and evaluate the predicate for the new

tuple. If it satisfies the predicate, the aggregate value is affected,

hence, the map is updated. Here, we pass key and t for the values of
free and bound columns respectively as we are updating the change

caused by the addition of the new tuple to the inner relation (i.e.,

bound). For VWAP, this is done in lines 11-13 in Figure 6.

Next, we need to compute the aggregate value for the new tuple

in the outer relation. This can be computed by iterating through the

keys in the corresponding bound maps and evaluating the predicate

and accumulating the aggregate value (lines 19-24). Here, we should

pass key and t for the values of bound and free columns respectively

(i.e., opposite to the above case) because now we are computing the

aggregate value for the new tuple in outer relation (i.e., free in the

context of subquery). Figure 6 lines 15-20 shows this for VWAP.

Finally, we need to update all the result maps corresponding to

the relation 𝑅𝑖 . This can be done by simply iterating through all the

result maps of 𝑅𝑖 and updating the maps with the corresponding

value (Lines 28-30). Here, values + t refers to appending t to

values. For the VWAP query, this is done in line 22 in Figure 6.

4.2.4 Computing the final result After updating all the maps, the

next step is to compute the final result using the updated maps. For

this, we iterate through all the free and bound column values for

1 lhs_sum = 0 # maintains lhs_sum

2 freeMapRhs = Map() # price -> rhs_sum

3 boundMapRhs = Map() # price -> Sum(volume)

4 resMap = Map() # price -> Sum(price * vol)

5 def on_new_bids(t):

6 # update lhs_sum

7 lhs_sum = 0.75 * t.X * t.volume

8 # update bound maps

9 boundMapsRhs.add(t, t.X*t.volume)

10 # update affected aggr values

11 for price in freeMapRhs:

12 if t.price <= price:

13 freeMapRhs.add(price , t.X*t.volume)

14 # find the aggr value for the new tuple

15 if not t.price in freeMapRhs:

16 aggr = 0.0

17 for price in boundMapRhs:

18 if price <= t.price:

19 aggr += boundMapRhs.get(price)

20 freeMapRhs.update(t.price , aggr)

21 # update resMap

22 resMap.add(t.price , t.X*t.price*t.volume)

23 # compute the result

24 res = 0.0

25 for price in resMap:

26 if lhs_sum < freeMapRhs.get(price):

27 res += resMaps.get(price)

28 return res

Figure 6: Code generated for incrementally computing the
VWAP query (Example 2.2) using the General Incremental-
ization Algorithm (Section 4.2)
all the relations and evaluate the query predicate. When evaluating

the nested aggregate values, we can directly use the free maps that

we have created before to get the corresponding aggregate value

without doing any more computations. Then for keys that satisfy

all the query predicates, the corresponding results maps are queried

to get the aggregate sum. Figure 6, lines 26-30 shows how the final

result is computed for the VWAP query. The overall time complexity

of this approach is𝑂 (𝑛𝑘) where 𝑛 is the cardinality of relations and

𝑘 is the number of relations in the query. In comparison, DBToaster

can take up to 𝑂 (𝑛𝑘 × 𝑛𝑘) for processing queries of this structure.

4.2.5 Limitations The algorithms discussed above assumes the ag-

gregates functions are streamable [16]. That is, the aggregate values
can be updated by having information about the current aggregate

and the new value (e.g., SUM, COUNT, AVERAGE, etc.). For other types
of aggregates (e.g., MIN/MAX), our approach of storing the aggre-

gate would only work for insertion-only updates. For deletions,

we cannot recover the updated aggregate value for such aggregate

types since it is impossible to recover the new value with just the

previous aggregate value. One way to handle this is to keep a binary

search tree of the data instead of storing just the aggregate value.

Now, for tuple deletions, we can simply remove the corresponding

value from the tree and retrieve the next maximum or minimum

value in logarithmic time (assuming balanced trees). However, it

is not clear how this can be generalizable beyond MIN/MAX to any

arbitrary non-streamable monoid.

4.3 Partial Aggregate Index Optimization
The general algorithm above can improve incrementalization effi-

ciency for a wide class of aggregate queries that contain correlated

nested aggregates as predicates. In this section, we look at how we

Algorithm 4: Creating the update triggers

1 def trigger_Ri(t):

2 tAggrVal = QRi.aggrVal(t)

3 if predicateType(QRi) == "=":

4 newAggr = boundMaps[Ri].get(t) + tAggrVal

5 affectedAggr = freeMaps[Ri].get(t)

6 # shift point aggregates

7 for reqSum in requiredSums(Q, Ri):

8 valToMove = resMaps[Ri].get(t)

9 aggrMaps[Ri].add(affectedAggr , -valToMove)

10 aggrMaps[Ri].add(affectedAggr+tAggrVal , valToMove)

11 aggrMaps[Ri].add(newAggrSum , reqSum(t))

12 resMaps[Ri].add(t, reqSum(t))

13

14 elif predicateType(QRi) == "<=":

15 newAggr = boundMaps[Ri]. getSum(t)

16 affectedAggr = freeMaps[Ri]. getSum(QRi.boundComp(t))

17 # shift all aggr >= affectedAggr

18 for reqSum in requiredSums(Q, Ri):

19 aggrMaps[reqSum]. shiftKeysInclusive(

20 affectedAggr , reqSum(t))

21 aggrMaps[reqSum]. update(newAggr , reqSum(t))

22 elif predicateType(QRi) == "<":

23 ...

24 ...

25 # update the rest of the maps

26 freeMaps[Ri].add(t, tAggrVal)

27 boundMaps[Ri].add(t, tAggrVal)

can further optimize certain classes of nested aggregate queries

that appear commonly in practice (e.g., computing useful metrics

in algorithmic trading [22]) using PAI Maps and RPAI Trees intro-

duced in Section 3. As discussed in Section 2, a key idea to improve

the incrementalization efficiency of nested aggregate queries is to

build indexes that are indexed by aggregate values. Then, whenever

a new tuple arrives, shift a single or a range of aggregate values (i.e.,

keys in these trees) that are affected and then use these updated

indexes to compute the final result.

We do note that this approach only works for queries having a

certain structure compared to the general algorithm which works

for any general query. The main requirement for this approach

to work efficiently is that the addition of a new tuple should only

affect a single aggregate value or a single range of aggregate values

per aggregate index. Whenever a range of aggregates needs to be

shifted, we can use the shiftKeys method introduced in Section 3.

For a query that is operated on a single base table (or subquery) 𝑅1,

it should have the following structure to use aggregate indexes to

improve the incrementalization.

𝐴𝑔𝑔𝑟𝑄 [𝑐𝑜𝑙𝑠] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅1, 𝑣1 𝜃 𝑞1)

Here, the 𝐴𝑔𝑔𝑟𝑄 should be a streamable aggregate function, 𝑣1
is either a 𝑐𝑜𝑛𝑠𝑡 or an 𝐴𝑔𝑔𝑟𝑄 with 𝑓 𝑟𝑒𝑒 (𝑣1) = ∅ (hence, can be

independently maintained), and 𝑞1 is an𝐴𝑔𝑔𝑟𝑄 . Note that 𝑣1 and 𝑞1
can be on opposite sides as well. A key characteristic of this query is

that, for all the tuples from the outer relation, 𝑣1 will have the same

value (because not correlated). Therefore, if there is an aggregate

index that maps the aggregate values of 𝑞1 to the aggregate values

required for the final query results, we can directly compute the

query result. For example, if 𝜃 was ‘=’, then we get the value of

𝑣1 and query the aggregate index with the value of 𝑣1 to get the

result. For other cases, we can use getSum method to find the final

aggregate values that are within the range implied by the predicate.

To maintain this aggregate index, the addition of a new tuple

should change either a single aggregate value or a range of ag-

gregates. This happens if either 𝑞1 contains multiple conjunctive

equality predicates (results in a single point update) or 𝑞1 contains

a single inequality predicate (results in an update of range of aggre-

gates). For example, in the VWAP query (Example 2.2), predicate in

the nested query is the inequality b2.price <= b.price, meaning

that whenever a new tuple arrives for b2, all the aggregates values
that have a price greater than the price of new tuple must be

updated (by the same amount).

Shown below is the structure of queries with multiple relations

that supports the aggregate index optimization.

𝐴𝑔𝑔𝑟𝑄 [𝑐𝑜𝑙𝑠] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅1, . . . 𝑅𝑛, 𝑣1 𝜃 𝑞𝑅1
. . . 𝐴𝑁𝐷 𝑣𝑛 𝜃 𝑞𝑅𝑛)

Here, 𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐 and 𝑣1, . . . 𝑣𝑛 has the same properties as before,

and for 𝑞𝑅𝑖 , it should be correlated only on columns from 𝑅𝑖 (i.e.,

𝑓 𝑟𝑒𝑒 (𝑞𝑅𝑖) ⊆ 𝑅𝑖 .𝑐𝑜𝑙𝑢𝑚𝑛𝑠). Similar to the general algorithm, we cre-

ate free and boundmaps for each of the correlated nested subqueries.

Moreover, we create aggregate indexes that maps aggregate values

(i.e., 𝑞𝑅𝑖 values) to the required result sums.

Algorithm 4 shows how the trigger is generated for relation 𝑅𝑖 .

The code generated for each relation depends on the type of sub-

query predicates. The pseudocode only shows the case for equality

and ≤ case, and rest of the cases follow a similar strategy. The crux

of the algorithm is identifying the single aggregate value or range

of aggregates that need to be shifted and performing the update.

4.3.1 Overhead of Identification For our approach to be applied

to a general incremental query processing setting, it is imperative

to be able to recognize the queries that our optimizations can be

applied. Given a query (or part of another query), we can first check

whether the query computes an aggregate. Then, we can make use

of the helper functions 𝑓 𝑟𝑒𝑒 and 𝑏𝑜𝑢𝑛𝑑 to determine if our query

fits the structure for applying the aggregate index optimization.

Therefore, identification can be done as part of the query optimizer

(e.g., pattern matching on the query tree) and would have a similar

overhead. Once the eligible queries have been selected, there is a

cost associated with creating the required maps and generating

the triggers. Similar overheads exist for other systems that follow

a similar execution model. For example, identifying the different

predicates and their value types (e.g., Line 9-10 in Algorithm 3) is

done in trigger generation time and would not have an impact on

the runtime performance. Overall these initializations take a time

linear to the size of the query (i.e., no exponential blowup).

4.3.2 Limitations This approach only works for the queries that

are in the structure mentioned above, and cannot apply generally

for other types of aggregate queries. Moreover, since this optimiza-

tion relies on indexing maps with aggregate values and shifting

aggregate ranges, this only works with aggregates like SUM, COUNT,
and AVERAGE and cannot be used for MIN/MAX.

4.4 Prototype Implementation
We implement a prototype of our approach in a high-level program-

ming language, Scala. Scala’s features such as first-class functions,

case classes, and pattern matching make the implementation and

management of the different types of trigger functions relatively

convenient. Moreover, using existing techniques like Multi-Stage

Programming (MSP) [32, 33, 36], we can eradicate the overhead

Query Optimizations DBToaster RPAI (Ours)

GA Aggr

MST, VWAP, NQ1 ✓ ✓ 𝑂 (𝑛2) 𝑂 (log𝑛)
PSP ✓ ✓ 𝑂 (𝑛) 𝑂 (log𝑛)
SQ1, SQ2 ✓ ✗ 𝑂 (𝑛2) 𝑂 (𝑛)
NQ2 ✓ ✗ 𝑂 (𝑛3) 𝑂 (𝑛 log𝑛)
TPC-H Q17 ✓ ✓ 𝑂 (𝑛) 𝑂 (log𝑛)
TPC-H Q18 ✓ ✗ 𝑂 (1) 𝑂 (1)

Table 1: Queries used for evaluation with their correspond-
ing optimizations and asymptotic time complexity. GA - gen-
eral algorithm, Aggr - aggregate index optimzation

of using such high-level features by generating specialized native

code. This approach generally achieves orders of magnitude per-

formance improvements [9, 31, 37]. However, this performance

optimization is beyond the scope of this paper, and hence, we only

use the techniques presented in this paper with the corresponding

Scala implementation for experiments in Section 5.

Our implementation is done in the context of an in-memory

incremental processing setting where we assume there is sufficient

memory to hold the indexes and any other data required. We rely on

the JVM for memory management. If this memory usage becomes a

bottleneck, we can use techniques like MSP to compile our program

into a specialized low-level code where we can rely on the operating

system (i.e., paging) or custom memory management mechanisms.

Moreover, the ideas presented in this paper are not limited to the

context of processing data streams but are generally applicable to

any other incremental processing use cases (e.g., IVM in DBMS,

approximate query processing [46], etc.).

5 Experimental Evaluation
In the previous sections, we have demonstrated how to use RPAI

Trees and PAI Maps to achieve better asymptotic time complexities

for queries with correlated nested aggregates. In this section, we

run several benchmarks and measure the actual execution time

for workloads of practical importance to ensure that the expected

performance characteristics are indeed realized in practice.

5.1 Benchmark Environment
5.1.1 Data and Query Workload There is no single established

benchmark for evaluating the performance of correlated nested ag-

gregate queries specifically. Therefore, we use two existing datasets

with the addition of synthetic queries for our evaluation. The first

workload consists of running algorithmic trading related queries

on a stream of order book data (used in prior related work [24, 25]).

There are two types of order book entries; bids and asks each having
timestamp, broker_id, price and volume as their attributes. We eval-

uate the performance for MST, PSP, and VWAP queries from the

original benchmark and added SQ1, SQ2, NQ1, and NQ2 synthetic

queries to evaluate different types of correlated nested aggregate

queries. The second workload is using selected queries from the

TPC-H benchmark adapted to an incremental processing setting

(similar to [24, 29]). We specifically focus on Q17 and Q18, which

contain nested aggregates.

Q17 Q17* Q18 MST PSP VWAP SQ1 SQ2 NQ1 NQ2

100

101

102

103

R
el

at
iv

e
S

p
ee

du
p

RPAI (relative to DBToaster)

Time (ms) Q17 Q17* Q18 MST PSP VWAP SQ1 SQ2 NQ1 NQ2

DBToaster 42864 1097090 42410 168520 88 888 3967 1265 2957 202544

RPAI(Ours) 33066 35041 46417 70 32 34 379 140 129 610

Figure 7: Relative execution time for queries compared to
DBToaster. All queries except TPC-H Q18 have better per-
formance.

5.1.2 System Environment We run all our experiments on a NUMA

machine with 4 sockets, 24 Intel(R) Xeon(R) Platinum 8168 cores

per socket, and 750GB RAM per socket (3 TB total) running Ubuntu

18.04.4 LTS. We use DBToaster 2.3 and use the generated Scala code

in our experiments. Our implementation uses Scala 2.10.4. All the

experiments are single-threaded and run on a single-core. We use

default JVM configurations for most cases except for TPC-H queries

where we increase the max heap size to per-socket memory.

5.2 Evaluating Incrementalizing Performance
5.2.1 Query Properties Table 1 summarizes the specific optimiza-

tions we perform on each query and the time complexity difference

between our approach and DBToaster. MST and PSP are operating

on both asks and bids and perform a cross join with inequality

predicates. MST has four nested aggregates of which two are cor-

related. As DBToaster does not incrementalize correlated nested

aggregates, it needs to iterate through records from both relations

to compute those correlated subqueries. We incrementalize those

queries using RPAIMaps. Therefore, whenever a new record arrives,

we can compute the corresponding aggregate value and shift all

the affected aggregate values in logarithmic time (as demonstrated

in Section 4). PSP is similar to MST but contains join predicates

on a column (volume) instead of a correlated nested aggregate. We

follow a similar approach to incrementalize PSP in logarithmic time.

We saw VWAP in Example 2.2. It contains two nested aggregates;

one correlated with the outer query. SQ1 and SQ2 are modified ver-

sions of the VWAP query. SQ1 makes the uncorrelated subquery

into a correlated one by adding a predicate inside the nested sub-

query. With this modification, both sides of the predicate become

variable for a given outer record. Hence, the final result compu-

tation can no longer be done in logarithmic time using getSum
operator and has to rely on the general algorithm (hence, 𝑂 (𝑛))).
SQ2 changes the right-side inner predicate of VWAP to contain

asymmetric computations in the two sides of the inequality.

NQ1 and NQ2 are also modified versions of VWAP that replace

the nested aggregate with another multi-nested aggregate query.

Specifically, NQ1 replaces the nested aggregate in VWAP with an-

other correlated nested aggregate query like VWAP (i.e., containing

2-level nesting). NQ2 is similar but the replaced query also has a

correlation to the outer query (i.e., the lowest level is correlated to

the outermost query). NQ1 is handled by computing the delta of

the new subquery independent of the outer query. Once we com-

pute the delta, the rest of the computation is the same as VWAP

100 1k 10k 100k

Stream Trace Size

10−3

10−2

10−1

100

101

102

R
u

n
n

in
g

T
im

e
(s

)

RPAI (Ours)

DBToaster

Recomputation

(a) MST

100 1k 10k 100k

Stream Trace Size

10−3

10−2

10−1

100

101

102

R
u

n
n

in
g

T
im

e
(s

)

RPAI (Ours)

DBToaster

Recomputation

(b) SQ1

100 1k 10k 100k

Stream Trace Size

10−3

10−2

10−1

100

101

102

R
u

n
n

in
g

T
im

e
(s

)

RPAI (Ours)

DBToaster

Recomputation

(c) NQ2

0.1 0.5 1 2 5

Scale Factor

101

102

103

R
u

n
n

in
g

T
im

e
(s

)

RPAI* (Ours)

RPAI (Ours)

DBToaster*

DBToaster

(d) Q17 (*for skewed dataset)

Figure 8: Analyzing the scalability of our algorithm for different queries. (d) contains results for both the uniform (default)
and the non-uniform (augmented) versions of the TPC-H datasets.

100

200

300

400

500

600

M
em

or
y

(M
B

)

Recompute RPAI (ours) DBToaster

102

104

106

108

R
at

e
(r

ec
or

d
s/

s)

0 2000 4000 6000 8000 10000

Records Processed

10−2
10−1

100
101
102
103

T
im

e
(s

)

(a) MST

100

200

300

400

500

600

M
em

or
y

(M
B

)

Recompute RPAI (ours) DBToaster

102

104

106

108

R
at

e
(r

ec
or

d
s/

s)

0 2000 4000 6000 8000

Records Processed

10−2
10−1

100
101
102
103

T
im

e
(s

)

(b) VWAP

100

200

300

400

500

600

M
em

or
y

(M
B

)

Recompute RPAI (ours) DBToaster

102

104

106

108

R
at

e
(r

ec
or

d
s/

s)

0 2000 4000 6000 8000

Records Processed

10−2
10−1

100
101
102
103

T
im

e
(s

)
(c) NQ2

Figure 9: Thememory footprint (top), rate of processing records (middle), and time (bottom) as incoming records get processed
for three different queries. Rate and Time are in log-scale. Sudden drops of memory usage (with a corresponding decline in
rate) are a result of garbage collection. Our implementation has better overall performance compared to the other two cases.

incrementalization. For NQ2, we have to rely on the general algo-

rithm for the outermost query. DBToaster uses three nested loops

whereas we incrementalize this query in 𝑂 (𝑛 log𝑛) time.

TPC-H Q17 and Q18 contain a single correlated and uncorre-

lated nested-aggregate respectively. We can improve the efficiency

of Q17 over DBToaster by using our approach. However, since

Q18 is uncorrelated, both our implementation and DBToaster fully-

incrementalize the query, leaving the time complexity at the same

level. We added Q18 to demonstrate that our approach still achieves

competitive performance for other types of aggregate queries.

5.2.2 Performance Analysis Figure 7 shows the relative execution

time for all queries. In this experiment, we run all the queries on

a trace of stream of the same size (10k records for finance queries,

Scale Factor 1 for Q17 and Q18). We observe that most queries

show a significant speedup (up to more than 1100 ×) which is in

line with the expected performance gains due to lower asymptotic

time complexity. Our implementation has a similar performance

to DBToaster for Q17 and Q18. This can be partly attributed to the

efficiency of specialized internal data structures (e.g., specialized

hash-maps) generated by DBToaster. Although it explains the per-

formance of Q18, it still cannot explain why DBToaster scales at a

similar rate to our implementation for different sizes of datasets for

Q17, despite having a higher time complexity (Figure 8d). Consider

Q17:

SELECT SUM(l.extendedprice) / 7.0 AS avg_yearly

FROM lineitem l, part p

WHERE p.partkey = l.partkey AND p.brand = 'Brand#23'

AND p.container = 'WRAP BOX '

AND l.quantity < (

SELECT 0.2 * AVG(l2.quantity) FROM lineitem l2

WHERE l2.partkey = p.partkey)

Our implementation incrementalizes this by maintaining an RPAI

Tree (quantity → avg_yearly) and the aggregate value of the

nested aggregate query for each distinct partkey. Whenever, a

new lineitem arrives, we update the corresponding index and the

aggregate value, and compute the change to avg_yearly using

getSum(rhs_sum).
In the case of DBToaster, whenever a new lineitem arrives,

first it updates the nested-aggregate sum (similar to us) and it loops

over all the lineitems that have the same partkey and evaluate

the predicate and updates the avg_yeary change. However, rather

than iterating over all the line items with the same part key, they

are only iterating over line items with unique quantity values.

This is done by a multi-level index that maintains partial sums for

each unique quantity per unique partkey for lineitem records
(i.e., partkey → quantity → avg_yearly). This works well for

datasets like TPC-H where the data is uniformly distributed. There-

fore, although the worst-case time complexity is O(n), due to the

uniformity of the data, the updates can be performed in a very

small fraction of the total records. We note that the amount of

computation is still lower in our implementation compared to this

optimized strategy as our TreeMap also maintains unique quantity
values. To validate our hypothesis, we analyzed the behavior of

DBToaster against a skewed dataset. We augmented the TPC-H

data generation framework to generate skewed data. As expected,

the performance gap grows from 1.3× to more than 30× (Q17* in

Figure 7). Therefore, although this is an extremely useful optimiza-

tion for performing simple nested aggregates on uniform datasets,

it does not work well in other scenarios. Moreover, it only works

for nested subqueries correlated on equalities.

Figure 8 analyses the scalability of our approach over the stream

trace size. The workload for the first three queries (i.e, MST, SQ1,

and NQ2) is selected from different sizes of stream traces from the

original finance dataset [24]. For the last figure, we use the TPC-H

dataset of scale factors 0.1, 0.5, 1, 2, 5 (100MB, 500MB, 1GB, 2GB,

and 5GB respectively), both the uniform and the skewed version.

In some cases, for smaller datasets (up to 1k in finance, SF=1 in

TPC-H), our approach performs competitively or worse than both

recomputation and DBToaster. This can be attributed to the fact

that our approach initializes more index structures and for smaller

workloads, maintenance of these indexes can outweigh the per-

formance benefits. However, as the workload size increases, our

approach performs significantly better and scales well (as expected

due to better asymptotic time complexity).

Figure 9 shows how the runtime performance characteristics

change as the stream of data gets processed. Specifically, we ana-

lyze how the memory usage, rate of processing records, and time

varies over the number of records processed. The rate of processing

records generally drops over time as more data is manipulated in

indexes and iteration spaces become larger. We can see our imple-

mentation consistently has a better rate compared to DBToaster due

to being able to perform the updates efficiently. We can also observe

that for some cases the memory usage contains spikes at regular

intervals. These correspond to garbage collection (GC) triggered

by the Java Virtual Machine (JVM). This is also evident from the

fact that there is a decline in the rate of processing records at the

same point in time. The memory usage just after a GC run is closer

to the starting memory in many cases, indicating that the working

set size does not grow notably over time. For all the queries, we

can see that these GC cycles happen more frequently in DBToaster

compared to our implementation, implying better allocation rates.

We note that these behaviors may only be applicable for languages

like Scala where there is a managed runtime and may see different

behavior for runtimes with explicit memory management.

6 Related Work
Traditional Incremental View Maintenance (IVM) [5, 6, 12, 14, 15]

approaches deal with maintaining materialized views on updates

to underlying base tables. Generally, these approaches do not focus

on performing real-time analytics on fast data streams, and hence,

are not optimized for low latency. DBToaster [22, 24, 29] applies

the idea of IVM in a recursive manner [23] to maintain a view

using a hierarchy of materialized views. Some prior works present

algorithms and data structures for incrementalization of specific

types of queries. DYN [16] and IDYN [17, 18] are two approaches

that focus on acyclic Conjunctive Queries (CQ) with equality and

inequality join predicates respectively and AJU [42] focuses on

acyclic foreign-key joins. None of these approaches efficiently in-

crementalize queries with correlated nested aggregate sub-queries

when correlation removal [11] is not possible.

Incremental query processing algorithms are used in many other

use cases including approximate query processing [46], progressive

data warehouses [43, 44] and intermittent query processing [39].

Some works investigate how to balance the resource consumption

for view maintenance and latency [7, 39–41, 47] and improve over-

all performance in multi-query settings by sharing computations

across concurrent queries [20, 21, 26, 41]. However, many of the

incrementalization algorithms presented in these works either do

not efficiently incrementalize complex queries such as correlated

nested aggregates or are restrictive due to their application-specific

requirements (e.g., produces approximate results, does not support

tuple deletions, etc.). Therefore, such algorithms are not directly

applicable to cases where perfectly accurate results are needed to

be produced as a stream. Since the algorithms presented in this

paper are relatively general, we believe our approach can be applied

in these settings to improve their performance.

Stream processing systems [1, 2, 4, 45] process data streams

and incrementally maintain the query outputs. These systems are

mainly designed for queries with window semantics. Naiad (Timely

Dataflow [TD]) [28], Differential Dataflow (DD) (build on top of

TD) [27] are two frameworks that allow scalable incremental com-

putation. Materialize [19] is an IVM engine built on top of both

TD and DD. We believe that the algorithms and the data structures

presented in this paper can be implemented in those systems for

efficient incrementalization of nested aggregates.

TreeMap is a data structure found in the standard libraries of

many programming languages [30, 34], and of course, tree indexes

are standard in any RDBMS [3]. Fenwick Trees [10] and Segment

Trees [8] are two tree-based data structures that support operations

similar to getSum in logarithmic time. However, none of them have

support for efficiently shifting key ranges. To our knowledge, the

data structure we proposed for RPAI Trees is the first to support

both getSum and key shifts (shiftKey) in logarithmic time.

7 Conclusions
We have introduced a novel algorithm and indexing structures

called PAI Maps and RPAI Trees for efficiently incrementalizing

complex nested-aggregate queries with correlations. We have pre-

sented a new data structure to realize these index structures effi-

ciently and demonstrated the performance gains in both asymptotic

time complexity and actual execution time.We believe the ideas pre-

sented in this paper can be applied to other incremental execution

settings to improve the performance of these types of queries.

8 Acknowledgments
We would like to thank our anonymous reviewers for their valuable

feedback. This work was supported in part by NSF awards 1553471,

1564207, 1918483, 1910216, DOE award DE-SC0018050, as well as

gifts from Facebook, Google, Microsoft, and VMware.

References
[1] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.

MillWheel: Fault-Tolerant Stream Processing at Internet Scale. Proc. VLDB Endow.
6, 11 (2013), 1033–1044.

[2] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,

Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. 2016.

STREAM: The Stanford Data Stream Management System. In Data Stream
Management. Springer, 317–336.

[3] Rudolf Bayer and Edward M. McCreight. 1970. Organization and Maintenance of

Large Ordered Indexes. In SIGFIDET Workshop. ACM, 107–141.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a

Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.
[5] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.

1995. Optimizing Queries with Materialized Views. In ICDE. IEEE Computer

Society, 190–200.

[6] Rada Chirkova and Jun Yang. 2012. Materialized Views. Found. Trends Databases
4, 4 (2012), 295–405.

[7] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and

Howard Trickey. 1996. Algorithms for Deferred View Maintenance. In SIGMOD
Conference. ACM Press, 469–480. https://doi.org/10.1145/233269.233364

[8] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.

2008. Computational geometry: algorithms and applications, 3rd Edition. Springer.
231–236 pages.

[9] Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J. Brown, Kunle

Olukotun, and Tiark Rompf. 2018. Flare: Optimizing Apache Spark with Native

Compilation for Scale-Up Architectures and Medium-Size Data. In OSDI. USENIX
Association, 799–815.

[10] Peter M. Fenwick. 1994. A New Data Structure for Cumulative Frequency Tables.

Softw. Pract. Exp. 24, 3 (1994), 327–336.
[11] César A. Galindo-Legaria and Milind Joshi. 2001. Orthogonal Optimization of

Subqueries and Aggregation. In SIGMOD Conference. ACM, 571–581.

[12] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views

with Duplicates. In SIGMOD Conference. ACM Press, 328–339.

[13] Leonidas J. Guibas and Robert Sedgewick. 1978. A Dichromatic Framework for

Balanced Trees. In FOCS. IEEE Computer Society, 8–21.

[14] Ashish Gupta and Inderpal Singh Mumick. 1995. Maintenance of Materialized

Views: Problems, Techniques, and Applications. IEEE Data Eng. Bull. 18, 2 (1995),
3–18.

[15] Ashish Gupta, Inderpal SinghMumick, and V. S. Subrahmanian. 1993. Maintaining

Views Incrementally. In SIGMOD Conference. ACM Press, 157–166.

[16] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. 2017. The Dynamic

Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.

In SIGMOD Conference. ACM, 1259–1274.

[17] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2018. Conjunctive Queries with Inequalities Under Updates. Proc.
VLDB Endow. 11, 7 (2018), 733–745.

[18] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2019. Efficient Query Processing for Dynamically Changing

Datasets. SIGMOD Rec. 48, 1 (2019), 33–40.
[19] Materialize Inc. 2021. Materialize: Event Streaming Database for Real-Time Appli-

cations. Retrieved June 22, 2021 from https://materialize.com/

[20] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: Ad-hoc Stream

Joins at Scale. Proc. VLDB Endow. 13, 4 (2019), 435–448.
[21] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AStream: Ad-hoc Shared

Stream Processing. In SIGMOD Conference. ACM, 607–622.

[22] Oliver Kennedy, Yanif Ahmad, and Christoph Koch. 2011. DBToaster: Agile Views

for a Dynamic Data Management System. In CIDR. www.cidrdb.org, 284–295.

[23] Christoph Koch. 2010. Incremental query evaluation in a ring of databases. In

PODS. ACM, 87–98.

[24] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,

Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta processing

for dynamic, frequently fresh views. VLDB J. 23, 2 (2014), 253–278.

[25] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,

Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta processing

for dynamic, frequently fresh views. VLDB J. 23, 2 (2014), 253–278.
[26] FrankMcSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy Roscoe. 2020.

Shared Arrangements: practical inter-query sharing for streaming dataflows. Proc.
VLDB Endow. 13, 10 (2020), 1793–1806.

[27] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow. In CIDR. www.cidrdb.org.

[28] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul

Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system. In SOSP. ACM,

439–455.

[29] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to Win a

Hot Dog Eating Contest: Distributed Incremental View Maintenance with Batch

Updates. In SIGMOD Conference. ACM, 511–526.

[30] Oracle. 2021. TreeMap (Java Platform SE 8). Retrieved June 22, 2021 from

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

[31] Tiark Rompf and Nada Amin. 2019. A SQL to C compiler in 500 lines of code. J.
Funct. Program. 29 (2019), e9.

[32] Tiark Rompf andMartin Odersky. 2010. Lightweightmodular staging: a pragmatic

approach to runtime code generation and compiled DSLs. In GPCE. ACM, 127–

136.

[33] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic,

HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky.

2013. Optimizing data structures in high-level programs: new directions for

extensible compilers based on staging. In POPL. ACM, 497–510.

[34] Scala. 2021. TreeMap (Scala Standard Library). Retrieved June 22, 2021 from https:

//www.scala-lang.org/api/current/scala/collection/mutable/TreeMap.html

[35] Robert Sedgewick. 2008. Left-Leaning Red-Black Trees. https://www.cs.princeton.

edu/~rs/talks/LLRB/RedBlack.pdf

[36] Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with

explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000), 211–242.
[37] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect

a Query Compiler, Revisited. In SIGMOD Conference. ACM, 307–322.

[38] Kian-Lee Tan, Cheng Hian Goh, and Beng Chin Ooi. 2000. Progressive evaluation

of nested aggregate queries. VLDB J. 9, 3 (2000), 261–278.
[39] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J.

Franklin. 2019. Intermittent Query Processing. Proc. VLDB Endow. 12, 11 (2019),
1427–1441. https://doi.org/10.14778/3342263.3342278

[40] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J.

Franklin. 2020. Thrifty Query Execution via Incrementability. In SIGMOD Con-
ference. ACM, 1241–1256. https://doi.org/10.1145/3318464.3389756

[41] Dixin Tang, Zechao Shang, William W. Ma, Aaron J. Elmore, and Sanjay Kr-

ishnan. 2021. Resource-efficient Shared Query Execution via Exploiting Time

Slackness. In SIGMOD Conference. ACM, 1797–1810. https://doi.org/10.1145/

3448016.3457282

[42] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under

Updates. In SIGMOD Conference. ACM, 1225–1239.

[43] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji

Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan, Chen Li, and Jingren Zhou.

2020. Grosbeak: A Data Warehouse Supporting Resource-Aware Incremental

Computing. In SIGMOD Conference. ACM, 2797–2800. https://doi.org/10.1145/

3318464.3384708

[44] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji

Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan, Chen Li, and Jingren Zhou.

2020. Tempura: A General Cost-Based Optimizer Framework for Incremental

Data Processing. Proc. VLDB Endow. 14, 1 (2020), 14–27. https://doi.org/10.14778/

3421424.3421427

[45] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at

scale. In SOSP. ACM, 423–438.

[46] Kai Zeng, Sameer Agarwal, and Ion Stoica. 2016. iOLAP: Managing Uncertainty

for Efficient Incremental OLAP. In SIGMOD Conference. ACM, 1347–1361.

[47] Jingren Zhou, Per-Åke Larson, and Hicham G. Elmongui. 2007. Lazy Maintenance

of Materialized Views. In VLDB. ACM, 231–242. https://doi.org/doi/10.5555/

1325851.1325881

https://doi.org/10.1145/233269.233364
https://materialize.com/
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://www.scala-lang.org/api/current/scala/collection/mutable/TreeMap.html
https://www.scala-lang.org/api/current/scala/collection/mutable/TreeMap.html
https://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf
https://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf
https://doi.org/10.14778/3342263.3342278
https://doi.org/10.1145/3318464.3389756
https://doi.org/10.1145/3448016.3457282
https://doi.org/10.1145/3448016.3457282
https://doi.org/10.1145/3318464.3384708
https://doi.org/10.1145/3318464.3384708
https://doi.org/10.14778/3421424.3421427
https://doi.org/10.14778/3421424.3421427
https://doi.org/doi/10.5555/1325851.1325881
https://doi.org/doi/10.5555/1325851.1325881

	Abstract
	1 Introduction
	2 Incrementalization of Nested Aggregates
	2.1 Nested Aggregate with Equality
	2.2 Nested Aggregate with Inequalities

	3 Relative Partial Aggregate Indexes (RPAI)
	3.1 Optimizing getSum
	3.2 Optimizing shiftKeys

	4 Incrementalizing Algorithm and Implementation
	4.1 Supported Queries
	4.2 General Incrementalization Algorithm
	4.3 Partial Aggregate Index Optimization
	4.4 Prototype Implementation

	5 Experimental Evaluation
	5.1 Benchmark Environment
	5.2 Evaluating Incrementalizing Performance

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

