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Abstract. We present Rhyme, a declarative multi-paradigm query lan-
guage designed for querying and transforming nested structures such as
JSON, tensors, and beyond. Rhyme is designed to be multi-paradigm
from ground-up allowing it to seamlessly accommodate typical data pro-
cessing operations–ranging from aggregations and group-bys to joins–
while also having the versatility to express diverse computations like
tensor expressions (à la einops) and declaratively express visualizations
(e.g., visualizing query outputs with tables, charts, and so on). Rhyme
generates optimized JavaScript code for queries by constructing an in-
termediate representation that implicitly captures the program structure
via dependencies. This paper presents a system description of Rhyme
implementation while highlighting key design decisions and various use
cases covered by Rhyme.

1 Introduction

This paper introduces the design of Rhyme, a new declarative multi-paradigm
query language tailored for querying and transforming nested structures, encom-
passing formats such as JSON, tensors, and more. Rhyme draws inspiration from
an array of existing approaches, including query languages such as GraphQL [18],
JQ [3], XQuery [4], logic programming languages like Datalog [10], and recent
functional logic programming languages like Verse [12]. Rhyme is implemented
in JavaScript and currently available as an open source Node.js package1. Below
are the main defining characteristics of Rhyme:

– Data-centric query language: Focused explicitly on extracting informa-
tion and transforming data, not general-purpose programming.

– Multi-paradigm: Still, flexible enough to support a wide range of typi-
cal data processing operations (e.g., SQL/DataFrames), tensor expressions,
visualization, etc., in a single language.

– Functional: Not based on relations as the core abstraction but on functions,
including representing data as materialized functions (i.e., objects mapping
keys to values).

1 Available at https://rhyme-lang.github.io/
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Fig. 1: The end-to-end workflow of Rhyme. Rhyme provides multiple APIs for
different types of workloads that targets the common Rhyme AST which serves
as an entry point. The AST gets transformed to an IR that implicitly captures
program structure (i.e., no loops or branches). Optimized JavaScript code is then
generated from this IR.

– Logic: Using logic variables and unification to express joins, aggregations,
and other forms of iteration.

– Metaprogramming: Relying on an expressive host language to compose
query fragments and run queries (using functional/Object-Oriented APIs,
as well as quasiquotation syntax).

Rhyme is designed to be multi-paradigm from the ground up, seamlessly ac-
commodating standard data processing operations like aggregations, group-bys,
joins, and others, along with paradigms beyond conventional data-processing op-
erations. These include the expression of various types of computations, such as
tensor operations (akin to einops [24]), and the ability to declaratively express
visualizations (e.g., a table summarizing query outputs).

This facilitates the expression of diverse workloads; for example, a complex
data processing pipeline mixing tasks such as group-based aggregations inter-
twined with tensor computations (e.g., incorporating a pre-trained model), fol-
lowed by the creation of visualizations, such as dashboards—all achieved through
a unified query language. This bears significance on two fronts. Firstly, in terms
of programmer productivity, end-users can leverage a single, unified query lan-
guage to express the entirety of their workload logic, eliminating the need for
multiple domain-specific languages. Secondly, concerning performance, the uni-
fied system seamlessly manages all workload paradigms, mitigating the perfor-
mance overhead typically incurred at system boundaries when employing various
domain-specific systems—a pressing problem in practical scenarios [9, 23].

Figure 1 illustrates the end-to-end workflow of Rhyme. Queries can be ex-
pressed through different frontend APIs (as detailed in Section 2), where all
these APIs target a common AST representation, serving as the entry point to
the system. Subsequently, this AST representation serves as the basis for de-
riving an intermediate representation (IR) that encapsulates the query logic. A
key characteristic of this IR is that it does not explicitly capture the program
structure corresponding to the query. Instead, the program structure is implic-
itly captured through dependencies, making it easier to perform optimizations
(as detailed in Section 3). Then, the IR is transformed into optimized JavaScript
code, incorporating various optimizations
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Operation Query Result

Sample Dataset [ {key: A, value: 10}, {key: B, value: 20},
{key: B, value: 15}, {key: A, value: 30} ]

-

Simple Indexing
// directly indexing into a sequence of data
data.0.value
data.2.key

10
B

Creating structures
// creating structures from queries
// (can compose arbitrarily)
{ first : data.0.key }

{ first : 10}

Iterating (using *)
// iterating data and collecting into an array
[data.*.value]
// iterators are logic variables (named *A, *B, ...)
[data.*A.key]

[10,20,15,30]

[A,B,B,A]

Aggregations
// computing aggregates
sum(data.*.value)
// creating a new object from a query
{ total : sum(data.*.value) }

75

{ total: 75 }

Group-bys, Joins

// group-by: expressed by having *, *A, ... as key
// compute per-key sum of values
{ data.*.key : sum(data.*.value) }
// compute per-key relative sum
// sum(data.*A.value):
// nested within data.*A.key -> per-group sum
// sum(data.*B.value):
// not nested within another *B key -> total sum
{
data.*A.key :

sum(data.*A.value) / sum(data.*B.value)
}

{ A: 40, B: 35 }

{
A: 0.53,
B: 0.47

}

Table 1: Basic query operators of Rhyme JSON API. Full API documentation
is available at https://rhyme-lang.github.io/docs/frontends/json/.

The remainder of the paper is structured into sections that delve into each
component of Rhyme, as depicted in Figure 1. Section 2 outlines the various
frontends provided by Rhyme, catering to the expression of diverse workload
types. We offer several alternative APIs designed to express Rhyme queries,
each tailored for specific use cases. Moving forward, Section 3 delves into the
design of Rhyme AST, Rhyme IR, and the process of constructing the IR from
the AST, how an optimized program structure is derived from this loop-free,
branch-free representation and elucidate the generation of optimized JavaScript
code for a given query.

The foundational concepts of Rhyme were initially introduced in [8]. This
paper takes a more in-depth exploration to the design and implementation of
Rhyme frontend, providing comprehensive discussions on recent advancements
in some of the APIs, including surface syntax (e.g., quasiquotations, etc.), and
offering extensive insights into the graphics API.

2 Rhyme Front End
As illustrated in Figure 1, Rhyme offers users various frontends to express their
queries. In this section, we will explore each of these APIs, demonstrating their
utility across diverse use cases.
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2.1 JSON API

Given the thorough discussion of this API in previous work [8], we refrain from
offering an exhaustive discussion here. Nonetheless, we add a summary of key
components for the sake of completeness.

Table 1 provides a summary of the primary operators in the JSON API.
Most operators are self-explanatory and intuitive in nature. It is worth noting
that Rhyme also supports user-defined functions (UDFs), joins, and various typ-
ical data processing operations, other than the ones mentioned in the table.
One noteworthy aspect of Rhyme lies in its approach to expressing group-bys
and the contextual evaluation semantics of expressions like sum(data.*A.value).
Specifically, when nested within a { data.*A.key : ..., the sum(data.*A.value)
corresponds to a per-group sum; otherwise, it represents a total sum (note the
use of the same *A).

The following code snippet illustrates the utilization of the Rhyme JSON
API to query the DBLP REST API and compute various details about past
FLOPS conference publications. This snippet is a fully executable JavaScript
program, assuming the Rhyme library is appropriately set up and imported2.
let url =

"https://dblp.org/search/publ/api?q=stream:streams/conf/flops:&h=1000&format=json"

// fetch the data from the REST endpoint and query
fetch(url).then(p => p.json()).then(data => {
// Query1: produces all papers by year
let query1 = {
"data.result.hits.hit.*.info.year": ["data.result.hits.hit.*.info.title"]

}
let res = api.query(query1)
display(res({data}))
// result: {1998: [...FLOPS papers of 1998 ...], 1999: [ ... ], ...}

// Query2: compute number of papers per year
let query2 = {
"data.result.hits.hit.*.info.year": api.count("data.result.hits.hit.*.info.title")

}
res = api.query(query2)
display(res({data}))
// result: {1998: 16, 1999: 24, 2001: 25, ...}

// Query3: For all authors, list years they published
let query3 = {
// need to build union of single-author and
// multi-author papers
"data.result.hits.hit.*.info.authors.*A.*B.text": ["data.result.hits.hit.*.info.year"],
"data.result.hits.hit.*.info.authors.*A.text": ["data.result.hits.hit.*.info.year"],

}
res = api.query(query3)
display(res({data}))
// result: {"author A": [2022, 2012, 2010, ...], "author B": [2016, 2012, ...], ...}

})

As depicted in Figure 1, similar to the other APIs, the JSON API follows the
process of constructing the Rhyme AST, which is subsequently transformed into
Rhyme IR. Moreover, since all of these APIs are implemented in the same host

2 As detailed in https://github.com/rhyme-lang/rhyme?tab=readme-ov-file#
using-in-the-browserfrontend
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language, JavaScript, they can be seamlessly mixed and matched as the users
see fit. This IR is then further processed to generate optimized JavaScript code,
as detailed in Section 3.

2.2 Pipe API

The JSON API enables expressing queries in a format resembling the expected
output structure, akin to approaches like GraphQL. However, there are scenarios
where it is more intuitive to formulate computations as a sequence of transfor-
mation steps on the input(s). Rhyme offers the Pipe API to accommodate such
workloads.

Rhyme offers a textual API based on JavaScript’s template literals for this
purpose. Template literals enable string interpolation with embedded expressions
and allow the addition of custom desugaring logic. Rhyme utilizes the rh‘...‘
template to express queries through this API. To explain how this API functions,
let us take a simple example that computes the sum of values expressed using
the JSON API: api.sum("data.*.value"). This same query can be written using
our surface syntax in the following ways:
rh`sum(data.*.value)`
rh`sum data.*.value`
rh`data | sum(.*.value)`
rh`data | .* | sum(.value)`
rh`data | .* | .value | sum`

All of the above queries are equivalent and are parsed into the same AST
as the original query. This approach offers a more intuitive and straightforward
means of expressing the query as a series of transformation steps applied to the
inputs. Under the hood, each transformation step (i.e., operators appear sequen-
tially after pipes) gets desugared to operators with holes. For a call expression
like f(a) (e.g., sum(.value) above) or a|f (e.g., .value|sum above), we explicitly
desugar ‘f’ with the expectation that it is a function. This process is akin to
bidirectional typing [16], i.e., potentially transforming code to conform to an
expected type.

In this process, we examine whether any expressions contain holes—e.g.,
‘.value’ is incomplete, conceptually featuring a hole on the left, and is desug-
ared to □.value. Similarly, sum(.value) is parsed as sum(□.value). Moreover,
if any intermediate operations in the sequence do not contain holes, such as
when UDFs are applied as part of the transformation (e.g., splitPipe in the
example query later in this section), the expression is treated as a reference to
a function and is eta-expanded by inserting a hole on the right for application
(e.g., splitPipe(□)). In our implementation, we treat these terms with holes as
anonymous functions; for instance, sum(□.value) becomes x => sum(x.value).

There may be situations where a single operator involves multiple holes. In
such cases, we have a choice: whether to consider all of them as references to
the same argument (x => ...) or treat them as arguments to a multi-argument
function ((x, y)=> ...). Presently, Rhyme exclusively handles single-argument
functions (which is the situation with pipes like a | f), but it does support
currying, allowing for repeated applications (as in b | f(a)).
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Moreover, this surface language provides a way of using quasi-quotations via
${...}, for example to define and directly call user-defined functions. For instance,
consider a case where we want to compute the average using a UDF. The average
UDF can be expressed using sum and count.
let avg = x => rh`sum(${x}) / count(${x})`
// computing average of data.*.value (both queries compute the avg)
rh`${avg}(data.*.value)`
rh`data.*.value | ${avg}`

To demonstrate the effectiveness of this API, we take an example query from
a previous work [8], which is originally taken from Advent of Code 2022 [1]. The
input is a sequence of numbers separated by pipes into chunks where each chunk
contains multiple comma-separated numbers. The task is to compute the sum
of each chunk and find the maximum sum across all chunks.
let input = '100,200,300|400|500,600|700,800,900|1000' // sample input
// some UDFs for parsing the data
let udf = {
'splitPipe' : x => x.split('|'),
'splitComma': x => x.split(','),
'toNum' : x => Number(x)

}

As shown in [8], this query can be expressed using Rhyme’s JSON API, as
depicted on the left. Alternatively, the same query can be expressed in a nice,
intuitive manner using the pipe-based surface language, as illustrated on the
right.
// JSON API
let query = max(get({
'*chunk': sum(
apply('udf.toNum',
get(apply('udf.splitComma',
get(apply('udf.splitPipe', '.input'),

'*chunk')),
'*line')))

},'*'))

// Pipe API
// Produce output by applying a sequence of
// transformations to input
let query =
rh`.input | udf.splitChunk | .*chunk
| udf.splitComma | .*line | udf.toNum
| sum | group *chunk | .* | max`

While both queries generate the same AST and yield the same expected
result, the query on the right is better suited for these types of tasks. It offers
a cleaner and more intuitive approach to expressing the query as a sequence of
transformations on the input. This stands in contrast to the JSON API, which
requires the query to be written in a way that mirrors the output structure.

2.3 Visualization API

Many data processing workloads demand some form of visualization as the final
output. Traditionally, the implementation of these visualizations is separate from
the data processing logic. However, Rhyme allows users to integrate the logic
for visualization directly within the same language. Since Rhyme and all its
existing APIs are implemented in JavaScript, end users can effortlessly import
the corresponding JavaScript file into their browser/HTML and easily create
visualizations.

Rhyme introduces the "$display" keyword for specifying visualizations. One
type of visualization Rhyme supports is the declarative specification of SVG
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drawings. To create SVG drawings, users can employ "$display": "dom" and
"type": "svg:<svg_shape>", where <svg_shape> represents any available SVG
shape, such as ellipse, polyline, rect, polygon, etc. The properties associated
with each shape can be passed using the props key. For example, the query
below draws a rectangle, incorporating features like colors, rounded edges, and
additional attributes by passing the corresponding properties to props (visual-
ization is shown on the right).

{
"$display": "dom", type: "svg:rect",
props: {
x: 100, y: -50, width: 50, height: 50, rx: 10, ry: 10,
fill: "lightblue", stroke: "hotpink", "stroke-width": 5,
opacity: 0.7, transform: "rotate(45)"

}
}

It is important to highlight that this graphical drawing capability seamlessly
integrates with Rhyme’s other APIs. To illustrate its utility, let us consider a
scenario where we aim to visualize some sample data. While we currently use
synthetic data for illustration purposes, it is crucial to note that this data could
be sourced from another Rhyme query that processes and analyzes real-world
data. Shown below is some sample data.

let data = [{x:20,y:70},{x:40,y:30},{x:60,y:50},{x:80,y:60},{x:100,y:40}]

Suppose we aim to represent this data through three distinct types of charts:
line, bar, and points. Below, we show the queries for generating these three
drawings, accompanied by their respective outputs.

let line = {
"$display": "dom", type: "svg:polyline",
props: {
points: rh`${join}((data.*.x + ',' + data.*.y), ' ')`,
stroke: "black", fill:"none" }

}

let bars = {
"$display": "dom", type: "svg:rect",
props: {
width: "16px", height: rh`100 - data.*.y`,
x: rh`data.*.x - 8`, y: rh`data.*.y`,
stroke: "black", fill: "none" },

}

let points = {
"$display": "dom", type: "svg:ellipse",
props: {
rx: "3px", ry: "3px",
cx: "data.*.x", cy: "data.*.y",
stroke: "black", fill: "#EEE" },

}

Multiple SVG graphics can be overlapped by using "type": "svg:svg" and
providing the corresponding queries as an array to the "children" key. Shown
below is a query that draws a data-dependent graphic by overlapping multiple
"svg:elipse" drawings.
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let data = []
for (let j = 0; j < 360; j += 20) data.push(j)
let query = {
"$display": "dom", type: "svg:svg",
props: { width: "300px", height: "200px" },
children: [{
"$display": "dom", type: "svg:ellipse",
props: { rx: "40px", ry: "15px", cx: "200px", cy: "100px",
fill: rh`'hsl(' + data.* + ' 90% 50%)'`,
'fill-opacity': "70%",
transform: rh`'rotate(-' + data.* + ' 150 100)'` },

}]
}

Another "$display" option available for Rhyme is "select". This option
adds a set of buttons at the top to toggle between different sets of visualizations.
For instance, suppose we want to visualize the above three graphics in both
an overlapped and a side-by-side arrangement. This can be achieved using the
select option. The corresponding query is shown below. The images on the right
illustrate both scenarios, each activated by clicking the corresponding button.

{
"$display": "select",
data: {
"All in one": {
"$display": "dom", type: "svg:svg",
props: { width: "300px", height: "100px" },
children: [bars, line, points]

},
"Side by side": {
"$display": "dom", type: "div",
children: [{
"$display": "dom", type: "svg:svg",
props: { width: "120px", height: "100px" },
children: [points]

},{
"$display": "dom", type: "svg:svg",
props: { width: "120px", height: "100px" },
children: [line]

},{
"$display": "dom", type: "svg:svg",
props: { width: "120px", height: "100px" },
children: [bars]

}]
},

}
}

Rhyme offers additional display options beyond the ones discussed earlier.
Two particularly useful options are "table" and "bar", designed for creating
tables and bar charts from data, respectively. While the complete query is not
included here, the following (excerpt) visualization shows a table mixed with
bar charts. This visualization was generated by computing summary statistics
from a sample warehouse dataset using a Rhyme query and specifying all the
visualization-related logic entirely within Rhyme.
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3 Rhyme Backend

This section explores the end-to-end process of transforming queries into opti-
mized JavaScript code. This translation happens in three steps. As we saw in
Figure 1, all the frontend API directly targets Rhyme AST, which serves as the
entry point to the system. This AST representation is further transformed into
Rhyme IR, which implicitly captures the program structure. Finally, this Rhyme
IR is transformed into optimized JavaScript code. To enhance comprehension,
we will employ the following query as a running example throughout this section.
As we saw in Table 1 (second example query for group-by), this query computes
per-key relative sum for all the keys.
{
data.*A.key: sum(data.*A.value) / sum(data.*B.value)

}

3.1 AST

The Rhyme AST is represented using JSON objects and closely resembles the
JSON API. The keys corresponding to implicit group-by clauses (for example
{ data.*.key: ...}) remain unchanged in the AST representation. Other parts
corresponding to query operators are transformed into nested JSON objects.
For instance, reduction operators like sum, max, min, etc., are transformed into
objects containing the aggregate name and the parameters passed to the aggre-
gate. For example, sum(data..value) will be transformed into { agg: 'sum',

param: 'data..value'}. Similarly, for other operators that are not reductions
(i.e., stateless ones), an object with the operator type (referred to as path) and
parameters is created. The AST representation for the running example query
is illustrated below.
{
"data.*.key": {
path: 'div',
param: [
{agg: 'sum', param: 'data.*A.val'},
{agg: 'sum', param: 'data.*B.val'}

]
}

}
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The translation from different frontends to the AST representation is rela-
tively straightforward and, therefore, not extensively discussed. For example, in
the JSON API, we define functions for each stateless and stateful operator, such
as sum, max, min, plus, and so on, to generate the corresponding AST fragment.
Below, we provide the logic for sum and plus:

api["sum"] = (e) => ({
agg: "sum",
param: e

})

api["get"] = (e1, e2) => ({
path: "get",
param: [e1, e2]

})

The same set of AST fragment building functions is utilized by the rest of
the frontends. For example, in the template literals-based frontend discussed in
Section 2.2, the corresponding operators are desugared by invoking the relevant
api functions.

3.2 Structure of the Rhyme IR

The Rhyme IR is comprised of two types of operators: generators and assign-
ments. As the name implies, generators are instructions responsible for iterating
values from data sources, such as an array of JSON objects. In contrast, assign-
ments correspond to instructions that execute computations and assign (par-
tial) results to intermediate state variables. This approach, employing multiple
intermediate state variables to compute the final result, draws inspiration from
previous work on generating triggers for incremental execution [7, 20].

In our ongoing example query, Rhyme generates three temporaries—tmp[0],
tmp[1], and tmp[2]—which correspond to the final result object, per-key aggre-
gate object, and total aggregate, respectively. The presence of *A and *B in the
query signifies two generators. The IR for this query is presented below, where
the assignment instructions on temporaries are self-explanatory.

tmp[2] += data[*B]["val"]

tmp[2]  ??= 0

tmp1[data[*A]["key"]] ??= 0

tmp1[data[*A]["key"]] += data[*]["key"]

tmp0[data[*A]["key"]]
+= tmp[1][data[a]["key"] / tmp[2]

tmp[1]  ??= {}

*B

*A

tmp[0]  ??= {}

A defining feature of the Rhyme IR lies in its avoidance of explicitly storing
the program structure (inspired by prior work [13,14]). Taking the ongoing query
as an example, the query indicates that the *B generator should be nested within
*A, forming a nested loop structure. However, rather than strictly enforcing this
structure within the IR, Rhyme stores dependencies that implicitly capture the
query’s structure.

Specifically, the use of a generator within an assignment instruction gives rise
to a generator-assignment dependency, while other assignment-assignment de-
pendencies typically represent data dependencies. As we delve into Section 3.3,
we will explore how this dependency-based representation facilitates certain op-
timizations, making tasks such as loop hoisting more straightforward.
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In the current Rhyme implementation, dependencies are tracked at the level
of temporaries, such as tmp[0], tmp[1], and so on. To achieve this, each as-
signment is assigned a write rank, ensuring a specific order during code gener-
ation. While this systematic approach guarantees a sequential order of writes,
it may introduce imprecise dependencies in certain scenarios, potentially result-
ing in suboptimal code. This is because automatically enforcing a serial order
for writes might not accurately capture their true dependencies. An alternative
approach involves treating each write rank more like a static-single assignment
(SSA)-style variable, allowing for a finer-grained tracking of dependencies. This
approach provides a more nuanced representation of dependencies, potentially
improving the precision of the generated code.

3.3 Code Generation

Following the construction of the IR, the next step involves generating the final
optimized JavaScript code for the query based on this IR. Given that our IR does
not store explicit program structure, reconstructing the program’s architecture
requires an analysis of dependencies. To accomplish this, we perform multiple
analysis passes over the IR.

The initial analysis focuses on determining the placement of intermediate
temporaries with respect to loops and other temporaries. Specifically, this pass
computes tmpInsideLoop and tmpAfterTmp, which track which temporaries should
be scheduled inside particular loops and which temporaries should be scheduled
after certain other temporaries, respectively. The following code excerpt illus-
trates this process, where e.writeSym denotes the left-hand side temporary of
assignments. On the right, a visual representation is provided for our exam-
ple query, showing the computed tmpInsideLoop (solid lines) and tmpAfterTmp

(dotted lines).
// compute tmpInsideLoop and tmpAfterTmp
for (let e of assignmentStms) {

for (let dep of e.deps) {
// depends on a loop, it should be inside the loop
if (isloop(dep)) tmpInsideLoop[e.writeSym][dep] = true
// depends on a tmp, expression should be after that
if (istmp(dep)) tmpAfterTmp[e.writeSym][dep] = true

} } tmp[0]

tmp[1]

tmp[2]

*

*A

In the above code, we iterate through all the assignment statements and
examine all their dependencies. If a statement depends on a loop, it means
the corresponding temporary variable must be scheduled inside the loop, thus
updating the tmpInsideLoop variable. Furthermore, if an assignment depends on
another temporary value, it means the corresponding temporary variable must
be scheduled after that, consequently updating the tmpAfterTmp variable.

The next step involves determining which temporaries should be scheduled
after a given loop has been fully scheduled. This analysis leverages the informa-
tion obtained from the earlier computations of tmpInsideLoop and tmpAfterTmp.
The outcomes of this analysis are then stored in the tmpAfterLoop. The following
is an excerpt from the corresponding analysis code in Rhyme.
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// compute tmpAfterLoop
for (let t2 in tmpAfterTmp) {

// gather loop 'prior' tmps are in
for (let t1 in tmpAfterTmp[t2]) {
for (let l in tmpInsideLoop[t1])
tmpAfterLoop[t2][l] = true

}
// remove own loops
for (let l in tmpInsideLoop[t2])
delete tmpAfterLoop[t2][l]

}

In essence, if our analysis indicates that a temporary variable t2 should
be scheduled after another temporary t1 (i.e., tmpAfterTmp[t2][t1]), and t1 is
known to be inside a loop l (provided that t2 itself is not part of loop l), it
implies that t2 should be scheduled after the completion of loop l. For example,
in our sample query tmp[0] is determined to be scheduled after *A.

The final step of the analysis involves figuring out the relationships between
loops. Our objective is twofold: first, to discern which loops should be sched-
uled strictly after others (captured in loopAfterLoop), and second, to iden-
tify which loops should be scheduled within the same loop nest (recorded in
loopInsideLoop). These essentially help identify how the loops should be sched-
uled. Specifically, if our previous analysis revealed that a given temporary vari-
able t should be scheduled within both loops l1 and l2, it implies that l1 and
l2 should form part of the same loop nest. Conversely, if we determine that for
a specific temporary variable t, it should be scheduled inside a loop l2, and we
also know that t should be scheduled after another loop l1, it implies that loop
l2 should be scheduled after l1—provided they are not part of the same loop
nest. The corresponding code illustrating these analyses is presented below.
// compute loopInsideLoop
for (let t in tmpInsideLoop) {

for (let l2 in tmpInsideLoop[t]) {
for (let l1 in tmpInsideLoop[t]) {

loopInsideLoop[l2][l1] = true
loopInsideLoop[l1] ??= {}
loopInsideLoop[l1][l2] = true

}
}

}

// compute loopAfterLoop
for (let t in tmpAfterLoop) {

for (let l2 in tmpInsideLoop[t]) {
for (!loopInsideLoop[l2] ||

!loopInsideLoop[l2][l1]) {
if (!loopInsideLoop[l2][l1])

loopAfterLoop[l2][l1] = true
}

}
}

After completing the analysis steps, we move on to the code generation
process. The core driver of the code emitting logic is encapsulated within the
emitConvergence function. This function relies on two additional helper func-
tions: emitGenerators and emitAssignments. The former is responsible for emit-
ting loop structures, while the latter deals with the generation of assignment
instructions. These functions are invoked repeatedly until all generators and as-
signments are fully emitted. We present an excerpt from emitGenerators below:
function emitGenerators() {

let (available, remaining) = getAvailable(generators) // identify current scope loops
generators = remaining // remaining generators that are not available yet
for (let g of available) {

emitLoopHeader(g)
emitConvergence() // emit loop body (nested generators and assignments)
emitLoopFooter()

}
}
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Here, generators is a global variable that keeps track of the remaining gen-
erators that is yet to be scheduled. The emitGenerators function is responsible
for orchestrating the generation of loops corresponding to these generators. It
commences by identifying generators that become available in the current scope,
leveraging information such as loopAfterLoop, tmpAfterTmp, and others we saw
before. The getAvailable function checks the dependencies of pending genera-
tors and picks the ones where all dependencies are satisfied. Consequently, this
function schedules loops that are available at the present scope and invokes
emitConvergence recursively to schedule any inner loops and assignments that
must be scheduled inside these loops. emitAssignments function follows a similar
structure to that of the emitGenerators. It schedules assignment instructions as
soon as they become available in the current context.

As program control structures were not enforced from the front end, our
code scheduling mechanism freely moves assignments and generators during the
code generation phase. For example, generators without dependencies on the
‘other query’ are hoisted and scheduled as separate queries. This approach pre-
vents redundant computations within nested loops, enhancing efficiency. For
instance, for our example query, the computation of the total aggregate (i.e.
sum(data.*B.value)) is hoisted out of the *A loop into a completely independent
loop, preventing the recomputation of the aggregate for each different key.

4 Related Work

This section provides a summary of the closely related works to Rhyme, as
presented in [8].

Various efforts have aimed to address the challenge of efficiently handling
multi-paradigm workloads by constructing common IR, as seen in prior work like
Weld [23], Delite [25], and Flern [9]. In this landscape, Rhyme takes a different
approach by introducing a query language—as opposed to a common low-level
IR—that possesses the capability to express diverse multi-paradigm workloads
at a higher level.

Numerous query languages have been crafted for working with semi-structured
data like JSON, each exhibiting its unique focus and strengths. Notable among
them is JSONiq [5, 17], a query language explicitly tailored for JSON data and
borrowing syntax from XQuery [4], featuring constructs such as FLWOR expres-
sions. Engines like Zorba [6] and RumbleDB [21] support JSONiq, with Rum-
bleDB utilizing Spark [26] as a backend to leverage its scalability for execution. In
the realm of semi-structured data, AsterixDB adopts AQL [2] and SQL++ [22]
as its query languages.

Rhyme draws inspiration from functional logic programming languages such
as Verse [12], Curry [19], miniKanren [15], and Scalogno [11], adapting these
ideas into a novel data-centric declarative language.
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5 Conclusion

This system description paper outlined the design and implementation of Rhyme,
a data-centric and multi-paradigm declarative query language rooted in func-
tional logic and metaprogramming. Rhyme offers diverse front-end APIs tai-
lored to various workloads, extending beyond conventional data processing to
encompass applications like tensor expressions (not discussed in this paper but
elaborated in [8]) and expressive visualizations. The system achieves performance
efficiency by constructing a loop-free and branch-free IR, facilitating optimiza-
tion before transforming it into optimized JavaScript code for the given query.
Currently, Rhyme is accessible as an open-source Node.js package, adaptable
for integration into other Node.js projects or as a script importable into HTML
pages.
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