
Flan: An Expressive and Efficient Datalog Compiler for
Program Analysis

SUPUN ABEYSINGHE, ANXHELO XHEBRAJ, and TIARK ROMPF, Purdue University, USA

Datalog has gained prominence in program analysis due to its expressiveness and ease of use. Its generic
fixpoint resolution algorithm over relational domains simplifies the expression of many complex analyses.
The performance and scalability issues of early Datalog approaches have been addressed by tools such as
Soufflé through specialized code generation. Still, while pure Datalog is expressive enough to support a wide
range of analyses, there is a growing need for extensions to accommodate increasingly complex analyses.
This has led to the development of various extensions, such as Flix, Datafun, and Formulog, which enhance
Datalog with features like arbitrary lattices and SMT constraints.

Most of these extensions recognize the need for full interoperability between Datalog and a full-fledged
programming language, a functionality that high-performance systems like Soufflé lack. Specifically, in most
cases, they construct languages from scratch with first-class Datalog support, allowing greater flexibility.
However, this flexibility often comes at the cost of performance due to the conflicting requirements of
prioritizingmodularity and abstraction over efficiency. Consequently, achieving both flexibility and compilation
to highly-performant specialized code poses a significant challenge.

In this work, we reconcile the competing demands of expressiveness and performance with Flan, a Datalog
compiler fully embedded in Scala that leverages multi-stage programming to generate specialized code for
enhanced performance. Our approach combines the flexibility of Flix with Soufflé’s performance, offering
seamless integration with the host language that enables the addition of powerful extensions while generating
specialized code for the entire computation. Flan’s simple operator interface allows the addition of an extensive
set of features, including arbitrary aggregates, user-defined functions, and lattices, with multiple execution
strategies such as binary and multi-way joins, supported by different indexing structures like specialized trees
and hash tables, with minimal effort. We evaluate our system on a variety of benchmarks and compare it to
established Datalog engines. Our results demonstrate competitive performance and speedups in the range of
1.4× to 12.5× compared to state-of-the-art systems for workloads of practical importance.

CCS Concepts: • Theory of computation→ Program analysis; Constraint and logic programming; Logic
and databases; • Software and its engineering → Automated static analysis; Compilers.

Additional Key Words and Phrases: Datalog, Logic Programming, Generative Programming, Program Analysis

ACM Reference Format:
Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf. 2024. Flan: An Expressive and Efficient Datalog
Compiler for Program Analysis. Proc. ACM Program. Lang. 8, POPL, Article 86 (January 2024), 33 pages.
https://doi.org/10.1145/3632928

1 INTRODUCTION
Datalog has experienced a resurgence in popularity due to its high expressivity and ease of use
in various applications. Its simple and intuitive declarative nature makes it readily applicable
in a range of domains, including business analytics [Aref et al. 2015], graph analysis [Aberger

Authors’ address: Supun Abeysinghe, tabeysin@purdue.edu; Anxhelo Xhebraj, axhebraj@purdue.edu; Tiark Rompf, tiark@
purdue.edu, Department of Computer Science, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART86
https://doi.org/10.1145/3632928

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0001-6054-2432
HTTPS://ORCID.ORG/0009-0008-6670-6408
HTTPS://ORCID.ORG/0000-0002-2068-3238
https://doi.org/10.1145/3632928
https://orcid.org/0000-0001-6054-2432
https://orcid.org/0009-0008-6670-6408
https://orcid.org/0000-0002-2068-3238
https://doi.org/10.1145/3632928

86:2 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

et al. 2017; Seo et al. 2015; Shkapsky et al. 2016], declarative networking [Loo et al. 2006], binary
dissambly [Flores-Montoya and Schulte 2020], and declarative program analysis [Allen et al. 2015;
Bravenboer and Smaragdakis 2009; Reps 1994; Scholz et al. 2016; Ullman 1989; Whaley et al. 2005].
In particular, in the field of declarative program analysis, Datalog has proven to be a valuable
tool for implementing intricate analyses that would otherwise necessitate thousands of lines of
imperative code. Specifically, numerous program analysis problems can be formulated as a form of
fixed-point computations, which is precisely what Datalog is designed to handle.

While declarative program analysis simplifies matters significantly, earlier approaches utilizing
Datalog were not as scalable and performant as their imperatively written counterparts. Datalog
compilers [Sahebolamri et al. 2022; Scholz et al. 2016; Tielen 2023; Zhang 2020] have been developed
to close this performance gap by generating specialized code for a given Datalog program. Among
such Datalog compilers, Soufflé [Scholz et al. 2016] stands out as one of the most comprehensive
systems with many person-years of engineering investment, having numerous features such as fast
parallel specialized data structures [Jordan et al. 2019a,b, 2022], automatic index selection [Subotic
et al. 2018], join order optimization [Arch et al. 2022], among others.

Although Soufflé generates specialized code for a specific Datalog program leveraging the idea
of Futamura projections [Futamura 1971] (resulting in impressive performance), their style of
code generation, as discussed in Section 2, sacrifices some potential for specialization and, hence,
performance. Moreover, Soufflé exists largely as a monolithic, closed system. It accepts Datalog
programs as input and produces specialized C++ code, which is then compiled into an independent
binary. However, as identified in previous research [Bembenek et al. 2020; Sahebolamri et al.
2022], many Datalog programs , especially in the context of program analysis, do not exist in
isolation, but rather as components of larger systems written in more comprehensive programming
languages. While Soufflé offers mechanisms to interface with the generated binary, it suffers
from the two language problem [Bezanson et al. 2014] where declarative analyses are written in a
custom Datalog dialect and further computations not supported by Soufflé must be written in other
languages with data stored in a common format. Moreover, this lack of interoperability with a host
language becomes a bottleneck when efforts are made to incorporate extensions like user-defined
lattices [Madsen et al. 2016; Sahebolamri et al. 2022], SMT constraints [Bembenek et al. 2020], etc.
At the opposite end of the spectrum, languages like Flix [Madsen et al. 2022] support first-

class Datalog constraints and seamless embedding of Datalog logic within a general-purpose host
language. This approach provides greater flexibility, allowing users to create modular Datalog
programs that can be composed in various ways depending on the specific task. Additionally, it
becomes feasible to enrich Datalog with features such as user-defined Lattices [Madsen et al. 2016],
since the end user can employ a full-fledged language to define these data structures and associated
operations. However, existing systems following this approach lack support for specialized code
generation (akin to Soufflé), resulting in significantly lower performance when compared.

In this work, we aim to bridge the gap in designing Datalog engines that are both flexible (akin to
Flix) and performant (akin to Soufflé). One might contend that this could be achieved by augmenting
the textual frontend of Soufflé-like systems with capabilities akin to those of Flix. However, such
an undertaking would be tantamount to constructing an entire programming language from the
ground up, complete with a comprehensive type system and more. Additionally, significant effort
would be necessary to expand the compiler backend in order to accommodate these new features,
owing to the intricacies inherent to the backend engine.

In this paper, we investigate if it is possible to architect a Datalog system with three key charac-
teristics: (1) generating fully specialized code, a critical factor for optimal performance; (2) creating
a flexible backend that can easily accommodate a variety of features and evaluation strategies;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:3

(3) creating a flexible frontend capable of seamless interaction with a full-fledged programming
language, potentially using its features to enrich the frontend with various extensions.

In pursuing these objectives, we turned our focus towards established generative programming
tools such as LightweightModular Staging (LMS)/Scala [Rompf andOdersky 2010], BuildIt/C++ [Brah-
makshatriya and Amarasinghe 2021], and AutoGraph/Python [Moldovan et al. 2019]. These tools
have demonstrated success in constructing various high-performance systems with runtime code
generation capabilities [Abeysinghe et al. 2023; Brahmakshatriya and Amarasinghe 2022; Rompf
and Amin 2019; Tahboub et al. 2018; Wei et al. 2020, 2019]. We selected LMS, one of the most
well-established tools in this space, and used it to develop Flan — a Datalog compiler fully embedded
in Scala that is capable of producing fully specialized code for any given Datalog program.

A key realization is that these tools (1) provide programmable, fine-grained code generation that
allows full specialization of programs (2) facilitates seamless interoperability with host languages
(e.g., Scala) in the frontend. In Flan, we leverage this interoperability with Scala to enrich our
frontend with various features such as polymorphic rules, higher-order relations [Arntzenius and
Krishnaswami 2016], user-defined lattices, and so on, by creating an embedding for Datalog in Scala
(Section 5). Flan’s implementation resembles a high-level Datalog interpreter implemented using
multiple high-level abstractions (Section 3), while LMS effectively dismantles these abstractions
during code generation, thereby eliminating any related runtime costs. Flan’s design features a
streamlined operator interface which enables effortless support for a host of features including
user-defined aggregates, user-defined functions (UDFs), stratified negation, and more (Section 4.2).
Moreover, this allows support for multiple execution strategies, such as multi-way and binary joins
(Section 4.3), and different index structures like BTrees and Hash indexes (Section 4.4), with minimal
effort.While the rest of this paper presents the system implementation within the Scala/LMS context,
we believe that the same can be accomplished within other similar frameworks and languages like
Python/AutoGraph and C++/BuildIt (technically, any language with operator overloading).

Contributions

• We elucidate the rationale behind our choice of employing generative programming, specifi-
cally, LMS, as the basis for constructing Flan (Section 2).

• We review essential background and demonstrate the construction of a simple Datalog
interpreter from scratch in Scala (Section 3).

• We illustrate how to effortlessly transform the Datalog interpreter into a compiler that gener-
ates fast, specialized code by utilizing LMS (Section 4.1). We demonstrate the integration of
various extensions such as constraints, UDFs, negations, and aggregations through stream-
lined abstractions (Section 4.2). We highlight Flan’s backend flexibility by adding support for
multiple join evaluation strategies and index structures (Sections 4.3 and 4.4).

• We showcase the Datalog compiler can be seamlessly embedded into Scala, capitalizing on
existing features of the language (e.g., type system, abstractions) for enabling composable,
polymorphic, higher-order Datalog programs. Moreover, we demonstrate how this simplifies
the process of enriching Datalog with features such as user-defined lattices (Section 5).

• We evaluate the performance of Flan against existing Datalog engines such as Soufflé,
Crepe [Zhang 2020], Ascent [Sahebolamri et al. 2022], and Flix [Madsen et al. 2016] on
a set of benchmarks. These benchmarks include a relatively simple points-to analysis (formu-
lated as relations), a comprehensive program analysis benchmark from Doop [Bravenboer
and Smaragdakis 2009] applied to a selection of DaCapo benchmark programs [Blackburn
et al. 2006a], and an analysis involving lattice-based reasoning [Lhoták and Chung 2011].
Flan consistently demonstrates competitive performance in comparison to state-of-the-art
systems, achieving speedups in the range of 1.4× to 12.5× (Section 6).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:4 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

// codegen logic for Loop
void visit_(/* elided */) {

PRINT_BEGIN_COMMENT(out);
out << "iter = 0;\n";
out << "for (;;) {\n";
dispatch(loop.getBody(), out);
out << "iter ++;\n";
out << "}\n";
out << "iter = 0;\n";
PRINT_END_COMMENT(out);

}

Fig. 1. Code generation logic for fixed point loop
in Soufflé. Uses non-hygienic string code templates
that are syntactically ill-formed.1

// next -stage variables
var iter = 0 // : Rep[Int]
var cond = ... // : Rep[Boolean]

while (cond) { // staged loop because
// next -stage cond

/*
logic for loop body
*/
cond = /* update condition */
iter += 1

}

Fig. 2. Flan’s fixed point loop code. Scala essentially
serves as a macro system, ensuring code generation
is syntactically well-formed and hygienic.

In Section 7, we examine the relevant literature, followed by drawing conclusions and discussing
potential future work in Section 8.

2 WHY GENERATIVE PROGRAMMING?
In the previous section, we outlined our goal of creating a Datalog engine that delivers performance
on par with existing compilers through specialized code generation while preserving the ability to
extend both the frontend and backend. This section delves into these concerns, articulating the
potential of a generative programming-based approach to effectively address these needs.
Specialization In the context of Datalog engines, specialization refers to the process of gener-

ating specific code tailored for the semi-naive evaluation of rules of a given program. There are
various methods to achieve this specialization. Soufflé, a highly performant and well-regarded
Datalog compiler in the field of program analysis, employs template metaprogramming for this
purpose. Consider the code generation logic for a simple fixpoint loop operation. Figs. 1 and 2
present the corresponding logic in Soufflé and Flan, respectively. Soufflé’s code generation is driven
by an imperative IR derived from the given Datalog program. Specifically, it involves concatenating
a set of pre-written, operator-specific, stringified code templates like the one in Fig. 1.
Granularity of Specialization This approach indeed attains a level of specialization, yet it

leaves potential for additional specialization—and thus, performance—unexploited. Specifically,
the translation happens at the granularity of the query operators (e.g., fixed points, search, insert,
etc.). Hence, a lot of abstractions (index structures, etc.) remain in the generated code, which is
harder for the downstream C/LLVM compilers to reason about. There are several approaches to
push this specialization further. One approach is to use full progressive lowering using an extensive
compiler with multiple IRs, as seen in tools like DBLAB [Shaikhha et al. 2016] or potential multiple
MLIR dialects [Lattner et al. 2021]. However, this becomes only a partial solution if we need easy
extensibility, as adding features would require notable changes to this IR, lowering passes, and so
on. Alternatively, fine-grained programmable code generation using tools like LMS (Scala), BuildIt
(C++), or AutoGraph (Python) could be a preferable choice, and has already proven effectiveness
for SQL [Rompf and Amin 2019; Tahboub et al. 2018].

Lightweight Modular Staging LMS provides a way of controlling this specialization through
types. Specifically, LMS introduces the concept of Rep types, representing computations that occur
in the next stage and should, therefore, appear in the generated code. Computations (including
control flow, etc.) that take place on regular types (e.g., Int, String, etc.) are evaluated at the current
stage. For illustration, consider a power function written in LMS (left) and the corresponding
1https://github.com/souffle-lang/souffle/blob/9aca1614a8865476abd681f17544dc9032dbb186/src/synthesiser/Synthesiser.
cpp#L557-L566

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://github.com/souffle-lang/souffle/blob/9aca1614a8865476abd681f17544dc9032dbb186/src/synthesiser/Synthesiser.cpp#L557-L566
https://github.com/souffle-lang/souffle/blob/9aca1614a8865476abd681f17544dc9032dbb186/src/synthesiser/Synthesiser.cpp#L557-L566

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:5

specialized code (generated in C) for power(b, 5) (right). Notice that b is a Rep-typed variable,
indicating that it is a next stage variable, and hence, any computations performed on b (in this case,
multiplications) should appear in the generated code.

// Scala LMS code
def power(b: Rep[Int], n: Int): Rep[Int] =

if (n == 0) 1
else b * power(b, n-1)

// Specialized code for power(b, 5)
int power5(int b) {

return b * b * b * b * b
}

The Scala program on the left is a program written using LMS’s Rep-types and LMS will au-
tomatically partially evaluate the program with respect to the given value of n and produce the
residual program on the right. LMS operates by evaluating the program as a standard program for
regular-typed values, while constructing a graph-like IR for operations involving Rep values [Rompf
et al. 2012]. This IR goes through multiple optimizations like dead-code elimination (DCE), code
motion, etc. [Bračevac et al. 2023; Rompf et al. 2013] and generates code in the target language.
This offers us a convenient means of controlling the level of specialization. For instance, if we

were to utilize an off-the-shelf hash table for implementing our hash-based indexes needed for
rule evaluation, we could employ Rep[HashMap[K,V]]. This implies that the HashMap abstraction will
be present in the generated code (e.g., HashMap from the standard library). In fact, as discussed
in Section 4.4, we adopt this strategy to incorporate Soufflé’s BTree index structure [Jordan et al.
2019b] into Flan. However, if we had, instead, used a current stage abstraction, e.g., a HashIndex

that uses Rep[Array[V]] internally, then this abstraction would not appear in the generated code.
Instead, fully specialized versions of each method invocation (insert, contain, etc.), that uses native
arrays would be present in the final code. In our experiments (Section 6.3), we discovered that such
a fully-specialized index implementation can be an order of magnitude faster than a library-based,
generic, off-the-shelf implementation.
Principled Code Generation Another advantage of using an existing tool like LMS to per-

form runtime code generation is that the operator logic can be completely decoupled from code
generation, and implemented in a regular manner. For instance, as is well known, relying on
pre-written code templates (like in Fig. 1) tends to be brittle, as the developer must manipulate these
string fragments to produce the final code. These fragments provides no guarantee of syntactic
well-formedness [Taha and Sheard 1997] and hygiene [Kohlbecker et al. 1986], leaving room for
inadvertent variable capturing and name conflicts (e.g., reusing the same name iter in another
template during dispatch call). Handling even minor syntactic details, such as curly braces, requires
specific consideration. While this may appear relatively tractable in a simple setting, maintaining
and coordinating such templates becomes increasingly intricate as the number of templates grows
and is fundamentaly at odds with extensibility. In contrast, a key distinction in Flan’s case (Fig. 2)
is the handling of variable scoping, typing, etc. by the host language (Scala, in our case).
Flexibility All this results in an implementation that mirrors a relatively simple interpreter,

constructed in a high-level language employing high-level abstractions, as exhibited in Section 3.
This architecture becomes the key in achieving backend flexibility, given that these high-level
abstractions enable the creation of a streamlined operator interface that is flexible enough to facili-
tate the addition of various features like user-defined aggregates, functions, negations, constraints,
and so on, (Section 4.2) alongside support for different indexing structures (tree or hash-based;
Section 4.4) and evaluation strategies (binary or multi-way joins; Section 4.3).
While this approach gives us a flexible and efficient backend, the question of crafting a flexible

frontend remains. One possibility is to solely depend on a textual frontend and incrementally add
functionality/extensions as required. However, given the demand for full-programming language
like extensions, this would eventually result in an effort similar to creating a new language from
scratch. A key realization is that we can use the interoperability with the host language of tools like
LMS to our advantage. Building on this concept, and inspired by lots of prior work on embedded logic

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:6 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

y := &x pointsTo(𝑦, 𝑥) :− addressOf(𝑦, 𝑥) . (1)
y := z pointsTo(𝑦, 𝑥) :− assign(𝑦, 𝑧), pointsTo(𝑧, 𝑥). (2)
y := *x pointsTo(𝑦,𝑤) :− load(𝑦, 𝑥), pointsTo(𝑥, 𝑧), pointsTo(𝑧,𝑤). (3)
*y := x pointsTo(𝑧,𝑤) :− store(𝑦, 𝑥), pointsTo(𝑦, 𝑧), pointsTo(𝑥,𝑤) . (4)

Fig. 3. Simplified points-to analysis rules written in Datalog (used as a running example in Section 3)

𝑐 ∈ B, 𝑥 ∈ Var, 𝑅 ∈ Rel

𝑡 ::= 𝑐 | 𝑥

𝑎 ::= 𝑅(𝑡1, . . . , 𝑡𝑛)

𝑟 ::= 𝑎 :− 𝑎1, . . . , 𝑎𝑛
𝑃 ::= 𝑟1, . . . , 𝑟𝑛

/* Auxiliary definitions for Relation */
case class Schema(fields: Seq[Field])
class Relation(val name: String , val schema: Schema)
/* AST definitions */
type BaseTy = Boolean | Int | String
enum Term:

case Const(v: BaseTy)
case Var(s: String)

case class Atom(relName: String , args: Seq[Term]):
def rel: Relation = ...

case class Rule(head: Atom , body: Seq[Atom])

type Program = Seq[Rule]

Fig. 4. Formal syntax for Datalog programs (left) and corresponding AST definition in Scala (right)

DSLs, in Flan, we devised an embedding for Datalog using standard Scala (Section 5). This utilization
of Scala infrastructure significantly reduces the necessary engineering effort. A key distinction
between our embedding and previous work lies in our integration with code generation — thus
becoming an extensible, compiled embedded logic DSL. This strategy also reaps additional benefits,
such as utilizing Scala’s type system for automatic basic type checking, including appropriate use
of variables in custom aggregates, user-defined functions and rules, etc.

3 A DATALOG INTERPRETER
An initial approach to developing a Datalog engine could involve converting a Datalog program
into a collection of relational queries to be run on an SQL query engine, as explored by Scholz et al.
[2015]. To implement the efficient semi-naive evaluation necessary for Datalog, we would need to:
(1) represent each relation as three corresponding tables: ‘base’, ‘delta’, and ‘next’ (2) establish an
external driver loop to the query engine to enforce fixpoint semantics and manage records across
the sub-relations. However, such trivial implementations usually perform more poorly than systems
specifically designed for Datalog [Scholz et al. 2016] unless special care is taken [Fan et al. 2019;
Ryzhyk and Budiu 2019]. The main challenge lies in creating and maintaining carefully selected
indices (e.g., moving tuples from 𝑛𝑒𝑥𝑡 to 𝑑𝑒𝑙𝑡𝑎, etc.), and avoiding redundant computations arising
from semi-naive evaluation. Nonetheless, it has been shown that building an optimized SQL engine
can be done in 500 Lines of Code (LOCs) [Rompf and Amin 2015, 2019]. Although this engine
cannot be repurposed directly due to the limitations mentioned, it prompts the question: Can we
adopt similar principles to develop an efficient Datalog interpreter?
In this work, we demonstrate that the answer is indeed yes! Drawing inspiration from Rompf

and Amin [2015]’s SQL engine, we will develop a succinct bottom-up Datalog interpreter in this
section, utilizing semi-naive evaluation as illustrated in standard database textbooks [Ullman 1988,
Figure 3.6] [Abiteboul et al. 1995, Algorithm 13.1.2]. For the sake of brevity, our initial focus will be
the pure Datalog subset, excluding negations, aggregations, and other extensions. Nevertheless,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:7

1 /* Entry point of the interpreter */
2 def compute(prog: Program ,
3 edbs: Map[Relation , Seq[Record]],
4 outputs: Seq[Relation]): Map[Relation , Array[Record]] =
5 val strata = stratify(prog) // construct dependency graph of relations , find
6 // strongly -connected components , and topologicaly sort
7 val store: Store = Store() // store: Stores tuples of relations
8 for ((rel , recs) <- edbs)
9 recs.foreach(store.insert(into=rel , _)) // Load EDB relation tuples into store
10
11 for (rules <- strata)
12 eval(rules)(store) // Compute IDB by evaluating rules
13
14 outputs.map(rel => (rel , store.records(rel))). toMap // Collect outputs and return
15
16 /* Evaluating rules of a stratum */
17 def eval(rules: Program)(store: Store): Unit =
18 val relations = rules.map(_.head.rel).toSet // Relations of the stratum
19 val (simpleRules , recursiveRules) = expandRules(rules) // Split into simple and recursive
20 // Add delta variants for recursive
21 for (rule <- simpleRules)
22 for (record <- evalRule(rule)) // Evaluate simple rules
23 store.insert(into=rule.head.rel , record) // Project join output and insert
24
25 while store.hasNextIteration(relations) do // Evaluate recursive rules until fixed point
26 for (rule <- recursiveRules)
27 for (record <- evalRule(rule)(store))
28 store.insert(into=rule.head.rel , record) // Project join output and insert

Fig. 5. Main interpreter loop that drives rule evaluation. Function compute partitions the relations and rules
into strata, and calls eval to evaluate each stratum.

the integration of these features is fairly straightforward and will be discussed in Section 4.2. We
will use Scala 3 syntax throughout the paper.

3.1 Datalog
A Datalog program consists of a set of clauses of the form 𝑎 :− 𝑎1, 𝑎2, . . . , 𝑎𝑛 . Each clause is
composed of a head atom 𝑎 and body atoms 𝑎𝑖 , where each atom possesses an associated arity
𝑛 and a corresponding number of term arguments 𝑡𝑖 , denoted as 𝑅(𝑡1, . . . , 𝑡𝑚). A term argument
can be either a variable 𝑥 or a constant 𝑐 of a base type B. The head atom of a rule defines facts
of a relation while body atoms form a conjunctive query over multiple relations constrained by
a sequence of arguments. The predicate symbol 𝑅 associated with the atom is referred to as the
relation. There are primarily two types of relations: Extensional relations (EDB), the base relations
that serve as the input and intensional relations (IDB), intermediate or output relations derived by
applying the rules in the Datalog program.

We show the formal syntax and Scala abstract syntax definition in Fig. 4. The auxiliary definition
Relation holds metadata of relations. A relation’s facts are derived by the rules in which the relation
appears in the head atom. A relation has a schema that defines its arity and the column names
(Fields). The rel property performs name resolution and provides the relation an atom refers to.

Consider a basic program analysis task formulated using Datalog as shown in Fig. 3 [Smarag-
dakis and Balatsouras 2015]. Specifically, this is a simplified version for Andersen-style pointer
analysis [Andersen 1994], which aims to determine the objects a variable may potentially point
to [Smaragdakis and Balatsouras 2015]. This analysis involves four EDB relations: AddressOf,
PointsTo, Load and Store. We will use this as a running example in the rest of Section 3. The rules
are reasonably clear and self-explanatory. For instance, rule (1) indicates that if y holds the address
of x (i.e., y := &x), then y points to x.

The actual evaluation of the clauses relies on fixed-point semantics. In this process, the rules are
applied to facts, initially starting from EDBs and subsequently with IDBs as they are derived, until

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:8 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

pointsTo.next1 (𝑦, 𝑥) :− addressOf(𝑦, 𝑥) (Rule (1) expansion)

pointsTo.Δ𝑖 B pointsTo.next𝑖−1 − pointsTo𝑖−1

pointsTo𝑖 B pointsTo𝑖−1 ∪ pointsTo.Δ𝑖

pointsTo.next𝑖 (𝑦, 𝑥) :− 𝑎𝑠𝑠𝑖𝑔𝑛(𝑦, 𝑧), pointsTo.Δ𝑖 (𝑧, 𝑥)
(Rule (2) expansion)

Fig. 6. Rule expansion for rules (1) and (2) from Fig. 3 performed by expandRules (called in Fig. 5 L19). The
first rule’s expansion is simple and can be evaluated only once outside the fixpoint loop while the second one
is recursive and is decomposed into a rule over delta relations.

pointsTo(𝑦,𝑤) :− load(
sym
𝑦 ,

ptr
𝑥), pointsTo(src𝑥 , dst𝑧), pointsTo(src𝑧 , dst𝑤).

for (x <- uniqueValues(of=ptr , from=load , having ={}))
for (z <- uniqueValues(of=dst , from=pointsTo , having ={src: x}))

for (w <- uniqueValues(of=dst , from=pointsTo , having ={src: z}))
for (y <- uniqueValues(of=sym , from=load , having ={ptr: x}))

yield (y, w)

Fig. 7. Top: Datalog rule (3) from Fig. 3 with column names for each relation shown on top of each variable.
Bottom: Corresponding multi-way join nested loop.

the evaluation reaches a fixed point. This method is referred to as naive evaluation. However, it is
inefficient due to the presence of numerous redundant computations. For instance, in rule (2), any
tuples of PointsTo found prior to the previous iteration would not result in new tuples during the
current iteration (since Assign is fixed). Consequently, it is more efficient to operate only on the
tuples discovered in the immediate previous iteration (referred to as the delta). This strategy of
employing deltas for fixed-point computation is known as semi-naive evaluation and is regarded
as the state-of-the-art evaluation algorithm for Datalog.

3.2 Stratification
We now proceed with the definition of the interpreter. The evaluation of a Datalog program 𝑃

can be decomposed into the evaluation of subprograms 𝑃𝑖 where {𝑃1, . . . , 𝑃𝑛} is a partitioning
(stratification) of the rules in 𝑃 [Abiteboul et al. 1995]. The partitioning is obtained by computing
the topological sort of the Strongly connected components (SCCs) of the (cyclic) dependency graph
defined by the head relation and body relations of each rule. Each SCC 𝑖 is a set of relations that are
mutually recursive and 𝑃𝑖 is defined as the set of rules defining any relation in SCC 𝑖 . For instance,
for our running example, there would be five strata: one for each EDB relation (addressOf, assign,
load, and store) and another for the IDB relation pointsTo. The last stratum contains all four rules.
In Fig. 5 we show compute, which is the entry point of our Datalog interpreter. First the program
given as input is stratified through stratify (L5), then records for each EDB are loaded into a store
(L8 and 9) and finally the interpreter evaluates the rules for each stratum in the topological order.

3.3 Stratum Evaluation
Typically, a stratum comprises multiple rules, and the interpreter’s core functionality lies in how
these rules are evaluated, which corresponds to eval in Fig. 5. Stratum rules are partitioned into
simple and recursive rules. Simple rules are non-recursive rules, i.e., the body does not mention any
of the relations present in the current stratum, and therefore can be computed immediately outside
of the fixpoint computation. Recursive rules, by contrast, need to be evaluated until a fixpoint is
reached. The evaluation of a rule yields records that can then be stored as shown in L23 and 28.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:9

1 /* body: remaining body , iters: remaining order , env: current environment */
2 def multiWayJoin(body: Set[Atom], iters: Seq[JoinOperand], env: Map[Var , Value])
3 (store: Store) = new:
4 def foreach(f: Map[Var , Value] => Unit): Unit =
5 iters match
6 case Seq(op, rest*) =>
7 val (filter ,missingFields) = lookup(op.atom ,env) // lookup bound fields
8 for (value <-store.uniqueValues(of=op.field,from=op.atom.rel,filter)) // iterate variable
9 val newEnv = env + (op.arg -> value)
10 val (readyIncl ,remaining) = // remaining: has unbound columns
11 body.partition(lookup(_,newEnv)._2.isEmpty) // ready: all columns bound
12 val ready = readyIncl - op.atom
13 if (ready.forall(a => store.contains(a.rel ,lookup(a,newEnv)._1)))
14 multiWayJoin(remaining ,rest ,newEnv)(store). foreach(f) // perform rest of join
15 case _ => f(env) // join completed
16
17 /* main entry -point for rule evaluation */
18 def evalRule(rule: Rule)(store: Store) = new:
19 def foreach(f: Record => Unit): Unit =
20 val order = variableOrder(rule.body) // compute the order to perform the join
21 for (env <- multiWayJoin(rule.body.toSet , order , Map ())(store))
22 val (record , _) = lookup(rule.head , env) // project to rule head
23 f(record)

Fig. 8. Code for evaluation of rules. First, the variable order is computed (order), followed by the invocation
of multiWayJoin that iterates through variables in the specified order and produces the join output. Code in
L8 highlighted in blue corresponds to the nested loops in Fig. 7.

To implement semi-naive evaluation, recursive rules need to be expanded by expandRules in L19
into rules operating on three sub-relations: base, delta, and next. The base sub-relation contains
all records discovered prior to the current iteration, while the delta sub-relation includes only the
records found in the previous iteration. The next sub-relation holds the records derived during the
rule evaluations of the current iteration. Fig. 6 illustrates expansions for rules (1) and (2) in the
points-to program from Fig. 3. For rule (1), the expandRules function results in one simple rule with
only addressOf in the body, which can be evaluated once outside the fixpoint loop. For rule (2),
it results in a rule with a join between assign and the delta relation of pointsTo. The notation B
represents table updates performed by store.hasNextIteration(relations) (L25), which computes
the stable, next, and delta relations for the new iteration, as shown by the set operations.

3.4 Rule Evaluation
Next, wewill explore the evaluation of rules. Broadly speaking, Datalog rule evaluation strategies fall
into two categories: binary joins and multi-way joins. While binary joins typically involve iterating
through entire tuples from relations, multi-way joins function at the granularity of individual
variables. Our full system, Flan is capable of accommodating both strategies with only slight
modifications to the core evaluation logic (discussed in Section 4.3). For the sake of conciseness,
this section will exclusively present and discuss the code for a multi-way join strategy.

As an example, let us consider rule (3) from Fig. 3, which performs a join across three relations
predicated on the keys 𝑥 and 𝑧 (as depicted in Fig. 7). The bottom part of the figure illustrates an
analogous ‘for comprehension’ that emulates the logic of join evaluation: uniqueValues yields the
unique values of the field passed as argument to the parameter ‘of’ from relation ‘from’ where
the remaining field are constrained by the ‘having’ record (essentially a filter). For readers who
are familiar with the Generic Join [Ngo et al. 2013] algorithm, this may look similar but without
the intersections. We discuss how a similar notion to intersections is achieved in this setting via
explicit contains checks in Section 4.3, but omit it here for brevity.
For a given rule, the initial step involves computing the order in which variables (along with

their corresponding relations) should be iterated. Upon establishing this order, the uniqueValues

method can be invoked from the pertinent relations in the determined order, as illustrated in Fig. 7.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:10 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

case class Value(v: BaseTy)
case class Record(schema: Schema , values: Seq[Value])

class Store:
val records = // records for each relation
mutable.Map(). withDefault ((_:Relation) => Set[Record]()) // are maintained in Sets

def insert(into: Relation , record: Record): Unit = // inserting new records
records(into) = records(into) + record

def contains(rel: Relation , record: Record): Boolean = // checks existance of records
records(rel) contains record

def hasNextIteration(relations: Set[Relation]): Boolean =
var updated = false
for (relation <- relations)

// Perform the updates shown in (Rule (2) expansion) from 𝐹𝑖𝑔. 6
records(relation.delta) = records(relation.next) diff records(relation.base)
records(relation.base) = records(relation.base) union records(relation.delta)
records(relation.next) = Set()
updated |= records(relation.delta). nonEmpty

updated // returns false when a fixed point has been reached

def uniqueValues(of: Field , from: Relation , having: Record): Iterable[Value] =
records(from). filter(rec => rec(having.schema) == having.values).map(_(of))

Fig. 9. Code for Store, which maintains tuples of relations and is used throughout the evaluation.

It is important to note that while the sequence of iterating over the variables does not influence the
correctness of the computation, it can have a substantial impact on the execution time of the query.

For completeness, the implementation for rule evaluation is shown in Fig. 8. The entry point is
evalRule, which computes a variableOrder (L20) and then calls multiWayJoinwhich corresponds to
the evaluation of the nested for loops generating the unique values for each variable and introducing
them in env. Specifically, L8-14 of Fig. 8 corresponds to evaluating the rule using a loop nest, such
as Fig. 7. The loop nest iterates over each join variable, with relation lookups interspersed at
appropriate places. multiWayJoin returns an object implementing foreach allowing to iterate over
the joined records through a simple for comprehension. Finally the loop body f is called with the
projection of the environment corresponding to the rule’s head record.

Close attention should be paid to the conditional present in L13: whenever the introduction of a
variable of the rule completes one of the rule’s body atoms, an contains check takes place, essential
to produce the correct output. For example if we had picked ptr from load to yield the possible
values of x and src from pointsTo for the values of z, then we must also check that (𝑥, 𝑧) is present
in pointsTo as shown below.
for (x <- uniqueValues(of=ptr , from=load , having ={}))

for (z <- uniqueValues(of=src , from=pointsTo , having ={}))
if (pointsTo contains (x, z))

...

In Flan, we mimic the join order (computed by variableOrder) of left-associative binary joins
with join variables iterated first. However it is straightforward to extend the system to support
other query plans based on user provided hints or heuristics like cardinality/selectivity estimation.

3.5 Record Store
The last key remaining piece is the Store which will store the records that are produced during
evaluation, ensure uniqueness of records, and enable fast retrieval of the unique values present in a
specific field of the relation. Its implementation is shown in Fig. 9.

The recordsmap contains the records of a given relation. The insert and containsmethod allow
to perform insertions of a record into a relation (Fig. 5, L9, 23 and 28) and check the presence of a
record in a relation (Fig. 8, L13), respectively. hasNextIteration checks whether a fixpoint has been
reached (Fig. 5, L25) and performs the B updates shown in Fig. 6. Finally uniqueValues iterates

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:11

over the unique values of a column of a relation on the specific subset of records satisfying the
filter (having), as discussed in Section 3.4 and shown in Fig. 8, L8. The implementation of the Store
presentend is deliberately simple and inefficient. We defer the discussion of design decisions of
the Store to Section 4.4. In particular, we introduce the notion of IndexedStores, which employs
various index structures such as trees or hash tables to execute the required operations efficiently.

Combining all of these components results in a relatively simple Datalog interpreter. Although
easy to construct, its performance is significantly inferior to that of a compiled engine generat-
ing specialized code. This is due to the substantial runtime interpretation overhead, such as the
overheads associated with high-level abstractions and using generic data structures for indices.
In Section 4, we will explore how to transform this basic interpreter into a compiler capable of
producing efficient specialized code, requiring only minimal modifications to the original code.

4 FLAN: DATALOG COMPILER
4.1 Deriving a Datalog Compiler from the Interpreter
In Section 3, we demonstrated how to construct a relatively simple Datalog interpreter in Scala.
In this section, we explore how to transform our slow interpreter into a compiler that generates
fast, specialized code with minimal modifications to the original interpreter. We will employ the
concept of partial evaluation and Futamura projections [Futamura 1971] to achieve this goal.

Partial Evaluation The concept of partial evaluation [Jones et al. 1993] involves decomposing
the evaluation process into two or more stages, often based on the availability of inputs, with each
stage evaluated to generate a residual program that contains the logic for evaluating the remaining
stages. Consider our interpreter as an example: it accepts a Datalog program and the actual input
data (i.e., EDB) as inputs and produces an output.
output = interpreter(datalog_program , input)

In the context of program analysis, the same datalog_program implementing the analysis is
applied to multiple different programs to be analyzed. Consequently, it is sensible to divide the
interpreter into two stages. Initially, we partially evaluate the Datalog interpreter with respect to
the given Datalog program, obtaining a staged interpreter specialized for that specific analysis.
This process is facilitated by a program specializer (or partial evaluator). Ideally, the specialized
code should eliminate any overheads associated with interpreting the Datalog program while
maintaining the ability to handle dynamic input EDBs.
specialized = specializer(datalog_interpreter , datalog_program)
output = specialized(input)

The first Futamura projection [Futamura 1971] states that executing the interpreter produces
the same output as evaluating the specialized (i.e., partially evaluated) code with the same input.
Furthermore, it states that this process of specialization is analogous to compilation. In essence, the
specialized code mentioned above would be equivalent to code generated by a Datalog compiler.

One way to achieve this specialization is to create a custom program transformation tailored to
the use case (i.e., Datalog) that generates the required specialized code for a given input Datalog
program. However, this can result in a notable engineering effort as it is essentially equivalent
to writing a compiler from scratch. Instead, we can rely on an existing generative programming
framework like LMS to do this in a more principled manner as discussed in Section 2.
Our Approach using LMS As mentioned in Section 2, LMS leverages a type-based approach

to facilitate this stage distinction and specialization. To achieve this, it introduces the notion of
Rep-types. Rep-typed variables (e.g., Rep[Int], Rep[Array[Long]], etc.) designate them as next-stage
values. Consequently, any operations conducted on these variables would appear in the generated
code for next stage. In contrast, operations on variables with regular types (e.g., Int, Array[Int],
etc.) are executed in the current stage. LMS takes regular Scala programs with Rep-type annotations

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:12 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

def stratify(prog: Program): Seq[Program] = ...
def compute(prog: Program ,

edbs: Map[Relation , Seq[Record]],
outputs: Seq[Relation]): Map[Relation , RepBuffer] = ...

def eval(rules: Program)(store: Store): Unit = ...
def evalRule(rule: Rule)(store: Store) = ...
def multiWayJoin(body: Set[Atom], iters: Seq[JoinOperand], env: Map[Var , Value])

(store: Store) = ...

case class Record(schema: Schema , values: Seq[Value])

case class Value(v: Rep[_])

class Store: // staged store implementation
val records =

mutable.Map(). withDefault ((_: Relation) => RepIndexedBuffer())

def insert(into: Relation , record: Record): Unit
def contains(rel: Relation , record: Record): Rep[Boolean]

def hasNextIteration(relations: Set[Relation]): Rep[Boolean]

def uniqueValues(of: Field , from: Relation , having: Record): RepBuffer

Fig. 10. Deriving a compiler from the interpreter via mixed-stage Store. Shown in gray are the previous
definitions of the interpreter from Figs. 5 and 8 which are left unchanged. The only changes needed are:
(1) Values types are now Rep[_] instead of Scala base types, denoting second-stage values (2) the store is
updated to an implementation of a second-stage store (we elide the implementation).

as input, partially evaluates it using the Scala runtime, and subsequently generates specialized C
code for the residual program.
In Fig. 10, we illustrate the modifications necessary to transform the interpreter, discussed in

Section 3, into a compiler using LMS. The segments of code that remain unaltered are depicted in
gray. First, we should identify static data available at staging, or in this case, code generation time.
The primary available component is the Datalog program which contains the relation definitions
along with their corresponding schema, input/output specifications, etc. Consequently, at staging
time, we can compute the program’s strata, topological order, recursive and non-recursive rules,
join orders, and so on. Hence, in the LMS-based staged interpreter, computations pertaining to
these aspects are carried out at staging time, leading to specialized code that eliminates any runtime
overhead associated with these operations.

The sole piece of information not available at the staging time are the actual facts (i.e., records)
of the EDB relations. Consequently, the values and data structures associated with these should
be marked as next-stage values (i.e., Rep types). In particular, we update Value to contain Rep[_]

values denoting next-stage values. This, along with other fixes related to type errors that arise from
this change, are sufficient to convert our interpreter into a compiler that generates specialized code.
Finally we now need to use a staged version of Set[Record] in the records store (Store in

Section 3.5, since now it contains next-stage values) and update its interface accordingly. For
example, contains checks will now return Rep[Boolean] and be present in the residual program.
The concrete implementation of Set[Record] is done through RepIndexedBuffer. We elide the
implementation and defer a thorough discussion of implementation considerations to Section 4.4.

LMS readily offers staging support for most primitive operations involving Rep-typed values. For
instance, LMS provides out-of-the-box support for assignments, comparisons, and other operations
on primitive Rep[T] values. Additionally, language constructs such as if, while, and for involving
next-stage values are transformed into their staged counterparts using macros [Rompf et al. 2012].
For example, when a Rep[Int] is compared with another next-stage value or a regular integer, it
results in a Rep[Boolean]. If a conditional depends on this boolean value, the corresponding if block
will be lifted into a staged if, which will ultimately be included in the generated code.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:13

1 /* evaluate UDFs , aggregates and return result */
2 def evalArg(/* ... elided ... */): Value =
3 case v: Variable => env(v)
4 case Constant(v) => Value(v)
5 case UDFCall(str , args) => evalUdf(str , args)
6 case agg: Aggregator => evalAggr(agg)
7
8 /* evaluate all ready constraints and return whether all satisfied */
9 def evalReady(ready: Seq[Litereal], env: Map[Variable , Value]): Rep[Boolean] =
10 ready.filter{case _: Assignment => false case _ => true}. forall{
11 case Negation(atom) => !store.contains(atom.rel , lookup(atom , env)._1)
12 case a: Atom => store.contains(a.rel , lookup(a, env)._1)
13 case bc: BinaryConstraint => evalBinaryConstraint(bc, env) }
14
15 /* process any ready components before moving to next join step */
16 def processReady(remaining: Seq[Literal], env: Map[Variable , Value])
17 (f: (Seq[Literal], Map[Variable , Value]) => Unit)(store: Store) =
18 val (ready , nextRemaining) = // ready: components with
19 remaining.partition(allVarsAvailable(_, env)) // all vars in env
20
21 val readyAssignments = // assignments that will
22 ready.collect { case a: Assignment => a } // introduce vars to env
23
24 if (evalReady(ready , env)) // process all ready constraints
25 readyAssignments.headOption match
26 case Some(assign) => // process UDFs , aggregates , and
27 val value = evalArg(assign.right , env) // put result into env , and repeat
28 processReady(nextRemaining ++ readyAssignments.tail , env + (assign.left -> value))(f)
29 case None =>
30 f(nextRemaining , env)
31
32 def join(/* elided */) = new:
33 def foreach(f: Map[Var , Value] => Unit): Unit =
34 processReady(body , env) { (remaining , newEnv) => // process any available UDFs , aggreagtes
35 /* remain unchanged from Fig. 8 */ // constraints , etc. prior to join step
36 iters match
37 case Seq(op, rest*) => ...}

Fig. 11. The required code updates in Flan to accommodate negations, constraints, UDFs, aggregates, etc.
Components are processed in processReady, which utilizes evalReady for evaluating negations and con-
straints, and evalArg for managing constants, UDFs, and aggregates.

4.2 Beyond Pure Datalog
Up to this point, we have developed an interpreter that supports pure Datalog and demonstrated
how to transform it into a compiler that generates efficient specialized code. However, pure Datalog
is not adequate for most practical program analysis tasks. For instance, the Doop analysis, one of the
benchmarks we will examine in Section 6, employs various extensions such as stratified negation,
aggregation, UDFs, constraints, and more. In this section, we will discuss how to incorporate these
features into our Datalog compiler. Integrating these features is relatively straightforward because
we can utilize high-level Scala capabilities to implement them (as we saw in Section 3) without
concern for code generation or any runtime overhead associated with the abstractions.

Stratified Negation The concept of negation in Datalog serves to enforce that a given relation
does not contain a specific value. Consider the following example of a rule with negation:

R(x, y) :- S(x, y), !T(x, y)

This rule states that we should insert all records from S that are not present in T to R. To ensure
safety and unique fixed-point semantics, negation must be stratified, which means that negation can
only be applied to a relation that appears in a previous stratum (in the topological order) [Chandra
and Harel 1985]. During rule evaluation, negations are translated into simple contains checks.
Specifically, when all variable bindings of a negated atom become available, we can perform a
contains operation using the relevant index.
Aggregations, UDFs, and Constraints The example shown below presents a simple rule

that incorporates a combination of features including aggregates, constraints, and User-Defined

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:14 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

Functions (UDFs). The rule aims to find the count of objects that a variable may point to for variable
names that match a given regex. Here, match is a UDF, count {PointsTo(var, _)} is an aggregate,
and match(..) = true is a constraint.

PointsToCount(var , p_count):-
Vars(var),
match("<some -regex >", var) = true ,
p_count = count {PointsTo(var , _)},

// canonicalized version of rule on left
PointsToCount(var , p_count):-

Vars(var),
#udf1 = true ,
p_count = #aggr1 ,
#const1 := "<some -regex >",
#udf1 := match(#const1 , var),
#agg1 := count {PointsTo(var , _)}

The common trait in the evaluation of these extensions is that each component is processed as
soon as the required variables become available in the environment. Thus, all we need to do is
to modify the join logic to initially handle these ‘ready’ components before proceeding with the
remainder of the join. To keep the logic for evaluating these extensions simple and general, we
introduce the notion of rule canonicalization. Specifically, we rewrite the rules so that atoms in their
body contain only variables, while other argument types are converted into variable assignments.
Additionally, aggregates and UDF calls are hoisted into assignment operations using new variables.

Figure 11 shows the updated join function that incorporates the processReady method for
handling the extensions. It takes as arguments the current environment and the remaining body
literals, partitioning them into two categories: ready, encompassing literals with all necessary
variables present in the environment, and nextRemaining, which includes the rest. For instance, in
the initial join call for the rule above, #const1 qualifies as a ready literal as it doesn’t require any
additional environment variables. The function evalReady then executes any pending constraint
checks (like negations, binary constraints), and only if all constraints pass, the evaluation of the
rest of the rule proceeds. Note that evalReady yields a Rep[Boolean], indicating that constraint
evaluation occurs in the next stage and the logic will feature in the generated code.
We treat Assignments distinctively; they introduce variables into the environment that could

potentially render some remaining literals ‘ready’. Therefore, we process one Assignment at a time,
repeatedly employing the aforementioned process until all ‘ready’ components have been handled.
We omit the code for evaluating binary constraints (evalBinaryConstraint) which simply looks at
the constraint type and evaluate left and right hand side and compare based on the constraint. We
also exclude the code for calling UDFs (evalUDF), which simply retrieves the corresponding UDF
from the UDF map (where user can register their UDFs) and call it.

Flan fully supports user-defined aggregates. All users need to specify are an initial value for the
aggregate and an update function, having type (Value, Value) => Value. The aggregate’s body is
evaluated using the same join function, starting with an initial environment where all free variables
are bound by the corresponding outer variables. This also allows arbitrary nesting of aggregates.
For brevity, we have chosen to exclude the code for evalAggr(agg) but it largely reuses already
existing methods like variableOrder to determine the join order for aggregate sub query, join to
perform the join, and evalArg for evaluating arguments (e.g., UDFs) used inside the sub query.
One significant advantage of maintaining high-level engine code in the interpreter style is the

relative ease of adding new features, as seen above. In contrast, other existing approaches may
necessitate more extensive modifications, such as augmenting their intermediate-level IRs, adding
logic to their code generators, and more. We evaluate this ease of implementation in Section 6.2.

Incorporating functionality in this manner not only simplifies the process but also automates cer-
tain optimizations that other engines perform as separate passes. For instance, existing approaches
rely on transformation passes on their imperative IR for optimizations such as hoisting aggregates,
hoisting if blocks (or predicate pushdown), and collapsing filters [Scholz et al. 2016]. In contrast,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:15

our interpreter inherently integrates these optimizations by design. For instance, aggregates, con-
straints, and UDFs are computed as soon as their variable bindings become available, and execution
is short-circuited as early as possible.

4.3 Join Strategies
We initially outlined the implementation of multi-way joins in Section 3.4 when we introduced the
code for our interpreter. In this section, we will delve further into the specifics, illustrating how we
can facilitate both binary and multi-way joins seamlessly. We evaluate the performance of these
strategies later in Section 6.3.

A core aspect of executing Datalog programs involves performing joins. Most existing Datalog
engines rely on relation-at-a-time joins [Madsen et al. 2016; Scholz et al. 2016; Tielen 2023], which
entail performing nested loop joins by iterating tuples from different relations at each level. This ap-
proach is analogous to binary joins in traditional relational database management systems (DBMS),
with the key difference being that intermediate relations are not materialized. However, as well
known in DBMS research [Atserias et al. 2008], using this type of binary joins for multiple relations
can be asymptotically suboptimal in some cases. An alternative approach is to use variable-at-a-time
joins, which leads to a class of join algorithms called worst-case optimal joins (WCOJ) [Aberger et al.
2017; Atserias et al. 2008; Ngo et al. 2018; Veldhuizen 2014]. In essence, the asymptotic complexity
of these join algorithms are bounded by the worst-case output size of the final result, as opposed to
the worst-case size of the intermediate results, as seen in binary joins.

The effectiveness of join strategies is influenced by several factors, including the cardinalities of
relations, join selectivity, etc. Given this, prominent DBMS engines offer a range of join evaluation
methods, using certain heuristics to select the most appropriate one [Freitag et al. 2020; Wang et al.
2023]. This underlines the necessity for Datalog engines to incorporate an array of built-in join
strategies. Bearing this in mind, we implemented both join types in Flan. Given the abstractions
previously defined, this addition was relatively simple.
We can make Flan seamlessly support both strategies by modifying a few interface APIs. First,

we need to update the uniqueValues(of: Field, from: Relation, filter: Record) function to
generate unique values across multiple columns simultaneously, rather than one column at a time.
We achieve this by changing the ‘of’ parameter’s type from Field to Seq[Field]. Then, we update
the variableOrder logic, which determines the sequence in which variables should be evaluated
for the join. For variable-at-a-time joins, this yields a sequence of JoinOperands, each containing
a variable and the related field of atom used to enumerate the chosen variable’s values. To ac-
commodate binary joins, we merely need a variant of variableOrder that returns a sequence of
JoinOperands, each including an atom and all its associated fields necessary for iteration. This
alteration implies that, instead of iterating one field at a time, we would iterate all required fields
from an atom in a single join step. This enables the support of both join strategies, without any
changes to the rest of the system code. Specifically, we have defined a trait Strategy that com-
prises an abstract variableOrder method. Then, we provide two traits—MultiWayJoinStrategy and
BinaryJoinStrategy—that can be seamlessly mixed-in as needed to activate the required strategy.

Intersections This multi-way join evaluation strategy we saw in Section 3.4 closely resembles
the Generic Join algorithm [Ngo et al. 2018], with the notable exception of the use of ‘intersections’,
which is crucial for achieving strong asymptotic guarantees and runtime performance. In Generic
Join, the set of iterated values for a variable is determined by intersecting the sets of values from
all relations containing that variable. We achieve a similar notion to intersections by performing
checks to determine whether an introduced variable is unifiable in the rest of the rule body atoms,
and short circuits the execution when it is not unifiable. In essence, when a variable is introduced,
we examine the other relations to determine if that variable is present before proceeding with

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:16 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

the remaining loop nest. We have incorporated these checks in both binary and multi-way join
strategies, and our experiments affirm that their inclusion leads to noticeable runtime performance
improvements.

Fused Traversals Variable-at-a-time iteration, as employed in multi-way joins, may introduce
suboptimal looping structures under certain conditions. Specifically, consider a loop nest that
consists of consecutive variable-iterating loops, where each of these loops iterate over variables
from the same relation without any constraint checks or intersections between them. An example
would be a simple rule like 𝑅(𝑎, 𝑏) :− 𝑆 (𝑎, 𝑏, 𝑐), which leads to a loop nest with two loops iterating
over a and b, respectively. In such cases, the more efficient approach is to utilize a ‘fused’ traversal
that combines these two loops, enabling iteration over both a and b with a single lookup. Our
multi-way join strategy incorporates this traversal fusion as a plan-level optimization.

4.4 Indices: BTree and Hash Indexes
In Section 3.5, we constructed a generic implementation of Store without any indexing. However,
this approach is not practical as lookups (i.e., uniqueValues) and checks (i.e., contains) are per-
formance critical operations during execution. Consequently, it is essential to construct efficient
indices to support these operations. There are several data structures at our disposal to build these
indices. As discussed in prior work [Aref et al. 2015; Freitag et al. 2020; Ngo et al. 2018; Veldhuizen
2014], an indexing structure resembling a logical trie (each level representing a field) is necessary
for variable-at-a-time joins. This can be realized through the use of an actual trie [Veldhuizen 2014],
or by employing alternative data structures such as hash tables [Freitag et al. 2020] or trees that
efficiently manage each level of the trie.
BTrees Our Store abstraction is agnostic to the backend index data structure, allowing us to

select any suitable backend data structure as long as it supports the required operations. Datalog
compilers like Soufflé are already equipped with fast index structure implementations, specifically
tailored to Datalog, which have demonstrated impressive performance across a broad spectrum of
workloads [Jordan et al. 2019b]. Hence, we have written a custom wrapper for Soufflé’s BTree and
integrated it into Flan to execute the lookups and checks efficiently. In this instance, as the data
structure abstraction appears in the generated code, we use type Rep[SouffleBTree] for indices. It
is important to note that this means the granularity of specialization would not be pushed beyond
the BTree abstraction in the generated code.

Although our initial tree-based index implementation yielded good performance, we wanted to
explore potential benefits of hash indexes due to their superior asymptotic performance (constant
versus logarithmic), despite the fact that Jordan et al. [2019a] have shown that Soufflé BTrees
consistently outperform standard library-based hash table indexes across diverse micro-benchmarks
and full program analysis benchmarks. We also experimented with using library-based hash table
implementations (using Rep[HashIndex[K,V]]), and observed similar performance behaviors to
what they have demonstrated. A key realization is that these library-based data structures are
overly generic (i.e., have room for more specialization), which consequently lead to significant
runtime overheads as evident from our experiments in Section 6.3.

Fully Specialized Indices An alternative approach to achieve full specialization is to build our
own data structures that operate directly on low-level Rep[T] values (e.g., Rep[Array[T]]), pushing
the specialization granularity beyond the data structures like HashIndex, BTree, etc. We can still
utilize high-level Scala data structures for this implementation, but staging will automatically erase
all abstractions and operations performed on current stage values (i.e., non-Rep typed), resulting
in the desired full specialization in the generated code. For instance, hash indices implemented in
this way are transformed into sets of native C arrays in the generated code, where all operations
(e.g., lookups, inserts, etc.) are inlined whenever they are invoked. This manner of generating

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:17

fully-specialized code offers more opportunities for additional optimizations (e.g., CSE, loop fusion,
etc.) by downstream general-purpose compilers (e.g., gcc -O3) compared to having generic function
calls to perform the operations. Furthermore, this approach gives us greater control over the data
structure implementation, enabling us to fine-tune it for our specific use case. For instance, instead
of storing the actual full key of the filter, we can simply maintain an offset (i.e., tuple id) to the
central record buffer that stores all the records for a given relation, resulting in memory savings
(also useful in adding support for lattices as discussed in Section 5.2).

We implemented another performance-enhancement tweak, specifically aimed at optimizing the
transfer of next tuples required upon conclusion of each fixed point iteration. The most common
approach is to first insert the tuples from next into the base relations, swap next and delta, and
clear next (for all indices) [Scholz et al. 2016]. While this works well for tree-based indices, whose
size depends on the actual data stored, our initial experiments suggested that, in some cases, it
can result in poor performance for constant-size indices like hash indices, whose size does not
directly depend on the actual element count. Specifically, we would end up clearing a large region
of memory even if the previous iteration produced very few tuples. For instance, after performing
𝑛 fixed-point loops, there would be memset calls at the end of each iteration (i.e., 𝑛 sets of memset
calls), regardless of how many next tuples were produced in the prior iteration. In some cases, these
calls can become a bottleneck. In our hash indices, we have opted for a different approach, clearing
the underlying data structures only when they are nearly full, thus amortizing the cost of clearing
the buffers.
Now the question is, if we do not clear the delta hash tables, how to retrieve the delta for the

current iteration (needed for semi-naive evaluation) because now the delta hash tables contain delta
tuples for multiple previous iterations. To address this, we store the fixed point iteration number
at which a given value was inserted within the hash index structure itself. This allows us to store
values for deltas of all iterations in the same index and recover the last delta needed for semi-naive
evaluation. Consequently, next simply becomes a watermark in the relation’s record buffer, and we
avoid clearing large memory regions that would consume a significant amount of time, particularly
when there is a large number of fixed point iterations where each iteration takes a smaller amount
of time (i.e., produces very few next tuples).
As discussed in Section 6, this finely-tuned, fully-specialized hash-based index demonstrated

impressive results, consistently outperforming the tree-based index structure mentioned above.
Additionally, akin to our approach with join strategies, this is also implemented in a ‘modular’
manner. We can easily incorporate the required index type by mixing-in the corresponding trait
(BTreeStore, HashStore), without necessitating modifications to any other part of the codebase.

4.5 Identifying Required Indices
So far, we enriched Flan with prevalent Datalog extensions, demonstrated the ease of implementing
different join strategies, and explored multiple index structures. Yet, the identification of necessary
indexes for operations, a crucial element intersecting all these, remains. Most existing systems
execute this step by conducting an analysis pass on their imperative IR [Sahebolamri et al. 2022;
Scholz et al. 2016; Subotic et al. 2018], but in our case, we do not construct such an IR.
One feasible approach is to simply create all possible indexes for all relations and rely on the

dead-code elimination (DCE) pass of LMS to discard any superfluous indexes in the final generated
code. This strategy would function as expected because the LMS IR meticulously tracks the effects,
thus enabling precise DCE for high-level data structures [Bračevac et al. 2023]. However, this
approach may not be optimal since it looks at each operation locally, and does not consider the
possibility of index sharing, hence, not minimizing index creation globally. Alternatively, we could
implement custom logic that computes the necessary indices based on the evaluation strategy.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:18 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

However, in this case, we would have to write this analysis separately for each evaluation strategy
and would need to modify it each time new features (e.g., fused traversals as discussed in Section 4.3)
are introduced, leading to a possible increase in maintenance complexity.

In Flan, we opted for a different approach: we perform a ‘dummy’ evaluation pass of the program
using a DummyStore in place of the standard Store. The DummyStore mirrors the Store’s API but,
rather than performing actual evaluations, it tracks the types of operations performed on each
relation. Further, we ensure it reifies, for instance, both branches of a conditional, by creating
dummy nodes in the IR (which don’t generate any code), and returning next-stage values (e.g.,
Rep[Boolean] for contains).

The process of gathering required indices via dummy evaluation happens in two stages. First, an
instance of a DummyStore is created and the program is ‘evaluated’ using the provided execution
strategy. Although this uses the actual evaluation logic (i.e., core Flan code), this is not an actual
evaluation, instead, this only collects the required indices for each relation. For example, when
encountering a call to store.contains(R, record), it will note the need for an index to facilitate a
contains check on relation 𝑅 for the fields record.schema. Once this dummy evaluation completes,
it will give us the set of required iter indexes (to support faster uniqueValues) and check indexes
(to support faster contains) for each relation.

After recording the operations performed on each relation, we can then create the minimal set
of indexes required for these operations taking into account the possibility of index sharing. Since
this dummy evaluation pass simply ‘runs’ the program, it is adaptable to any evaluation strategy,
join strategy, and so forth, making it unaffected by changes in other parts of the system.

4.6 Parallelization
We adopt an approach similar to Soufflé for parallelization [Jordan et al. 2019b]. Specifically, we
partition the outermost loop and execute the remaining rule evaluation in parallel using pthreads.
However, when a new tuple is found, it is crucial to ensure that inserts occur in a thread-safe
manner. To achieve this, we augment our hash index implementation to support parallel inserts by
utilizing a series of locks, with each lock corresponding to a region of the hash keys (similar to
StripedHashSet described in [Vu 2011]). Alternatively, we could achieve thread safety by relying on
atomic operations, specifically, atomic fetch-add and compare-and-swap. However, a comprehensive
discussion of this implementation is beyond the scope of this paper and thus omitted. Furthermore,
the experiments presented in Section 6 that involve parallel execution report the performance for
the aforementioned lock-based implementation.

5 CIPOLLA: A DATALOG DIALECT AS EMBEDDED DSL IN SCALA
In Section 4, we have presented the core of Flan, elucidating its ability to yield high performance
while offering a broad range of functionalities. Although the textual Datalog frontend we employed
(akin to Soufflé) facilitates the use across a variety of cases, as indicated in Section 1, certain use
cases mandate seamless interoperability with a fully-fledged programming language.
The declarative nature of Datalog and its fixpoint semantics make it ideal for writing program

analyses in a concise and clearermanner thanwriting them in a general-purpose language.Moreover,
when coupled with an efficient engine, these analysis can scale to extremely large programs and be
easily parallelized [Bravenboer and Smaragdakis 2009; Scholz et al. 2016]. Nevertheless, a growing
amount of works [Arntzenius and Krishnaswami 2016; Bembenek et al. 2020; Madsen et al. 2016;
Ryzhyk and Budiu 2019] is showing that it is possible use Datalog in a more diverse set of analyses,
when the language is extended with additional features. In particular, Madsen et al. [2016] have
identified the lack of support for UDFs and lattices as significant obstacles in applying Datalog to
a wider range of dataflow analysis problems. Additionally, the lack of integration with existing

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:19

class Atm: // body of rules
def ||(o: Atm): Atm = ...
def &&(o: Atm): Atm = ...
def where(cs: Constraints *): Atm = ...

type R1[T1] = Function1[T1, Atm]
type R2[T1, T2] = Function2[T1, T2, Atm]
// R3, R4, ...

def input[T1: Typ , T2: Typ](fname: String): R2[T1, T2] = ... // input relations

def rel[T:Typ](f: T => Atm): R1[T] = ...
def rel[T1:Typ , T2:Typ](f: (T1, T2) => Atm): R2[T1, T2] = ...// relations of different arities
... // other overloads

def exists[T:Typ](f: T => Atm): Atm = ... // introduction of vars
def exists[T1:Typ , T2:Typ](f: (T1, T2) => Atm): Atm = ... // (see Fig. 12b for an example)
... // other overloads

(a) Definitions for implementing Datalog-like declarative rules using standard Scala constructs.

.type Id

.decl edge(src: Id, dst: Id)

.input edge

.decl path(src: Id, dst: Id)

.output path

path(src , dst) :- edge(src , dst).
path(src , dst) :- edge(src , node),

path(node , dst).

type Id = Rep[Int]

def edge: R2[Id, Id] = input("Edge.facts")

def path: R2[Id, Id] =
rel { (src: Id, dst: Id) =>

edge(src , dst) ||
exists { (node: Id) =>

edge(src , node) && path(node , dst)
}

}

(b) Expressing path Datalog program (left) in our Scala embedding (right)

Fig. 12. The core of our embedded DSL in Scala for writing Datalog programs, with (a) illustrating the
definitions, and (b) displaying a sample program.

ecosystems complicates and renders interacting with Datalog computations inefficient, necessitating
serializing queries and input/output data back and forth. To overcome these, they propose Flix, a
full-fledged programming language with first-class support for Datalog. Bembenek et al. [2020]
demonstrate that combining Datalog with Satisfiability-Modulo Theory (SMT) solvers enables
writing more advanced and optimized SMT-based analyses. They propose Formulog, an extension
of Datalog featuring a first-order fragment of ML and support for SMT formulas.
On one side we have highly-optimized Datalog query engines, where extensions can only be

implemented by compiler writers. On the other, we move closer to general-purpose programming
languages featuring Datalog-like declarative subsets, which prioritize modularity and abstraction
at the expense of performance and require major engineering efforts to design and develop.

In this section, we reconcile these requirements, by embedding Datalog rules into LMS enabling
abstraction without performance costs through linguistic reuse [Rompf et al. 2012] of host lan-
guage (Scala) features. We will use concrete examples that have motivated the design of the Flix
language [Madsen et al. 2022] throughout the section.

5.1 Embedding in LMS Scala
As a baseline, one can use the interpreter/compiler presented in Section 4 as a separate process from
the main program. In this case, whenever the main program needs to evaluate a Datalog query, it
can invoke the Datalog compiler as an external solver, sending the program in textual format along
with the required data. The engine then compiles and evaluates the query, producing the result and
sending it back to the main program. But this has a lot of overhead due to the repeated back and
forth communication. Writing the main program in LMS instead already gives us some benefits
— evaluating a Datalog program can easily be done by calling the staged version of compute from

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:20 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

Fig. 5 as compute(parse(program), edbs, outputs). Code producing edbs and postprocessing the
outputs can be optimized jointly with the staged interpreter code.

Yet, adding support for lattices and other extensions still requires designing additional syntactic
constructs and typing rules. Instead, in Flan, we delegate these responsibilities to the host language,
by providing an embedding of Datalog rules into Scala, similarly to Scalogno [Amin et al. 2019].
Fig. 12a shows how we designed this Datalog embedding (named Cipolla) in Scala that we use
as a front end for Flan. An example Datalog program computing node reachability, as expressed
through this embedding, is shown in Fig. 12b. In this setup, rules are formulated as functions
wherein the arguments serve as the rule’s metavariables, and the function bodies represent clauses.
The rel combinator introduces relations of varying arities (R1, R2, etc). For instance, in Fig. 12b
L6, rel { (src: Id, dst: Id)... defines path as a relation comprising two fields, src and dst.
The argument function must produce an atom (Atm). Atoms are formed by applying relations —
binding the variables of the defining relation to other relations (e.g., L8 edge(src, dst)), or by
the disjunction (||) and conjunction (&&) of other atoms. These can also include constraints as
specified by where (examples involving such constraints are provided later). The exists function
introduces existential variables (variables that only appear on the right-hand side of a Datalog rule)
explicitly. Additionally, we employ a Typ typeclass to ensure that relations are only defined for
types supported by LMS’s Rep types. From this point forward, we omit this typeclass constraint. We
provide a query function that reifies the query into the AST format we used earlier for our textual
frontend (Fig. 4).
val reachable = query[Int , Int] { (src , dst) => reach.path(src , dst) }

This reification process is done by repurposing the LMS staging capabilities. Essentially, we
stage the program expressed in our embedding and construct the corresponding LMS IR. However,
instead of using LMS backend for code generation from this IR as we typically do, we extract
the LMS IR and transform it into our Datalog AST representation. Once the AST is derived, the
subsequent steps of the process follow the same as described in Section 4. Specifically, in the above
code, query will carry out the fixpoint computation and produce a second-stage buffer that can be
used to print or further process the pairs of reachable nodes.

This embedding already allows us to reap multiple benefits from a developer experience perspec-
tive. We inherently gain the perks of syntax highlighting, refactoring, and typing, facilitated by the
host language’s tooling. Scala’s type system automatically checks for ill-typed variable bindings
in atoms within the rules. Going a step further, we can reuse other features of the host language
such as case classes, pattern matching, polymorphism, and abstract methods when defining our
program, as we shall discuss below.
Polymorphism and Typeclasses The program below generalizes the path program to work

on any data-type T as long as a typeclass for Eq is available. Eq signifies that values of type T

should have an equality function enabling comparison with other T values, which is essential for
unification during rule evaluation. For example, PolyReachability[Int] would give us an instance
of reachability that operate on graphs with Int labeled edges. Another key thing to note below is
that the edge relation is left abstract such that users can provide different facts produced by means
other than loading from a file, e.g., as result of a different rule.
trait PolyReachability[T: Eq] extends DatalogModule:

def edge(src: T, dst: T): Atm
def path: R2[T, T] = rel { (src: T, dst: T) =>

edge(src , dst) ||
exists[T] { node =>

path(src , node) && edge(node , dst)
}

}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:21

We achieve the benefits of mixing declarative programming with conventional functional pro-
gramming as proposed by the Flix language [Madsen et al. 2022] leveraging host language abstrac-
tions. Moreover, by using LMS’s Rep types we achieve ‘abstraction without regret’ [Rompf and
Odersky 2010]: polymorphism and typeclasses are compiled away during staging and only code
essential to the computation is generated.
Higher-order Relations Moving forward, it becomes evident that the definition of path is

the transitive closure of edge. Therefore we can go ahead and rewrite our rules in terms of other
higher-order rules, similarly to how it can be done in Datafun [Arntzenius and Krishnaswami 2016]
and Scalogno [Amin et al. 2019].
def compose[A, B, C](r: R2[A, B], t: R2[B, C]): R2[A, C] = // Compose Rule: (simple join)

rel { (a: A, c: C) => // R(a,c) :- r(a,b), t(b,c)
exists[B] { b => r(a, b) && t(b, c) }

}
def transitive_closure[T](r: R2[T, T]): R2[T, T] = // defines transitive closure

rel { (x, y) => // using compose (above)
r(x, y) || // tc(x, y) :- r(x, y)

compose(r, transitive_closure(r))(x, y) // tc(x, y) :- r(x, b), tc(b, y)
}

def edge = ...
def path = transitive_closure(edge) // path: transitive closure of edge

The composemethod becomes a shorthand for joining two relations and transitive_closure enables
a more concise definition of path. Higher-order relations like the ones above enables us to rewrite
rule (2) from the points-to example as follows.
def pointsTo = rel { (x, y) =>

addressOf(x, y) || /* rule (1) from Fig. (3) */
compose(assign , pointsTo)(x, y) || /* rule (2) from Fig. (3), which is a simple join */
...

}

User-defined Functions Finally, we show how UDFs are integrated into the DSL. Given that we
reside within Scala, users can create their UDFs using familiar Scala syntax. The following snippet
shows an example where a UDF is used. Specifically, it shows a variant of the previously discussed
‘path’ program, wherein the edge has an extra attribute - label. The UDF serves as a predicate
constraint, determining whether a given edge, based on its label, should be included in the path.
trait PolyReachability[T, L] extends DatalogModule:

def edge: R3[T, L, T]

def pred: L => Rep[Boolean] // abstract declaration of the UDF

// path(src , dst) :- edge(src , dst , lab), pred(lab) = true
// path(src , dst) :- path(src , node), edge(node , lab , dst), pred(lab) = true
def path = rel { (src: T, dst: T) =>

exists[L] { lab => edge(src , lab , dst) where pred(lab)} ||
exists[T, L] { (node , lab) => path(src , node) && edge(node , lab , dst) where pred(lab) }

}

val reach = new PolyReachability[Int]:
def edge = ...
def pred = (lab: Rep[Float]) => lab > 0.5 // UDF implementation

val reachable: Buffer[Int] = query { (dst: Id) => reach.path(2, dst) } // query

Since the query performed looks for paths from a specific src (2 in this case), at staging time, the
concrete value of src will be used to generate the specialized code. Additionally the predicate
function is inlined in the fixpoint loop in the generated code, minimizing function call overhead.
As noted before, polymorphism is monomorphized during staging.

5.2 User-defined Lattices
With the aforementioned tight integration with the host language, adding extensions such as

user-defined lattices becomes trivial. Essentially, we can use regular Scala classes to define lattices,

2https://doc.flix.dev/lattice-semantics.html#using-lattice-semantics-to-compute-shortest-paths

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://doc.flix.dev/lattice-semantics.html#using-lattice-semantics-to-compute-shortest-paths

86:22 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

1 type Node = Rep[Int]
2 /* '@udd' indicating a lattice value */
3 @udd
4 case class D(x: Rep[Int])
5 /* defines lub - used for updates */
6 val lat = new JoinLattice[D]:
7 def lub = udf { (x: D, y: D) =>
8 val D(n1) = x
9 val D(n2) = y
10 D(n1 min n2)
11 }
12 /* UDF on lattice values */
13 def add = udf { (x: D, y: D) =>
14 val D(n1) = x
15 val D(n2) = y
16 D(n1 + n2)
17 }
18
19 def edge =
20 input[Node , Rep[Int], Node]("Edge.facts")
21
22 def dist(src: Node): R2[Node , D] =
23 rel { (dst , d) =>
24 dist(src , D(0)) ||
25 exists { (d1: D, d2: Rep[Int], x: Node) =>
26 dist(x, d1) && edge(x, d2, dst) where
27 (d `=` add(d1, D(d2)))
28 }
29 }

1 struct edge* edge_store = ...
2 /* index related data structures */
3 struct edge_ind* ind = ...
4 ...
5
6 // fixed point loop
7 bool changed = true;
8 while (changed) {
9 /* outer loops elided */
10 // x, d1, d2, to in context
11 // inlined udf
12 int value = d1 + d2;
13
14 // lattice update logic
15 int oldValue = ...; // retrieve
16
17 // inlined lub
18 // values are unboxed
19 int newValue = min(value , oldValue);
20
21 if (oldValue != newValue) {
22 // update the lattice ...
23 }
24 }

Fig. 13. Code on the left demonstrates the implementation of the shortest path using lattices and UDFs, iden-
tical to Flix.2 Unlike Flix, however, we generate highly specialized code that erases all high-level abstractions
such as case classes, pattern matching, extractors, etc. A portion of the generated code is displayed on the
right. Note that variables have been renamed for improved clarity.

regular Scala functions to define operations like least-upper bound for lattices, and regular Scala
functions to define any UDFs operating on lattices. We examine a relatively simple example of
using lattices alongside Datalog in Fig. 13 (left), which computes the shortest path from a given
source node to all other nodes in the graph (taken from the Flix documentation).

While it is possible to encode the same problem in regular Datalog (that uses the powerset lattice)
followed by an aggregation, this approach would be significantly slower, as it computes all possible
distance values for each pair rather than just the shortest distance. Instead, as demonstrated in
Fig. 13 (left), we can encode this problem using a user-defined lattice (L3) that maintains only the
shortest path observed so far (similar to Flix). Note the use of @udd in L3, a macro we employ to track
lattice types. Specifically, the value field of dist will now be a lattice value, and instead of retaining
all previously seen values, it will only store the smallest value (defined using the lub function in L
6) observed so far for a given ‘to’ value. Flan’s backend is modified to handle lattice relations (i.e.,
ones having a @udd typed column) separately, and to call the corresponding lub function whenever
new tuples are discovered. Moreover, whenever a new tuple triggers an update, we maintain these
in our delta indices to facilitate semi-naive evaluation.

Fig. 13 (right) displays an excerpt from the code generated by Flan for this Datalog program. A
crucial observation is that none of the abstractions used in defining the program on the left, such
as case classes, object extractors, UDFs, and so on, are present in the generated code. Instead, it
consists solely of operations on low-level primitive data types, native arrays, etc. ensuring that
no runtime costs are incurred for the abstractions employed when defining the Datalog program.
In Section 6.5, we evaluate the performance of programs that use these user-defined lattices and
observe that the code generated by Flan is significantly faster compared to other existing systems.
In this example, we saw a scenario in which an unbounded lattice D is employed to represent

the shortest distance, with ⊥ implicitly signified by non-existence. However, there are situations

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:23

where bounded lattices with an explicit representation of ⊤ are necessary. For instance, the strong-
update program analysis benchmark [Lhoták and Chung 2011] used in Section 6.5 makes use of
the constant propagation lattice, encompassing ⊥, a constant, and ⊤. In such cases, one option for
users is to define a member within the case class (which represents the lattice) to indicate whether
the current value is ⊤ or ⊥. This would translate to a C struct representation in the generated code.
Alternatively, users can use special values (e.g., INT_MAX for ⊤) to represent these.

6 EXPERIMENTS
In this section, we first evaluate the engineering effort associatedwith Flan and then the performance
of Flan in comparison to various state-of-the-art systems across a diverse range of benchmarks. Our
primary objective is to demonstrate that the use of staging for transforming a high-level interpreter
into a compiler successfully generates specialized code that achieves competitive performance with
other sophisticated Datalog compilers.

Our evaluation consists of three primary benchmarks. First, we select an existing simple points-to
analysis benchmark from Soufflé and use it to compare Flan against a variety of other established
systems. Next, we delve into a more comprehensive program analysis benchmarks from the Doop
framework [Bravenboer and Smaragdakis 2009]. Lastly, we explore a use case that combines lattice
semantics with Datalog and evaluate Flan’s performance against systems that support lattices.

6.1 Environment
We conduct all our experiments on a NUMA machine featuring 4 sockets, each with 24 Intel(R)
Xeon(R) Platinum 8168 cores and 750GB RAM per socket (3 TB in total), running Ubuntu 18.04.4
LTS. For multi-threaded executions, we employ numactl to ensure that processes are allocated
within the same NUMA node and utilize the nearest memory regions. Each experiment is run
five times, and we report the average across those five runs. We did not observe any significant
variance among each run for all systems, hence, we omitted the error bars from the plots. For all
experiments we have verified that all systems produce the same result. We use the most recent
releases of all baseline systems, specifically: Soufflé 2.3, Ascent 0.5.0, Crepe 0.1.8, and Flix 0.35.

6.2 Engineering Effort
Since we consistently emphasize Flan’s implementation simplicity throughout the paper, we now try
to evaluate this aspect of Flan. While it is very hard to quantify the engineering effort scientifically,
we have chosen lines of code (LOC) as a crude proxy for this evaluation. The table below illustrates
the additional LOC required for each extension. ‘Base’ refers to the staged version of the interpreter
initially introduced in Section 3, plus parsing, embedding (Section 5), other utilities like profiling
(e.g., measuring per-rule time), logging, output verification, etc.

Base +Features +Join Strategies +BTree +HashIndex Total

2197 +366 +130 +332 +1063 4088

The ‘+Features’ case encompasses the integration of user-defined aggregates, UDFs, negations,
constraints, etc. The added code pertains to the canonicalization process discussed in Section 4.2,
and the logic highlighted in Fig. 11. This also includes the addition of support for user-defined
aggregates, a feature recently added to Soufflé. Implementing this in Soufflé required over 1500
LOC modifications, impacting their declarative and imperative IRs, core engine mechanics, and
code synthesizer [Henry 2022]. In constrast, we accomplished the same functionality with fewer
than 50 lines of high-level Scala code. It is important to note, however, that this comparison is not
rigorously precise, as LOC do not always accurately reflect implementation complexities.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:24 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

Souffle Crepe Ascent Flan
(BT+B)

Flan
(BT+MW)

Flan
(H+B)

Flan
(H+MW)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

ec
on

ds
)

1223.13

H: Hash Index, BT: B-Tree
B: Binary Join, MW: Multi-way Join

Time (s) Soufflé Crepe Ascent Flan
BT+B BT+MW H+B H+MW

PointsTo 527.50 606.64 147.16 401.45 1223.13 241.96 69.97
Speedup 1.00 0.87 3.58 1.31 0.43 2.18 7.54

Fig. 14. Performance comparison between Flan
(our system, with different strategies) and var-
ious other Datalog compilers for a simple call-
insensitive, field-sensitive points-to analysis, for
single-threaded execution.

1 2 4 8 16 32
Threads

0

100

200

300

400

500

Ti
m

e
(s

ec
on

ds
)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
pe

ed
 u

p

B: Binary Join, MW: Multi-way Join
H: Hash Index

Flan (H+MW)
Flan (H+B)

Ascent
Souffle

Time (s) 1 2 4 8 16 32

Flan (H+MW) 69.97 54.27 31.29 19.48 11.67 8.92
Flan (H+B) 241.96 164.68 99.37 58.12 31.49 17.53
Ascent 147.16 95.78 49.93 23.65 12.56 8.88
Soufflé 522.18 356.55 183.87 93.04 46.93 26.51

Fig. 15. Performance of parallel execution for the
same benchmark in Fig. 14, comparing Soufflé and
Flan (for binary and multi-way joins). The lines
represent the scaling of each system relative to its
own single-threaded performance.

The ‘+Join Strategies’ denotes the addition of support for multi-way and binary joins, achieved by
creating two implementations of the trait Strategywith the variableOrder overridden, as detailed
in Section 4.3. ‘+BTree’ and ‘+HashIndex’ refers to the LOC added to implement the respective
index structures. As outlined in Section 4.4, for BTree, we simply created a wrapper around Soufflé’s
B-trees, whereas for HashIndex, we developed our own specialized version in Scala.

6.3 Simple Points-to Analysis
To evaluate performance relative to several other systems, we chose a relatively simple, openly
available benchmark from Soufflé3 that conducts a call-insensitive, field-sensitive points-to analysis
using Datalog on a provided synthetic dataset. This analysis includes roughly 7,000 facts each in
four EDB relations, two IDB relations, and five rules. We re-implemented these benchmarks in
Ascent and Crepe, whereas for Flan and Soufflé, we directly input the corresponding Datalog file
(Flan supports running Soufflé-style Datalog files directly). It is worth noting that this benchmark
does not incorporate any extensions such as UDFs, aggregations, constraints, negations, or others.

Fig. 14 presents the benchmark results. Flan incorporates both binary and multi-way joins, while
the rest of the baselines employ solely binary joins. Soufflé utilizes tree-based indices, which,
compared to the hash-based indices used by all other systems, has a higher asymptotic runtime
leading to longer execution times. Despite Crepe’s use of hash-based indices, it lags noticeably
behind Soufflé due to its reliance on generic hash table implementations, in contrast to Soufflé’s
data structures tuned for Datalog. Although Ascent generally uses binary joins, it employs a special
optimization for certain rule types. This optimization transforms the outermost join steps into a
form identical to multi-way joins. For instance, the performance-critical rules in this benchmark,
which account for 53% and 44% of total time, contain only two atoms in the body (each with two
variables), and performs a transitive closure. For these two rules, Ascent’s optimization results in a
join strategy identical to our multi-way joins, demonstrating a speedup of 3.25× over Soufflé.

The different execution strategies deployed in Flan showcase the distinct performance character-
istics of each. For both strategies, our specialized hash-index offers substantial performance gains
over their generic B-tree counterparts, yielding speedups of 17.5× and 1.66×. For this benchmark,

3https://github.com/souffle-lang/benchmarks/tree/acd6b9ec5043109fc1e6674e759a86164634e70b/benchmarks/pointsto

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://github.com/souffle-lang/benchmarks/tree/acd6b9ec5043109fc1e6674e759a86164634e70b/benchmarks/pointsto

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:25

antlr jython bloat luindex chart lusearch eclipse pmd fop xalan hsqldb
0

10

20

30

Ti
m

e
(s

)

B: Binary Join, MW: Multi-way Join
H: Hash Index

Souffle (1)
Souffle (4)

Souffle (8)
Souffle (16)

Flan (H+B) (1)
Flan (H+B) (4)

Flan (H+B) (8)
Flan (H+B) (16)

Flan (H+MW) (1)
Flan (H+MW) (4)

Flan (H+MW) (8)
Flan (H+MW) (16)

Time (𝑠) antlr jython bloat luindex chart lusearch eclipse pmd fop xalan hsqldb

Soufflé (1) 27.35 21.77 19.67 19.70 28.93 19.92 19.92 28.90 30.62 27.76 28.99
Flan (H+B) (1) 19.46 15.99 14.21 13.98 20.62 14.10 14.14 20.48 21.57 20.78 20.44
Flan (H+MW) (1) 19.95 16.38 14.59 14.40 21.17 14.51 14.45 20.92 22.06 21.00 21.01
Soufflé (4) 14.78 11.27 9.83 9.86 16.22 9.89 10.01 15.97 16.81 15.27 15.83
Flan (H+B) (4) 12.19 9.98 8.99 8.94 13.04 8.89 8.77 12.80 13.43 12.59 12.72
Flan (H+MW) (4) 12.38 10.16 9.10 9.00 13.25 9.05 8.97 13.34 13.70 12.91 12.98
Soufflé (8) 12.68 9.45 8.18 8.17 13.90 8.12 8.11 13.63 14.52 13.01 13.55
Flan (H+B) (8) 8.27 6.93 6.30 6.23 8.89 6.25 6.09 8.76 9.21 8.59 8.73
Flan (H+MW) (8) 8.45 6.98 6.24 6.17 8.96 6.21 6.20 8.91 9.28 8.72 8.91
Soufflé (16) 11.96 8.78 7.65 7.59 13.15 7.56 7.52 12.97 13.74 12.32 12.85
Flan (H+B) (16) 6.37 5.31 4.81 4.79 6.80 4.77 4.79 6.72 6.98 6.54 6.71
Flan (H+MW) (16) 6.48 5.39 4.88 4.85 6.98 4.87 4.75 6.80 7.24 6.64 6.75

Fig. 16. Performance comparison of our system (Flan) with Soufflé for the micro analysis variant of the Doop
program analysis toolchain. The value within parentheses indicates (index structure + join strategy), followed
by the number of threads used. The analysis is conducted on eleven programs from the DaCapo benchmark
suite. The table presents the execution times for each scenario.

multi-way joins perform significantly better than binary joins. Upon closer inspection, we observed
that the multi-way join strategy results in 23% fewer lookups compared to the binary join strategy
(3,914,693 vs 5,126,129) for the performance-critical rules. Interestingly, the multi-way join case
using B-trees notably underperforms compared to its binary join counterpart. This is because,
despite a smaller number of lookups, the total cost of lookups is higher in the multi-way join case.

Although not shown in Fig. 14, we experimented with a variant of our multi-way join that used
C++ standard library’s unordered maps. The result was an execution time of over 30 minutes,
an order of magnitude slower than our specialized hash-indexes. This disparity exemplifies the
efficiency of having fully-specialized index implementations.
Parallel Scaling Fig. 15 shows the results for parallel execution performance. For this, we

employed the same benchmark but varied the number of threads. Among prior systems, only
Soufflé, Ascent, and Flan support parallel execution. Flan consistently outperforms Soufflé across
all thread counts, achieving speedups ranging from 3× to 7.5× (compared to Soufflé with the same
number of threads). Moreover, Soufflé requires 8 to 16 threads to match Flan’s single-threaded
performance. In comparison to Ascent, Flan demonstrates significantly better performance for up
to 8 threads, achieving speedups of up to 2.1×, and remains competitive in 16 and 32 threads cases.

6.4 Doop: Points-to Analysis of Java Programs
We also investigated how each system’s performance scales in relation to its single-threaded
execution (depicted by a line graph in Fig. 15). All systems demonstrate good scalability as the
number of threads increases, with Soufflé scaling to 22.6×, Ascent to 16.5×, and Flan reaching 13.8×
(binary) and 7.8× (multi-way) at 32 threads. It is important to note that despite Soufflé’s better
scalability, it remains slower in absolute terms. Soufflé’s better scalability can be attributed to their
highly efficient concurrent index structures [Jordan et al. 2022] tailored for Datalog. Moreover, as
identified by McSherry et al. [2015], systems with higher overall overhead tend to scale better due to
the parallelization of overheads, which is likely another reason for Soufflé’s superior scaling. Ascent
uses the data parallelism-library Rayon [Rayon 2022] for parallel execution, which uses a work
stealing model. For index structures, Ascent uses the DashMap library [Wejdenstål 2022], which is
a highly-efficient concurrent hash table implementation in Rust. This allows Ascent to scale well as

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:26 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

cprog-5k cprog-10k cprog-15k
0

5

10

15

20

25

30

S
pe

ed
up

 w
.r.

t.
A

sc
en

t (
1)

Ascent (1)
Flan (B) (1)
Flan (MW) (1)
Ascent (16)
Flan (B) (16)
Flan (MW) (16)

Time (s) cprog-5k cprog-10k cprog-15k

Ascent (1) 2.99 52.19 268.15
Flan (B) (1) 0.28 4.17 27.95
Flan (MW) (1) 0.35 6.17 42.36
Ascent (16) 0.85 11.84 59.66
Flan (B) (16) 0.20 1.89 9.14
Flan (MW) (16) 0.22 2.53 12.91

Fig. 17. Performance evaluation for performing a strong-update analysis (implemented using user-defined
lattices) on three C programs. The left plot shows the normalized execution time with respect to Ascent
single-threaded time. The table on the right presents the actual execution times for each case.

the number of threads are increased. In contrast, as discussed in Section 4.6, Flan’s parallel data
structures are currently based on relatively simple lock-based segmented hash tables. We believe
the performance scalability can be further improved by utilizing more advanced concurrent index
structures as we discussed in Section 4.6.
In the previous section, we evaluated performance for a relatively simple points-to analysis

benchmark. In this section, we examine a more comprehensive benchmark, specifically choosing
the micro analysis from the Doop program analysis benchmark suite. This analysis consists of
389 relations (including 109 EDB relations) and 300 rules, employing various Datalog extensions
such as aggregation, negation, UDFs, and constraints. As done in prior similar studies [Antoniadis
et al. 2017; Zhao et al. 2020], we run this analysis on a selected set of programs from the DaCapo
benchmark suite [Blackburn et al. 2006a,b]. Doop extracts the facts for the EDB relations used in
the analysis from these programs, which can then be used to perform the analysis using Datalog.

We evaluate the performance of Flan only against Soufflé, as none of the other systems directly
support the analysis logic emitted by Doop or the various extensions used in the analysis logic.
We evaluate both single-threaded performance and parallel performance, running on 4, 8, and 16
threads. We observe similar performance traits to those of the prior experiment. Both join variants
of Flan utilizing specialized hash indices consistently outperform Soufflé. In particular, binary
joins demonstrate an average speedup of 1.45× (across all cases) with a peak speedup of 1.97×.
Meanwhile, multi-way joins show an average speedup of 1.42× and achieve a maximum speedup
of 1.91×. It is worth noting that the binary join strategy in Flan differs slightly from Soufflé’s since
we also perform intersections to short-circuit the loop nest as early as possible (as discussed in
Section 4.3). Although not included due to space limitations, we also conducted benchmarks on
a variant of binary joins that does not perform these intersections, which resulted in an average
speedup of 1.2× and a maximum speedup of 1.6× compared to Soufflé.

6.5 Strong-Update Points-to Analysis using Lattice Semantics
In this section, we evaluate the performance of a program analysis benchmark employing lattice
semantics. More specifically, we selected the strong-update points-to analysis, as introduced by
Lhoták and Chung [2011], which combines elements of flow-insensitive and flow-sensitive analysis.
This is achieved by employing a singleton-set lattice to propagate singleton sets in a flow-sensitive
manner. Our evaluation replicates the declarative implementation outlined in the work by Madsen
et al. [2016] (Figure 4 in that paper), which was originally implemented using Flix. We have
re-implemented this analysis both in Flan and Ascent.
We evaluate the performance of this benchmark on three sample C programs each having 5k,

10k, and 15k instructions, from which input relations AddrOf, Copy, etc. are extracted. Ascent has

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:27

previously demonstrated speedups of several orders of magnitude compared to Flix in similar
benchmarks [Sahebolamri et al. 2022]. Consequently, we omit the Flix numbers for this experiment.

Fig. 17 illustrates the performance of Flan compared to Ascent for this benchmark. Specifically,
it shows the normalized execution time with respect to Ascent’s single-threaded execution time for
both Flan and Ascent under single-threaded and 16-threaded execution settings. As in previous
experiments, we report Flan’s performance for both the multi-way and binary join strategies. In
single-threaded execution, Flan demonstrates significant speedups, with the multi-way strategy
achieving a maximum speedup of 8.5× and an average speedup of 7.8×. The binary join strategy in
Flan attains a maximum speedup of 12.5× (average speedup of 11×) compared to the single-threaded
performance of Ascent. When scaling up to 16 threads, Flan maintains its superior performance,
with the multi-way join strategy delivering a maximum speedup of 4.7× (average speedup of 4.4×).
Meanwhile, the binary joins in Flan achieves a maximum speedup of 6.5× (average speedup of
5.7×) when compared to their 16-threaded Ascent counterparts.
In this particular example, apart from the differences in join strategies as we discussed in

previous subsections, the other main difference between Ascent and Flan is the specialization
granularity. Ascent enables specialization for compiling the given Datalog rules, but any abstractions
associated with defining lattices, UDFs, etc. will still be present in the generated code. Conversely,
as seen in Fig. 13, Flan fully specializes the program, including any arbitrary programming logic
surrounding the Datalog logic. In this case, this includes abstractions related to user-defined lattices
and the corresponding UDFs. As a result, the generated code in Flan does not contain any of these
abstractions or UDFs (inlined), thereby eliminating any runtime cost associated with them.
The superior performance of Flan’s binary joins compared to multi-way joins in this specific

benchmark can be attributed to the higher selectivities of variable intersections. In essence, this
translates to a reduced amount of filtering or short-circuiting at each level within the loop nest in
the multi-way case. As a consequence, a higher number of total lookups is conducted compared
to the binary join case. It is important to note that this behavior can be highly dependent on the
specific program and input data.

In summary, in this section, we have observed that Flan achieves competitive performance, and
in some cases, significantly outperforms existing state-of-the-art systems across various types
of workloads. This validates our claim that staging can be utilized to transform a high-level
Datalog interpreter into a compiler that generates specialized code that achieves the same level of
performance as other sophisticated Datalog compilers with only a fraction of the engineering cost.

7 RELATEDWORK
Datalog for Program Analysis Datalog has been a popular choice for declarative program
analysis for quite some time [Benton and Fischer 2007; Bravenboer and Smaragdakis 2009; Hajiyev
et al. 2006; Hoder et al. 2011; Lam et al. 2005; Reps 1994; Smaragdakis and Bravenboer 2010;
Ullman 1989; Whaley et al. 2005; Whaley and Lam 2004]. bddbddb employs Binary Decision
Diagrams (BDDs) for evaluating Datalog rules; however, this representation is only effective
for specific problem structures, and its performance is highly dependent on variable ordering.
Soufflé [Scholz et al. 2016] is a high-performance Datalog engine that synthesizes specialized C++
code for a given Datalog program. As one of the most mature and widely used Datalog systems,
Soufflé offers a broad range of features, including specialized parallel data structures [Jordan et al.
2019a,b, 2022], provenance [Zhao et al. 2020], automatic index selection [Subotic et al. 2018],
incremental execution [Zhao et al. 2021], join order optimization [Arch et al. 2022], and more.
Owing to its maturity, Soufflé has been used not only in popular program analysis toolchains like
Doop [Bravenboer and Smaragdakis 2009; Smaragdakis and Balatsouras 2015] but also in other
domains such as binary disassembly [Flores-Montoya and Schulte 2020] and decompilation of smart

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:28 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

contracts [Grech et al. 2019]. However, as discussed in Sections 1 and 2, there are several limitations
in Soufflé’s code generation approach. RecStep [Fan et al. 2019] is a Datalog engine built on top of
the relational query engine QuickStep [Patel et al. 2018] and achieves competitive performance on
diverse workloads including graph analytics and program analysis. However, similar to Soufflé, it
lacks an expressive front end.
Several recent works have followed in Soufflé’s footsteps in developing Datalog compilers.

Crepe [Zhang 2020] and Ascent [Sahebolamri et al. 2022] are Datalog compilers embedded in Rust
using macros and employing quasi-quotations for code generation of a given Datalog program.
Eclair [Tielen 2023] is a Datalog compiler that translates Datalog programs into LLVM IR [Lattner
and Adve 2004]. However, all these code generation approaches suffer from similar limitations
to a certain degree as Soufflé (e.g., having to manage virtual registers when generating LLVM IR,
writing quoted code fragments, as opposed to writing high-level interpreter-style code). Differential
Datalog [Ryzhyk and Budiu 2019] (built atop Differential Dataflow [McSherry et al. 2013]) and
IncA [Szabó et al. 2016] are Datalog engines that support incremental execution. Notably, IncA is
tailored towards program analysis and has support for lattices [Szabó et al. 2018; Szabó et al. 2017].
Morever, IncA DSL has some superficial similarities to our Scala embedded DSL. Flan currently
lacks support for incremental execution, an avenue we plan to explore in future work. Drawing
upon previous work that maps e-matching [de Moura and Bjørner 2007; Willsey et al. 2021] into
conjunctive queries [Zhang et al. 2022], EggLog [Zhang et al. 2023; Zucker 2022] unifies equality
saturation with Datalog-style fixed point computations by baking in the notion of equivalence into
Datalog relations. Exploring how to expand Flan to support equality saturation in a similar manner
is an interesting future research direction. Both Zhang et al. [2022] and EggLog employ Generic
Joins [Ngo et al. 2018, 2013], a type of multi-way join algorithm that dynamically picks the atom
with lowest cardinality for variable iteration which leads to worst-case optimal joins.

BYODS [Sahebolamri et al. 2023], an extension to Ascent, offers a means to create user-defined
data structures for storing relations which also capture properties (e.g., transitivity) of the relations.
They have demonstrated significant performance improvements for certain types of program
analyses using this approach. We believe that a similar notion can be realized in Flan in a similar
way since Flan programs are fully interoperable with Scala, enabling users to employ Scala to
define and integrate such custom data structures. However, it is important to note that we have not
evaluated the plausibility or effectiveness of this approach in our current work.

Datalog Extensions Pure Datalog is not sufficiently expressive to cover a wide variety of declar-
ative program analysis tasks, and many existing systems propose various extensions. Flix [Madsen
et al. 2022, 2016] supports Datalog as first-class values in a relatively comprehensive programming
language and supports lattices beyond the powerset lattice, allowing more expressive analysis like
StrongUpdate [Lhoták and Chung 2011] analysis and, IFDS and IDE algorithms [Reps et al. 1995;
Sagiv et al. 1996]. Datafun [Arntzenius and Krishnaswami 2020, 2016], another language that pro-
vides support for lattices also has the ability to track monotonicity via types. Formulog [Bembenek
et al. 2020] extends Datalog with the ability to interact with a functional programming language
and the capability to use SMT constraints in rules, offloading them to a solver as necessary. These
approaches greatly enhance Datalog’s power and applicability across various domains. However,
most of these systems do not leverage techniques like specialized code generation, potentially
sacrificing performance. We believe that Flan-style compiler construction, closely resembling inter-
preters, would make it easier for such extensions to achieve their optimal performance. Functional
IncA [Pacak and Erdweg 2022] proposes the use of a functional programming with set-based
fixpoint-semantics as a frontend for Datalog. In this model, Datalog serves as an IR, with pro-
grams written in the functional language translated into Datalog and resolved through pre-existing
solvers. This approach contrasts with Flan’s approach, where the ‘general-purpose’ aspect of the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:29

computation is processed using the (general-purpose) host language, with the Datalog solver being
specifically employed for fixed point computations.
Query Compilation Our work is primarily inspired by prior research in relational query

compilation. Earlier such approaches [Freedman et al. 2014; Krikellas et al. 2010] relied on operator
templates (similar to Soufflé) and generated code by concatenating these templates based on
the query plan. Hyper [Neumann 2011], on the other hand, utilized the programmatic LLVM
API [Lattner and Adve 2004], achieving significant performance gains but at the expense of a more
low-level implementation. LB2 [Essertel et al. 2018; Tahboub et al. 2018] (an extension of [Rompf
and Amin 2015, 2019]) was based on generative programming [Rompf and Odersky 2010] and
achieved the same level of performance while keeping the operator interface simple. We draw
inspiration from these works and adapt the same ideas to Datalog-based program analysis.

8 CONCLUSION
We introduced Flan, a Datalog compiler constructed by partially evaluating a high-level Datalog
interpreter implemented in Scala. Utilizing the existing generative programming framework, LMS,
we generate fully specialized code, a feature that existing compilers lack, but paramount to perfor-
mance. Capitalizing on its seamless interoperability with Scala, we constructed a flexible frontend
that leverages Scala’s capabilities to add extensions. Moreover, we devised a streamlined operator
interface that effortlessly facilitates a variety of evaluation strategies and index structures.
One of the main limitations of Flan currently is that we perform only very limited plan-level

optimizations based on very simple heuristics. For instance, variable ordering of multi-way joins
is currently derived from a left associative binary join plan based on the rule specification and
uses hash indices by default. Users do have the option to specify their preferred join types and
index types using global flags that applies these changes to all rule evaluations. However, much
more sophisticated analysis and query planning could be done, for example, to choose between
multi-way and binary joins, and for picking good variable orderings, or for picking tree-based or
hash-based indices and so on at the granularity of each rule. For instance, as demonstrated in our
evaluation in Section 6, the most effective evaluation strategy (e.g., multi-way or binary joins),
often varies from one benchmark to another.
Flan achieves a commendable level of performance even in the absence of such clever query

planning. We believe that Flan could be coupled with any existing well-studied query planning
approach (e.g., using cardinality estimates to pick the index and join types, etc.) [Arch et al. 2022;
Subotic et al. 2018] to improve performance further. Moreover, it is possible to add support for
dynamic optimizations (e.g., adaptive join order optimization) using techniques such as on-stack
replacement as demonstrated in prior work [Essertel et al. 2021].
Another promising line of future work is on integrating SMT constraints into Flan in the

style of Formulog [Bembenek et al. 2020] that would unlock a wider range of static analysis
including symbolic execution. GenSym [Wei et al. 2020, 2023], a state-of-the-art symbolic execution
engine built using LMS, already equips LMS with functionalities to interface with SMT solvers.
Consequently, much of the essential infrastructure is already in place. This integration would
enable Flan to effectively function as a ‘compiled Formulog’ with minimal additional engineering
effort. We plan to explore the feasibility and the effectiveness of this approach in our future work.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their valuable feedback that helped improve
the paper significantly. We thank Mikail Khan for his valuable contributions to the early iterations
of the Flan implementation. We thank Guannan Wei, Oliver Bračevac, Patrick LaFontaine, and
Pratyush Das for their comments on earlier drafts. This work was supported in part by NSF awards

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

86:30 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

1553471, 1564207, 1918483, 1910216, DOE award DE-SC0018050, as well as gifts from Meta, Google,
Microsoft, and VMware.

REFERENCES
Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. EmptyHeaded:

A Relational Engine for Graph Processing. ACM Trans. Database Syst. 42, 4 (2017), 20:1–20:44.
Supun Abeysinghe, Fei Wang, Grégory M. Essertel, and Tiark Rompf. 2023. Architecting Intermediate Layers for Efficient

Composition of Data Management and Machine Learning Systems. CoRR abs/2311.02781 (2023).
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
Nicholas Allen, Bernhard Scholz, and Padmanabhan Krishnan. 2015. Staged Points-to Analysis for Large Code Bases. In CC

(Lecture Notes in Computer Science, Vol. 9031). Springer, 131–150.
Nada Amin, William E. Byrd, and Tiark Rompf. 2019. Lightweight Functional Logic Meta-Programming. In APLAS (Lecture

Notes in Computer Science, Vol. 11893). Springer, 225–243.
Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph. D. Dissertation. Citeseer.
Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017. Porting doop to Soufflé: a tale of inter-engine

portability for Datalog-based analyses. In SOAP@PLDI. ACM, 25–30.
Samuel Arch, Xiaowen Hu, David Zhao, Pavle Subotic, and Bernhard Scholz. 2022. Building a Join Optimizer for Soufflé. In

LOPSTR (Lecture Notes in Computer Science, Vol. 13474). Springer, 83–102.
Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey

Washburn. 2015. Design and Implementation of the LogicBlox System. In SIGMOD Conference. ACM, 1371–1382.
Michael Arntzenius and Neel Krishnaswami. 2020. Seminaïve evaluation for a higher-order functional language. Proc. ACM

Program. Lang. 4, POPL (2020), 22:1–22:28.
Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: a functional Datalog. In ICFP. ACM, 214–227.
Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query Plans for Relational Joins. In FOCS. IEEE

Computer Society, 739–748.
Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-based static analysis. Proc.

ACM Program. Lang. 4, OOPSLA (2020), 141:1–141:31.
William C. Benton and Charles N. Fischer. 2007. Interactive, scalable, declarative program analysis: from prototype to

implementation. In PPDP. ACM, 13–24.
Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2014. Julia: A Fresh Approach to Numerical Computing.

CoRR abs/1411.1607 (2014).
S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. 2006a. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems, Languages,
and Applications (Portland, OR, USA). ACM Press, New York, NY, USA, 169–190.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. 2006b. The DaCapo Benchmarks: Java Benchmarking Development and Analysis (Extended
Version). Technical Report TR-CS-06-01. http://www.dacapobench.org.

Ajay Brahmakshatriya and Saman P. Amarasinghe. 2021. BuildIt: A Type-Based Multi-stage Programming Framework for
Code Generation in C++. In CGO. IEEE, 39–51.

Ajay Brahmakshatriya and Saman P. Amarasinghe. 2022. GraphIt to CUDA Compiler in 2021 LOC: A Case for High-
Performance DSL Implementation via Staging with BuilDSL. In CGO. IEEE, 53–65.

Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and Tiark Rompf. 2023. Graph
IRs for Impure Higher-Order Languages: Making Aggressive Optimizations Affordable with Precise Effect Dependencies.
Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 236:1–236:31.

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In
OOPSLA. ACM, 243–262.

Ashok K. Chandra and David Harel. 1985. Horn Clauses Queries and Generalizations. J. Log. Program. 2, 1 (1985), 1–15.
Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2007. Efficient E-Matching for SMT Solvers. In CADE (Lecture Notes

in Computer Science, Vol. 4603). Springer, 183–198.
Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J. Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare:

Optimizing Apache Spark with Native Compilation for Scale-Up Architectures and Medium-Size Data. In OSDI. USENIX
Association, 799–815.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:31

Grégory M. Essertel, Ruby Y. Tahboub, and Tiark Rompf. 2021. On-stack replacement for program generators and source-to-
source compilers. In GPCE. ACM, 156–169.

Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris, and Jignesh M. Patel. 2019. Scaling-up
in-Memory Datalog Processing: Observations and Techniques. Proc. VLDB Endow. 12, 6 (Feb. 2019), 695–708.

Antonio Flores-Montoya and Eric M. Schulte. 2020. Datalog Disassembly. In USENIX Security Symposium. USENIX Associa-
tion, 1075–1092.

Craig Freedman, Erik Ismert, and Per-Åke Larson. 2014. Compilation in the Microsoft SQL Server Hekaton Engine. IEEE
Data Eng. Bull. 37, 1 (2014), 22–30.

Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann. 2020. Adopting Worst-Case
Optimal Joins in Relational Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891–1904.

Yoshihiko Futamura. 1971. Partial evaluation of computation process-an approach to a compiler-compiler. Systems,
Computers, Controls 25 (1971), 45–50.

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Gigahorse: thorough, declarative decompilation
of smart contracts. In ICSE. IEEE / ACM, 1176–1186.

Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. 2006. codeQuest: Scalable Source Code Queries with Datalog. In
ECOOP (Lecture Notes in Computer Science, Vol. 4067). Springer, 2–27.

Julien Henry. 2022. User defined aggregate. https://github.com/souffle-lang/souffle/pull/2282/files.
Krystof Hoder, Nikolaj S. Bjørner, and Leonardo Mendonça de Moura. 2011. 𝜇Z- An Efficient Engine for Fixed Points with

Constraints. In CAV (Lecture Notes in Computer Science, Vol. 6806). Springer, 457–462.
Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice

Hall.
Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019a. Brie: A Specialized Trie for Concurrent Datalog. In

PMAM@PPoPP. ACM, 31–40.
Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019b. A specialized B-tree for concurrent datalog

evaluation. In PPoPP. ACM, 327–339.
Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2022. Specializing parallel data structures for Datalog.

Concurr. Comput. Pract. Exp. 34, 2 (2022).
Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce F. Duba. 1986. Hygienic Macro Expansion. In LISP

and Functional Programming. ACM, 151–161.
Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code for holistic query evaluation. In ICDE.

IEEE Computer Society, 613–624.
Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots, Michael Carbin, and Christopher

Unkel. 2005. Context-sensitive program analysis as database queries. In PODS. ACM, 1–12.
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

San Jose, CA, USA, 75–88.
Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,

Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.

Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with efficient strong updates. In POPL. ACM,
3–16.

Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu Ra-
makrishnan, Timothy Roscoe, and Ion Stoica. 2006. Declarative networking: language, execution and optimization. In
SIGMOD Conference. ACM, 97–108.

Magnus Madsen, Jonathan Starup, and Ondrej Lhoták. 2022. Flix: A Meta Programming Language for Datalog. In Datalog
(CEUR Workshop Proceedings, Vol. 3203). CEUR-WS.org, 202–206.

Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to flix: a declarative language for fixed points on
lattices. In PLDI. ACM, 194–208.

Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability! But at what COST?. In HotOS. USENIX
Association.

Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013. Differential Dataflow. In CIDR.
www.cidrdb.org.

Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, and
Alexander B. Wiltschko. 2019. AutoGraph: Imperative-style Coding with Graph-based Performance. InMLSys. mlsys.org.

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB Endow. 4, 9 (2011),
539–550.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case Optimal Join Algorithms. J. ACM 65, 3 (2018),
16:1–16:40.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://github.com/souffle-lang/souffle/pull/2282/files

86:32 Supun Abeysinghe, Anxhelo Xhebraj, and Tiark Rompf

Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2013. Skew strikes back: new developments in the theory of join algorithms.
SIGMOD Rec. 42, 4 (2013), 5–16.

André Pacak and Sebastian Erdweg. 2022. Functional Programming with Datalog. In ECOOP (LIPIcs, Vol. 222). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:28.

Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu, and
Saket Saurabh. 2018. Quickstep: A Data Platform Based on the Scaling-Up Approach. Proc. VLDB Endow. 11, 6 (2018),
663–676.

Rayon. 2022. Rayon: A data parallelism library for Rust. https://github.com/rayon-rs/rayon.
Thomas W. Reps. 1994. Solving Demand Versions of Interprocedural Analysis Problems. In CC (Lecture Notes in Computer

Science, Vol. 786). Springer, 389–403.
Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In POPL. ACM Press, 49–61.
Tiark Rompf and Nada Amin. 2015. Functional pearl: a SQL to C compiler in 500 lines of code. In ICFP. ACM, 2–9.
Tiark Rompf and Nada Amin. 2019. A SQL to C compiler in 500 lines of code. J. Funct. Program. 29 (2019), e9.
Tiark Rompf, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky. 2012. Scala-Virtualized: linguistic reuse for

deep embeddings. High. Order Symb. Comput. 25, 1 (2012), 165–207.
Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: a pragmatic approach to runtime code generation

and compiled DSLs. In GPCE. ACM, 127–136.
Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda,

Kunle Olukotun, and Martin Odersky. 2013. Optimizing data structures in high-level programs: new directions for
extensible compilers based on staging. In POPL. ACM, 497–510.

Leonid Ryzhyk andMihai Budiu. 2019. Differential Datalog. InDatalog (CEURWorkshop Proceedings, Vol. 2368). CEUR-WS.org,
56–67.

Shmuel Sagiv, Thomas W. Reps, and Susan Horwitz. 1996. Precise Interprocedural Dataflow Analysis with Applications to
Constant Propagation. Theor. Comput. Sci. 167, 1&2 (1996), 131–170.

Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher Micinski. 2023. Bring Your Own Data Structures to
Datalog. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 264:1–264:26.

Arash Sahebolamri, Thomas Gilray, and Kristopher K. Micinski. 2022. Seamless deductive inference via macros. In CC.
ACM, 77–88.

Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On fast large-scale program analysis in Datalog.
In CC. ACM, 196–206.

Bernhard Scholz, Kostyantyn Vorobyov, Padmanabhan Krishnan, and Till Westmann. 2015. A Datalog Source-to-Source
Translator for Static Program Analysis: An Experience Report. In ASWEC. IEEE Computer Society, 28–37.

Jiwon Seo, Stephen Guo, and Monica S. Lam. 2015. SociaLite: An Efficient Graph Query Language Based on Datalog. IEEE
Trans. Knowl. Data Eng. 27, 7 (2015), 1824–1837.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and Christoph Koch. 2016. How to
Architect a Query Compiler. In SIGMOD Conference. ACM, 1907–1922.

Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. 2016. Big Data
Analytics with Datalog Queries on Spark. In SIGMOD Conference. ACM, 1135–1149.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found. Trends Program. Lang. 2, 1 (2015), 1–69.
Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for Fast and Easy Program Analysis. In Datalog (Lecture

Notes in Computer Science, Vol. 6702). Springer, 245–251.
Pavle Subotic, Herbert Jordan, Lijun Chang, Alan D. Fekete, and Bernhard Scholz. 2018. Automatic Index Selection for

Large-Scale Datalog Computation. Proc. VLDB Endow. 12, 2 (2018), 141–153.
Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing lattice-based program

analyses in Datalog. Proc. ACM Program. Lang. 2, OOPSLA (2018), 139:1–139:29.
Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: a DSL for the definition of incremental program analyses.

In ASE. ACM, 320–331.
Tamás Szabó, Markus Voelter, and Sebastian Erdweg. 2017. IncAL: A DSL for Incremental Program Analysis with Lattices.

In Proceedings of the International Workshop on Incremental Computing (IC).
Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annotations. In PEPM. ACM, 203–217.
Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect a Query Compiler, Revisited. In SIGMOD

Conference. ACM, 307–322.
Luc Tielen. 2023. Eclair-lang. https://github.com/luc-tielen/eclair-lang.
Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems, Volume I. Principles of computer science series,

Vol. 14. Computer Science Press.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://github.com/rayon-rs/rayon
https://github.com/luc-tielen/eclair-lang

Flan: An Expressive and Efficient Datalog Compiler for Program Analysis 86:33

Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems, Volume II. Computer Science Press. 984–987
pages.

Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In ICDT. OpenProceedings.org, 96–106.
Jodat Vu. 2011. The art of multiprocessor programming by Maurice Herlihy and Nir Shavit. ACM SIGSOFT Softw. Eng. Notes

36, 5 (2011), 52–53.
Yisu Remy Wang, Max Willsey, and Dan Suciu. 2023. Free Join: Unifying Worst-Case Optimal and Traditional Joins. Proc.

ACM Manag. Data 1, 2 (2023), 150:1–150:23.
Guannan Wei, Oliver Bracevac, Shangyin Tan, and Tiark Rompf. 2020. Compiling symbolic execution with staging and

algebraic effects. Proc. ACM Program. Lang. 4, OOPSLA (2020), 164:1–164:33.
Guannan Wei, Yuxuan Chen, and Tiark Rompf. 2019. Staged abstract interpreters: fast and modular whole-program analysis

via meta-programming. Proc. ACM Program. Lang. 3, OOPSLA (2019), 126:1–126:32.
Guannan Wei, Songlin Jia, Ruiqi Gao, Haotian Deng, Shangyin Tan, Oliver Bracevac, and Tiark Rompf. 2023. Compiling

Parallel Symbolic Execution with Continuations. In ICSE. IEEE, 1316–1328.
Joel Wejdenstål. 2022. DashMap. https://github.com/xacrimon/dashmap.
John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using Datalog with Binary Decision Diagrams for

Program Analysis. In APLAS (Lecture Notes in Computer Science, Vol. 3780). Springer, 97–118.
JohnWhaley andMonica S. Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision diagrams.

In PLDI. ACM, 131–144.
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast

and extensible equality saturation. Proc. ACM Program. Lang. 5, POPL (2021), 1–29.
Eric Zhang. 2020. ekzhang/crepe: Datalog compiler embedded in Rust as a procedural macro. https://github.com/ekzhang/

crepe.
Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max Willsey.

2023. Better Together: Unifying Datalog and Equality Saturation. CoRR abs/2304.04332 (2023).
Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022. Relational e-matching. Proc. ACM Program. Lang.

6, POPL (2022), 1–22.
David Zhao, Pavle Subotic, Mukund Raghothaman, and Bernhard Scholz. 2021. Towards Elastic Incrementalization for

Datalog. In PPDP. ACM, 20:1–20:16.
David Zhao, Pavle Subotic, and Bernhard Scholz. 2020. Debugging Large-scale Datalog: A Scalable Provenance Evaluation

Strategy. ACM Trans. Program. Lang. Syst. 42, 2 (2020), 7:1–7:35.
Philip Zucker. 2022. Logging an Egg: Datalog on E-Graphs (EGRAPHS 2022). 1–6.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 86. Publication date: January 2024.

https://github.com/xacrimon/dashmap
https://github.com/ekzhang/crepe
https://github.com/ekzhang/crepe

	Abstract
	1 Introduction
	2 Why Generative Programming?
	3 A Datalog Interpreter
	3.1 Datalog
	3.2 Stratification
	3.3 Stratum Evaluation
	3.4 Rule Evaluation
	3.5 Record Store

	4 Flan: Datalog Compiler
	4.1 Deriving a Datalog Compiler from the Interpreter
	4.2 Beyond Pure Datalog
	4.3 Join Strategies
	4.4 Indices: BTree and Hash Indexes
	4.5 Identifying Required Indices
	4.6 Parallelization

	5 Cipolla: A Datalog Dialect as Embedded DSL in Scala
	5.1 Embedding in LMS Scala
	5.2 User-defined Lattices

	6 Experiments
	6.1 Environment
	6.2 Engineering Effort
	6.3 Simple Points-to Analysis
	6.4 Doop: Points-to Analysis of Java Programs
	6.5 Strong-Update Points-to Analysis using Lattice Semantics

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

