
Rhyme: A Data-Centric Expressive Query
Language for Nested Data Structures

Supun Abeysinghe[0000−0001−6054−2432] and Tiark Rompf[0000−0002−2068−3238]

Purdue University, West Lafayette IN 47906, USA
{tabeysin,tiark}@purdue.com

Abstract. We present Rhyme, an expressive language designed for high-
level data manipulation, with a primary focus on querying and transform-
ing nested structures such as JSON and tensors, while yielding nested
structures as output. Rhyme draws inspiration from a diverse range of
declarative languages, including Datalog, JQ, JSONiq, Einstein summa-
tion (Einsum), GraphQL, and more recent functional logic programming
languages like Verse. It has a syntax that closely resembles existing ob-
ject notation, is compositional, and has the ability to perform query
optimization and code generation through the construction of an inter-
mediate representation (IR). Our IR comprises loop-free and branch-free
code with program structure implicitly captured via dependencies. To
demonstrate Rhyme’s versatility, we implement Rhyme in JavaScript (as
an embedded DSL) and illustrate its application across various domains,
showcasing its ability to express common data manipulation queries, ten-
sor expressions (à la Einsum), and more.

Keywords: Declarative query languages · Logic programming · Tensor
expressions · Multi-paradigm languages · Rhyme.

1 Introduction

Declarative programming represents a paradigm in which users articulate what
computation needs to be performed, without the explicit specification of the pro-
cedural steps required for its execution. Declarative programming languages find
application across a diverse array of domains. Notable examples include SQL,
employed for data querying and manipulation, Datalog [14], used for data query-
ing as well as in domains like declarative program analysis [21,28,34] and binary
decompilation [16], Einstein notation (or similar domain specific languages [35])
for expressing tensor computations mathematically, and GraphQL [19] for data
querying within the context of web application front-ends, and so on.

In practical scenarios where diverse paradigms of workloads are combined
(e.g., data frames + tensors), the necessity arises to employ multiple query
languages or systems in tandem. Each of these languages interfaces with the
respective engines tasked with handling individual workloads. However, this ap-
proach is inherently inefficient, both from a performance perspective, due to
the reliance on multiple isolated backends, and from a programmer productivity

Meta
Programming

Rhyme
AST Rhyme IR Code

(JavaScript)
(JSON)

External toolsPipe API

Textual
API

JavaScript
(embedded DSL)

Extract dependencies Resolve looping structure

Create IR instructions

Fig. 1: End-to-end workflow of Rhyme, with green markers indicating various
entry points leading to the common entry point, Rhyme AST. The Rhyme AST
can be constructed directly from external tools or via metaprogramming using
different APIs. This AST serves as the basis for generating an IR (with depen-
dencies), driving subsequent code generation.

standpoint, as it necessitates learning and maintaining code written in multiple
query languages.

A promising approach to address the performance challenge is to construct
common intermediate layers across multiple domain-specific systems [8, 27, 32].
In such cases, the respective query languages or system interfaces for different
domains act as frontends that emit fragments of intermediate representation (IR)
logic corresponding to their portion of the computation. These IR fragments
are then assembled to create a unified IR for the combined workload, allowing
for global optimizations and the generation of a unified executable. However,
a common limitation in these systems is the requirement for individual system
developers to implement all their operators using a limited set of generic IR
operators, which becomes a bottleneck in practice [8].

In this work, we address this challenge by introducing a unified query lan-
guage, named Rhyme 1, that comprises a general substrate capable of accom-
modating a wide array of different use cases. While our approach shares some
similarities with the idea of constructing common IRs, it distinguishes itself by
focusing on a higher-level, more expressive common substrate. This distinction
allows for the intuitive expression of various workload paradigms, as elaborated
throughout the paper. Rhyme takes inspiration from many existing declarative
languages including GraphQL, JQ [3], XQuery [4], JSONPath [18], Einstein no-
tation, Datalog, recent functional logic programming languages like Verse [10],
etc. Rhyme is designed to serve as an expressive language for high-level data ma-
nipulation, enabling the querying and transformation of nested data structures
(e.g., JSON, tensors) and producing nested structures as output.

There are several key defining characteristics of Rhyme. First, Rhyme adopts
a query syntax that closely mirrors existing object notation, meaning that queries
are essentially expressed as JSON objects. Second, Rhyme is designed in a way
that permits query optimization and code generation via the construction of
an intermediate representation (IR). This IR contains loop-free and branch-free
code with dependencies that implicitly capture the program structure. Third,
Rhyme is compositional and easy to meta-program, recognizing that data trans-
formation queries are typically used as part of larger programs and are often
generated programmatically.
1 https://rhyme-lang.github.io

2

https://rhyme-lang.github.io

// input dataset
let data = [
{key: "A", val: 10},
{key: "B", val: 15},
{key: "A", val: 25}

]
// query
sum('data.*.val')
// AST constructed from the query:
{agg: 'sum', param: 'data.*.val'}
// result: 50

tmp[0] ??= 0

tmp[0] += inp['data'][*]['val']

data.*

Generators Assignments

1 let tmp = {}
2 // ??= is assign if null operator
3 tmp[0] ??= 0

4 for (let star in data) {
5 tmp[0] += data[star]['val']
6 }
7 return tmp[0]

(a) A query computing the sum of all values

// query
{
total: sum('data.*.val'),
'data.*.key': sum('data.*.val')

}
// AST constructed from the query:
{
total:
{agg: 'sum', param: 'data.*.val'},

'data.*.key':
{agg: 'sum', param: 'data.*.val'}

}
// result:
// { total: 50,
// 'A': 35,
// 'B': 15 }

tmp[0] ??= 0

tmp[0]['total'] += data[*]['val']

data.*

tmp[0][data[*]['key']] ??= 0

tmp[0]['total'] ??= 0

tmp[0][data[*]['key']] +=
inp['data'][*]['val']

1 let tmp = {}
2 tmp[0] ??= {}
3 tmp[0]['total'] ??= 0
4

5 for (let star in data) {
6 tmp[0]['total'] += data[star]['val']
7 tmp[0][data[star]['key']] ??= 0
8 tmp[0][data[star]['key']] += data[star]['val']
9 }

10 return tmp[0]

(b) A query computing sum of all values (total) and sum per each key

// query
{
'data.*A.key': div(sum('data.*A.val'),

sum('data.*B.val'))
}
// AST constructed from the query:
{
'data.*.key': {
path: 'div',
param: [
{agg: 'sum', param: 'data.*A.val'},
{agg: 'sum', param: 'data.*B.val'}

]
}

}

// result:
// {'A': 0.7, 'B': 0.3}

tmp[0] ??= {}

data.*A

data.*B

tmp[1] ??= {}

tmp[2] ??= {}

tmp[2] += data[*B]['val']

tmp[1][data[*A]['key']] ??= 0

tmp[1][data[*A]['key']] +=
data[*A]['val']

tmp[0][data[*A]['key']] =
tmp[1][data[*A]['key']] / tmp[2]

1 let tmp = {}
2 tmp[1] ??= {}
3 tmp[2] ??= 0
4

5 for (let starB in data) { // loop hoisted!
6 tmp[2] += data[starB]['val']
7 }
8
9 tmp[0] ??= {}

10 for (let starA in data) {
11 tmp[1][data[starA]['key']] ??= 0;
12 tmp[1][data[starA]['key']] +=

data[starA]['val']
13 tmp[0][data[starA]['key']] =

tmp[1][data[starA]['key']] / tmp[2]
14 }
15 return tmp[0]

(c) A query computing key-specific relative aggregate proportions

Fig. 2: The end-to-end workflow of Rhyme for three queries, starting with the
query and the corresponding AST (left; Section 2.5), followed by the construction
of the IR (center; Section 4.1), and the final generated code (right).

Figure 1 provides an overview of the end-to-end workflow of Rhyme. The cen-
tral point of entry into this workflow is the Rhyme AST (Section 2.5). Notably,
this AST is represented in JSON format and is hence serializable, enabling the
ability to be exported/imported from various other environments. We implement
Rhyme as an embedded DSL in JavaScript (JS), which constructs the Rhyme
AST from Rhyme queries. Additionally, alternative interfaces can be used, such
as pipes (Section 3.1), or entirely textual inputs that can be processed by a
parser to construct the same AST. Once the AST is constructed, it gets trans-
formed into Rhyme IR. During this transformation, declarative query operators
are mapped to IR instructions along with their dependencies. Subsequently, this
IR is used to analyze the looping structure and generate the final code.

3

Consider the query in Figure 2a. In Rhyme, data.*.val is called a path ex-
pression, a notation inspired by JSONPath [18]. The * symbol serves as an
iterator, facilitating iteration through the val values, while the aggregator sum

calculates the sum of these iterated values. Rhyme’s IR (shown in the center)
consists of two main types of operators. First, it has generators (represented as
rounded rectangles), which represents iterators that enumerate a list of items (ul-
timately translated into loops in the generated code). In our example, data.* is a
generator, iterating values from the data object. Second, the IR has assignments
(represented as rectangles), comprising the computations required for executing
the query. In the case of our first query, the initialization logic tmp[0] ??= 0 and
the subsequent sum computation tmp[0] += ... are assignments.

Notably, the IR operates without the need for explicit control flow constructs.
Instead, the program’s structure is implicitly inferred through dependencies. For
our example query, the assignment tmp[0] += ... has dependencies to both the
initializer (because initialization must come first) and the generator (because its
operand is the iterated value). Additionally, it is worth noting that computations
are performed on temporary state variables (tmp[0] in the first example). This
approach, utilizing intermediate temporaries, draws inspiration from works such
as RPAI [7] and DBToaster [22]. These systems utilize such state variables to
maintain values for various sub-queries of the main query, which are then used to
compute the final result. Finally, the IR is translated into JS code (and eventually
run using eval()), taking dependencies into account to extract the program
structure and performing optimizations as part of this transformation process.

Figure 2b and Figure 2c illustrate two additional queries executed on the
same dataset. Specifically, in Figure 2b, we compute both the total sum of all val-
ues (similar to the query in Figure 2a) and the sum of values per key, effectively
a group-by sum operation. A key characteristic of Rhyme lies in the contextual
interpretation of expressions such as sum(data.*.val). That is, the semantics of
this expression differs depending on its context. This is similar to local unifica-
tion semantics in Verse [10]. For instance, when it is nested within {data.*.key:

...}, the expression signifies a group-by sum operation. Conversely, if it is not
nested within an iterator (i.e., *), it calculates the aggregate over the entire set of
values. This distinction is exemplified in the query presented in Figure 2c. Here,
sum(data.*A.val) is nested within {data.*A.key: ...}, signifying a group-by
aggregate operation. Conversely, sum(data.*B.val) computes a total aggregate,
as it is not nested within a *B iterator.

Additionally, Figure 2c also demonstrates an optimization that occurs at the
IR level. Specifically, even though the sum(data.*B.val) appears as a nested sub-
query in the original query, the Rhyme backend can determine that the generated
*B can be hoisted out as a separate loop by analyzing the IR dependencies. This
is essentially similar to sub-query hoisting that happens at the logical plan level
in other traditional query optimizers.

These examples provide a broad overview of Rhyme’s functionalities and its
syntactic structure. In the subsequent sections of this paper, we will delve deeper
into the syntax and capabilities of Rhyme and discuss the process of IR con-

4

struction and code generation. Moreover, the previous example queries focused
on Rhyme’s capability to express analytical queries on JSON objects. However,
Rhyme covers an even broader spectrum of use cases, including the ability to
express tensor computations and declaratively specify visual components (e.g.,
tables, charts) of web applications.

Our specific contributions are as follows.

– We introduce the syntax of Rhyme, showcasing the ability to express common
data manipulation operators such as selections, group-bys, joins, user-defined
functions (UDFs), and others (Section 2).

– We highlight the versatility of Rhyme across various use cases, including the
expression of visual elements in web applications (e.g., tables, charts using
SVG), declarative tensor computations (akin to Einsum), and alternative
‘pipe’ APIs via metaprogramming (Section 3).

– We elucidate the process of lowering queries into an IR that features loop-free
and branch-free code, with dependencies implicitly representing the program
structure. Then, we illustrate how this IR facilitates code generation by
constructing the optimal program structure from dependencies (Section 4).

– We evaluate the performance of Rhyme on several JSON analytics workloads
to demonstrate the effectiveness of our code generation approach (Section 5).

We discuss related work in Section 6, followed by conclusions and potential
future research directions in Section 7.

2 The Rhyme Query Language

In the previous section, we saw Rhyme in action for a set of relatively simple
queries. In this section, we will introduce the syntax of Rhyme, illustrating how it
facilitates the expression of common data manipulation operations like selections,
aggregates, group-bys, and so on. The formal grammar is shown in Figure 3. The
rest of this section illustrates how each of these components are used to express
different kinds of queries. To improve understanding, we will employ a running
illustrative example dataset, as depicted below. The dataset contains populations
of several major cities, along with the respective country. Our chosen dataset is
deliberately kept simple, devoid of intricate nested structures. However, Rhyme
has the capacity to seamlessly query nested JSON data in the same way. We will
see such examples later in Section 3.

let data = [
{country: "Japan", city: "Tokyo", population: 14},
{country: "China", city: "Beijing", population: 22},
{country: "France", city: "Paris", population: 3},
{country: "UK", city: "London", population: 9},
{country: "Japan", city: "Osaka", population: 3},
{country: "UK", city: "Birmingham", population: 2}

]

5

Ident ::= [a-zA-Z_][a-zA-Z0-9_]∗

Num ::= [0-9]+

Var ::= * Ident
ScalarOp ::= get | apply | plus | minus

| div | fdiv | times | mod

ReductionOp ::= sum | count | max | min

| first | last | array

Atom ::= Ident | Num | Var

Path ::= Atom (. Atom)∗

Expr ::= Path
| Expr ScalarOp Expr
| ReductionOp (Expr)
| [Expr]

| { (Path : Expr)∗ }
Query ::= Expr

Fig. 3: Syntax for expressing Rhyme queries.

2.1 Basics

First we will look at how to perform several basic query operations on the afore-
mentioned dataset. For instance, if we want to select a particular key of the
dataset at a given index, we can use the following syntax.
'data.2.country' // result: France
{first : 'data.0.country'} // result: {first: Japan}

Here, the reference data refers to the dataset object, and can be simply
indexed through integer indices. Furthermore, specific keys can be selected by
specifying the desired key names (e.g., .country). Notably, Rhyme offers the
convenience of the familiar JS-like syntax for constructing structured output
from extracted values, as exemplified in the second instance.

While this form of explicit indexing into the array can be useful for several use
cases, generally, queries involve some form of iterating over the dataset. Rhyme
offers this capability through the * operator, serving as an implicit iteration op-
erator. Moreover, as we saw in Figure 2c, we can perform controlled iteration
with multiple generator symbols (e.g., *A, *B, etc.). In fact, these generator sym-
bols behave like logic variables in Datalog, Prolog, and other logic programming
languages as we see in Section 3.2. Below, we present three example queries that
leverage iterators and compute aggregates over the iterated values.
['data.*.city'] // result: [Tokyo, Beijing, ..., Birmingham]
sum('data.*.population') // result: 53
max('data.*.population') // result: 22

These queries are self-explanatory in nature. In the first example, we illustrate
a scenario where an array can be constructed from the values obtained through
iteration, employing the [...] syntax. Moreover, users can compute aggregates
over the iterated values using the relevant aggregate functions, such as sum, max,
and so forth. As discussed previously, these queries can be used as parts of object
construction logic and combined flexibly, as shown below.
{ total: sum('data.*.population'),
highest: max('data.*.population') }

// result:
// {total: 53, highest: 22}

2.2 Group By
Another vital query operator, especially relevant to JSON-style objects, is the
group-by query. Rhyme offers an intuitive means of implicitly expressing group-

6

bys. The following query exemplifies this, grouping records based on the country

attribute and subsequently calculating the total population for each group:
{ 'data.*.country': sum('data.*.population') }
// result: {Japan: 17, China: 22, France: 3, UK: 11}

Here, specifying {data.*.country: ...} as the key implies that any iteration
carried out within this key utilizing the same iterator (*) is performed for records
with each unique value of country separately. The next example shows how to
use this form of grouping to compute aggregates at different levels. It computes
the total population of all records, breaks it down by country, and subsequently
computes the population proportion of each city with respect to total population:
let query = {
total: sum('data.*.population'), // total population
'data.*.country': {
total: sum('data.*.population'), // population per country
'data.*.city': div(sum('data.*.population'), // population proportion

sum('data.*A.population'))} // (per each city)
}
// result: {total: 53, Japan: {total: 17, Tokyo: 0.26, Osaka: 0.06}, ...}

In the given query, the sum('data.*.population') at each query level com-
putes distinct results: total population, total population per country, and popu-
lation per city, respectively. If we had multiple population values for a given city
(e.g., county data), then the last aggregation would compute the per city sum.
As previously discussed, since sum('data.*A.population') is not nested within
a *A key, it performs a total aggregation, which sums all the population val-
ues. It is worth noting that our implementation employs calls like div for some
operators since it functions as an embedded DSL in JS. In a textual frontend,
the query could appear even more concise, using standard operators like / for
division.

2.3 Join
Joins are another fundamental operator in data querying. To illustrate how joins
work in Rhyme, consider the following new dataset named other, which includes
information about the region to which each country belongs:
let other = [
{country: "Japan", region: "Asia"},
{country: "China", region: "Asia"},
{country: "France", region: "Europe"},
{country: "UK", region: "Europe"},

]

Now, consider a scenario where we aim to compute aggregate population
values based on regions. For this, we must perform a join between our original
data and this new other object to acquire the corresponding region for each
country. The following Rhyme query illustrates how this is expressed.
let countryToRegion = { // create a mapping of
'other.*O.country': 'other.*O.region' // country -> region

}
let query = {
'-': keyval(get(countryToRegion, 'data.*.country'), { // Use of "-" and keyval is because
total: sum('data.*.population') // JS enforces JSON keys to be
'data.*.country' : sum('data.*.population') // strings and our key is a var

})
}
// result: {Asia: {total:39, Japan:17, China:22}, Europe: {total:14, France:3, UK:11}}

7

Here, we use a distinct query (countryToRegion) to retrieve the correspond-
ing region for a given country. The main query conducts a group-by based
on the region (retrieved using get) first, followed by another group-by based
on country, ultimately computing the desired aggregates. We use '-' in our
implementation due to JS’s requirement that JSON keys be represented as
strings. Consequently, specifying get(countryToRegion, 'data.*.country') as
the key directly is not possible. Hence, we introduce keyval(<key>, <value>) as
a workaround that allows arbitrary arguments to be used as a key. It is worth
noting that in a textual frontend, such workarounds would not be necessary.

2.4 User-defined Functions
Rhyme allows using user-defined functions (UDFs) written in JS seamlessly with
the queries. Consider a simple query where we want to obtain the percentage
population per each country from our dataset.
let udf = {
formatPercent: v => (v*100).toFixed(2) + "%" // computes the percentage

}
let query = {
'data.*.country':
apply(udf.formatPercent, div(sum('data.*.population'), sum('data.*A.population')))

}
// result: {Japan: 32.05%, China: 41.50%, France: 5.66%, UK: 20.75%}

We have defined the UDF formatPercent that, given a proportion value,
computes the percentage and adds a % sign at the end. We can then use apply

in the query to call this UDF to convert the proportions to percentages.

2.5 Rhyme AST
As we saw in Figures 1 and 2, all the queries above construct a Rhyme AST
representation which serves as the basis for the dependency analysis and IR
construction. This AST representation is in JSON format, and closely mirrors
the query JSON structure. The difference is, all the calls to reducers like sum,
count, etc. and other operations like plus, minus, etc. will be translated to explicit
object components with agg (or path) and the corresponding arguments. Here,
agg is for reducers (which are stateful), and path is for operations simply performs
a lookup and some computation. For instance, Figure 2c (left) shows how sum is
translated to agg and param, and div is translated to path and param.

This AST representation serves as the entry point for our compiler backend,
and gets translated into an IR, as elucidated in Section 4. Moreover, as depicted
in Figure 1, the creation of this AST is not limited to the aforementioned JS
embedding. Instead, it can be constructed using different APIs, (e.g., Fluent API
introduced in Section 3.1), or a textual frontend with a parser, and so on.

3 Case Studies

3.1 Fluent API

Rhyme’s query frontend (JSON) we saw in Section 2 describes the query using
the structure of the computed result. However, sometimes, it is more natural to

8

start from the structure of the input, and specify a sequence of transformation
steps. Given that our frontend is embedded in JS, we can use metaprogramming
to layer a LINQ-style [24] pipeline API on top.

To illustrate the advantages of such an interface, consider a simple task bor-
rowed from Advent of Code 2022 [1]. The task involves processing a sequence of
values partitioned into chunks, each containing multiple values. The objective
is to calculate the sum of values for each chunk and subsequently identify the
maximum sum among those computed. To begin, let us examine how the Rhyme
query appears when utilizing the familiar JSON-style API for data parsing and
computation. First, we define several user-defined functions (UDFs) to assist
with data parsing. The role of each UDF is simple and self-explanatory.
let input = '100,200,300|400|500,600|700,800,900|1000' // sample input
// some UDFs for parsing the data
let udf = {
'splitPipe' : x => x.split('|'),
'splitComma': x => x.split(','),
'toNum' : x => Number(x)

}

Shown below is the Rhyme query responsible for executing the required com-
putation, with comments provided alongside to elucidate each section of the
query (numbered for clarity):

1 let query = max(get({ // 5. find maximum among group sums
2 '*chunk': sum(// 4. group-by chunk and compute sum
3 apply('udf.toNum', // 3. convert each string number to a number object
4 get(apply('udf.splitComma', // 2. split by comma to get numbers of each chunk
5 get(apply('udf.splitPipe', '.input'), '*chunk')), // 1. split into chunks
6 '*line')))
7 },'*'))

Function apply() is used to apply UDFs to arguments; get(), when used
with an unbounded generator symbol (e.g., *chunk), binds the iterator to the
object in the first argument. For example, in Line 5, get(..., '*chunk') binds
the iterator *chunk to the result of splitting the output by the pipe symbol
(|). While this approach works as intended and yields the correct results, for
these kinds of workloads, it is more natural to think starting from the input
instead of the output structure. In such cases, Rhyme’s ‘fluent’ interface offers
an alternative way to express this query concisely as shown below. Here, we
specify the query as a sequence of transformation steps on the input. This high-
level fluent API essentially functions as a metaprogramming layer that generates
an equivalent Rhyme AST as before.
let query =
pipe('.input')
.map('udf.splitPipe').get('*chunk') // 1. split into chunks (and bind to *chunk)
.map('udf.splitComma').get('*line') // 2. split by comma to get numbers of each chunk
.map('udf.toNum') // 3. convert each string number to a number object
.sum().group('*chunk').get('*') // 4. group-by chunk and compute sum
.max() // 5. find maximum among group sums

The pipe() function creates a Pipe object equipped with methods sum, max,
and so on, all of which return a Pipe. The map() function, similar to apply()

mentioned earlier, is employed to apply a UDF, and group() is used to perform
a group-by (i.e., e.group(x) is {x : e}).

9

3.2 Tensor Expressions
Rhyme provides an elegant framework for expressing tensor computations, draw-
ing inspiration from the Einstein summation (Einsum) notation frequently em-
ployed in tensor frameworks and Einops [29]. The Einsum notation offers a con-
cise means of articulating tensor computations. For instance, ik, kj → ij specifies
a standard matrix product that takes two two-dimensional tensors (i.e., matri-
ces A and B), and yields a third tensor (say C), as the result, computed as
Cij =

∑
k Aik ×Bkj . Likewise, complex tensor computations involving multiple

n-dimensional tensors can be specified using such declarative expressions.
Rhyme provides a similar way to express tensor computations in a declar-

ative fashion. To perform tensor computations, we rely on using the notion of
unbounded iterators in Rhyme. Specifically, in prior cases, we explicitly speci-
fied the data source from which we iterate, as seen in constructs like data.*A.
However, if instead we only specify the iterator as the key, Rhyme’s backend
automatically determines the appropriate data source by examining the query
body. For instance, when we have a query like {*i: sum(times(A.*i, B.*i))},
the backend selects either A or B as the data source for iteration. Subsequently,
the generated code ensures that the iterated values exist in both A and B. This
concept essentially parallels the notion of unification in logic programming, and
more specifically narrowing in functional logic programming [10,20].

To demonstrate how tensor computations are expressed in Rhyme, let’s con-
sider some examples. While Rhyme accommodates tensors in various nested for-
mats, for the sake of simplicity, we will consider a scenario where we represent
tensors using JS Arrays, as illustrated below:
let A = [[1, 2], [3, 4]]; let B = [[1, 2, 3], [4, 5, 6]]

Shown below are a set of example tensor computations expressed in Rhyme.
Einsum notation counterparts (which closely mirror Rhyme query structure) are
shown in parentheses for each example.
// tensor transpose (ij->ji)
{'*j': {'*i': 'B.*i.*j'}}
// sum of all elements (ij->)
sum('B.*i.*j')
// column sum (ij->j)
{'*j': sum('B.*i.*j')}
// row sum (ij->i)
{'*i': sum('B.*i.*j')}
// dot product (vector-vector) (i,i->)
sum(times('vecA.*i', 'vecB.*i'))

// matrix multiplication (ik,kj->ij)
{'*i': {'*j': sum(
times('A.*i.*k', 'B.*k.*j')) }}

// Hadamard product (ij,ij->ij)
{'*i': {'*j': times('A.*i.*j', 'B.*i.*j') }}
// general tensor contraction (n-d Tensors)
// e.g., pqrs,tuqvr->pstuv
{'*p':{'*s':{'*t':{'*u':{'*v':sum(
times('T1.*p.*q.*r.*s',

'T2.*t.*u.*q.*v.*r')) }}}}}

One benefit of having a unified query language for both data manipulation
and tensor computations is the ability to handle combined workloads efficiently.
To illustrate this, consider a simplified version of computing a city’s ‘crime index’
(taken from [27]). We first select a set of features of cities (e.g., population, adult
population and number of robberies), followed by a dot product with a predefined
weight vector.
let cityVec = { 'data.*.city': ['data.*.pop', 'data.*.adultPop', 'data.*.numRobs'] }
let weightVec = [1.0, 1.0, -2000.0] // weight of each feature
let crimeIndex = { // dot product
'data.*.city': sum(times('weightVec.*i', get(get(cityVec, 'data.*.city'), '*i')))

} // computes the crime index for each city

10

We can specify both the data manipulation component (i.e., the projection)
and the tensor computation (i.e., dot product) within the same query language,
and we generate a unified code for the combined task. While we kept the example
simple for brevity, this has the potential to optimize practical intricate workloads
that combine data processing with tensor computations.

3.3 Declarative Visualizations
Since Rhyme is embedded within JS, we can extend its capabilities by introduc-
ing a means to declaratively specify the visual components of websites using a
similar structural approach. This allows the seamless integration of data query-
ing logic with the corresponding data visualization logic, such as creating tables.
This is enabled by a special key called '$display'. To illustrate this, consider
the following example query, alongside its corresponding output:
{
'$display': 'table' // display data in a table
rows: [0], cols: [1], // row:data index, col:keys
data: [
{region:"Asia",city:"Beijing",
"population":{'$display':"bar",value:40}},

{region:"Asia",city:"Tokyo",
"population":{'$display':"bar",value:70}}

]
}

The query above produces the visualization shown on the right. Specifically,
it declaratively specifies to display a table that has data as the underlying data.
This data can be some raw JSON or another Rhyme query. Notice that we can
mix, and manipulate these components as valid values inside Rhyme queries,
and compose them as necessary. For instance, the progress bars are manipulated
as values in the query. These visualizations can take various forms, including
standard DOM elements like h1, p, or high-level components like table, bar,
select, and more, as well as SVG objects.

To exemplify the practical utility of this approach, consider a scenario in-
volving the visualization of data related to mobile phone supplier warehouses.
Imagine the raw data is represented as an array of JSON objects, each featuring
attributes such as warehouse, product, model, and quantity. Before delving into
the main query, shown below is a helper query. This auxiliary query calculates
the sum of quantities, generates a formatted percentage total, and presents this
information as a progress bar displaying the corresponding percentage.
let computeEntry = {
'Quantity': sum('data.*.quantity'),
'Percent': apply('udf.formatPercent',

div(sum('data.*.quantity'),sum('data.*B.quantity'))),
'Bar Chart': {
'$display': 'bar',
value: apply('udf.percent', div(sum('data.*.quantity'), sum('data.*B.quantity')))

}
}

As previously discussed, the semantics of these aggregations varies depend-
ing on the calling context. For instance, when invoked within the context of
{'data.*.warehouse': ...}, the aggregates computed on * iterators are grouped

11

based on the warehouse attribute. Below, we present a query that leverages the
above sub query and visualizes our data in a pivot table. This query performs
aggregations at multiple levels and displays each level of aggregate in a sin-
gle table as shown on the right. Naturally, this repeated structure could be
abstracted further into a single operation such as rollup('data.*', [model,

product, warehouse], computeEntry).

let query = {
'$display': 'table',
...
data: { Total: {
props: computeEntry, // total aggregate
children: {'data.*.warehouse': {
props: computeEntry, // warehouse-level aggr
children: 'data.*.product': {
props: computeEntry, // product-level aggr
children: {
'data.*.model': // model-level aggr

computeEntry
}

...
}

We can similarly use Rhyme to visualize data in different types of charts
using SVG graphics (such examples are omitted due to space concerns). Regard-
ing how this visualizations are handled in the backend, we start by building the
necessary helper functions to create these components (tables, bars, etc.) pro-
grammatically. Then, the backend is augmented to use these functions whenever
a '$display' is encountered. Our ultimate goal of these kinds of integrations
is to enable users to use Rhyme to build interactive dashboards and CRUD
applications directly from a single query.

4 IR and Code Generation

Up to this point, we have provided an introduction to the syntax of Rhyme and
explored its versatility across various domains. In Figure 1 and Figure 2, we
gained a preliminary understanding of how Rhyme queries are transformed into
an IR, which subsequently serves as the basis for generating optimized code. In
this section, we will delve into a detailed discussion of the IR structure and the
code generation process.

4.1 IR Structure

As discussed in Section 1 (Figure 2), the IR structure of Rhyme consists of
two primary types of instructions: generators and assignments. Generators cor-
respond to iterators responsible for enumerating input or intermediate nested
objects, and these generators are transformed into loops in the generated code.
Assignments, on the other hand, encompass any form of computation that up-
dates or initializes an intermediate or output state.

Rhyme queries inherently exhibit nested iterating structures that could be
simply translated into a series of nested loop structures in the generated code.
However, performing this transformation naively and enforcing the ‘program

12

structure’ implied by the user query would lead to missed optimization opportu-
nities like hoisting computations and loops that are independent of outer loops,
common sub-query/expression elimination, and more. Therefore, rather than
naively transforming queries and directly imposing the program structure, we
extract a set of generators, iterators, and their dependencies during IR construc-
tion. While the IR does not explicitly capture the program structure, the optimal
program structure can be derived from an analysis of these dependencies.

4.2 Constructing the IR

The dependency structure is relatively straightforward. As demonstrated in the
generated code snippet in Figure 2, we utilize objects such as tmp[0], tmp[1], and
so on, to maintain intermediate results required for computing the final query
result. Assignment operators have these temporaries as operands, creating data
dependencies in the process. Generators can also iterate values from these tem-
poraries, and in such cases, we introduce similar dependencies for the generators.
Similarly, when a generator symbol is used in an assignment or another genera-
tor, a dependency is added. To illustrate how dependencies are created, consider
the following assignment instruction extracted from Line 13 in Figure 2c:
13 tmp[0][data[starA]['key']] = tmp[1][data[starA]['key']] / tmp[2]

This instruction relies on tmp[0], tmp[1], and tmp[2] as operands. As a result,
this instruction is associated with the last (write) operations of all three tempo-
raries as dependencies, as depicted in the IR visualization presented in Figure 2c.
Furthermore, since it employs the *A iterator, it also exhibits a dependency on
the corresponding generator.

The final missing piece in our lowering process is determining the appropriate
IR instruction from our query AST. This is done distinctly for reduction opera-
tors (those with a key in the AST) and other operators (those with a path in the
AST). For reduction operators, which require the management of state, we intro-
duce stateful temporary variables indexed by the current grouping path. In this
context, ‘path’ refers to the pertinent ‘parent’ grouping keys within the query
nest. In contrast, other types of operators are simpler to handle. We retrieve
the operands and subsequently create an instruction that performs the desired
computation. For example, for plus, we retrieve the left and right operands and
create a binary operation utilizing the + operator.

4.3 Code Generation

Once the IR is constructed for a query, the next step is to generate the final
code taking into account the instruction dependencies. Specifically, it entails
determining where to insert loops, how to nest loops within one another, where
to place assignment instructions, and so on. We will use the query from Figure 2c
as a running example for this section.

The first step is computing two auxiliary relations: tmpInsideLoop and tmpAft-

erTmp. These relations track which temporaries should be scheduled inside par-

13

ticular loops and which temporaries should be scheduled after certain other tem-
poraries. This can be done by analyzing assignment to assignment dependencies
and generator to assignment dependencies.

The next step involves computing the relation tmpAfterLoop based on the two
relations computed above. Specifically, if we determined that a temp variable t2

should be scheduled after another temp variable t1 (i.e., tmpAfterTmp[t2][t1]),
which resides inside a loop l (with the condition that t2 itself is not within loop
l), then this implies that t2 should be scheduled after the loop l. For instance,
in our sample query, tmp[0] should be scheduled after *A.

Subsequently, as the final analysis step before code generation, we determine
loopAfterLoop and loopInsideLoop. These essentially help identify how the loops
should be scheduled. In particular, if we ascertain that a given temp t should be
scheduled inside both loops l1 and l2, it implies that l1 and l2 should belong
to the same loop nest. Conversely, if we determined that for a particular temp
t, it resides within loop l2, and we also know that t should be scheduled after
another loop l1, then this indicates that the loop l2 should be scheduled after
l1 (provided they are not part of the same loop nest).

Once the analysis steps are completed, we proceed with the code genera-
tion process. Our approach to code generation draws inspiration from the IR
scheduling algorithm utilized in Lightweight Modular Staging (LMS) [11,12,31].
In particular, we schedule generators and assignments in an ‘outside-in’ fashion,
commencing with the outer loops before progressing to the inner ones.

Since we did not have program control structures enforced from the front end,
this code scheduling mechanism freely schedules assignments and generators in
an optimal manner. For instance, any generator that does not have dependencies
to the ‘outer query’ would be hoisted and scheduled as a separate query instead
of repeating the computation multiple times inside a nested loop.

5 Experiments

In this section, we conduct a performance evaluation of our current Rhyme im-
plementation, comparing it against two established JSON processing systems:
JQ [3] and Rumble [25], the latter of which utilizes Spark for distributed process-
ing. We acknowledge that systems like Rumble are primarily designed for large-
scale, cluster execution and may not exhibit optimal performance in a single-
node, single-threaded context. Nevertheless, we consider it a valuable baseline
for comparison. Moreover, we report the end-to-end execution time, including
time for loading data.

5.1 Experimental Setup

We run three queries on a simple synthetic dataset comprising 1 million records
of JSON objects. Each object in the dataset contains two string keys, key1 and
key2, as well as an integer value. The first query calculates the sum of all values,

14

the second query performs an aggregate sum after grouping by the key1, and
the third query computes a two-level aggregate using key1, then key2.

We run all the experiments using a single thread, on a NUMA machine with 4
sockets, 24 Intel(R) Xeon(R) Platinum 8168 cores per socket, and 750GB RAM
per socket (3 TB total) running Ubuntu 18.04.4 LTS. We have used JQ v1.6,
Rumble v1.21.0, and Node v18.18.0 (for running our JS code). All experiments
are run five times, reporting the mean execution time.

5.2 Results

Q1 Q2 Q3
0

2

4

6

8

10

12

14

Ru
nn

in
g

Ti
m

e
(s

)

JQ
Rumble
Rhyme (ours)

Fig. 4: Running time (left) for
JQ, Rumble, and Rhyme for
three different queries

Across the three queries, Rhyme demonstrates
the best performance. This can be attributed
to its ability to generate optimized JS code
tailored to a specific query, which significantly
reduces overhead compared to the general exe-
cution engines employed by systems like Rum-
ble. JQ performs the worst, as it lacks any
form of ‘query planning’ and executes queries
naively without optimizations such as loop fu-
sion.

While these results highlight the poten-
tial performance gains achievable through

Rhyme’s code generation capabilities, it is important to note that this bench-
mark does not provide a comprehensive analysis that contains the full spectrum
of representative cases in JSON analytics. Such a comprehensive evaluation is
deferred to future research.

6 Related Work

There are several query languages designed for working with semi-structured
data like JSON, each with its own focus and strengths. JSONiq [5,17] is a notable
query language explicitly tailored for JSON data, borrowing most of its syntax
from XQuery [4] (e.g., FLWOR expressions). Zorba [6] and RumbleDB [25] are
examples of engines that support JSONiq, with RumbleDB using Spark [37] as a
backend, leveraging the scalability of Spark for execution. AsterixDB, designed
for semi-structured data, employs AQL [2] and SQL++ [26] as its query lan-
guages. GraphQL [19], on the other hand, is widely used in web application
development for querying data from backend services. Most of these languages
are specifically targeted towards large-scale JSON analytics workloads and are
not expressive enough to support cases like the ones in Sections 3.1 to 3.3. While
we take inspiration from these languages for the design of the language, Rhyme
is designed to handle various forms of nested data (e.g., tensors), and it offers
support for efficient code generation and optimizations through its IR.

Rhyme’s path expressions are inspired by JSONPath [18] (a descendent of
XPath). Although not discussed extensively in this paper, it is possible to extend

15

Rhyme to support the full set of JSONPath operators, which include conditions,
recursion, etc. Rhyme also borrows many ideas from functional logic program-
ming languages like Verse [10], Curry [20], miniKanren [13] and Scalogno [9],
and adapts them into a new data-centric declarative language.

7 Conclusions and Future Work

In this paper, we introduced Rhyme, a new query language tailored for high-level
data manipulation. We illustrated how Rhyme’s design facilitates query opti-
mization and code generation through the construction of an IR. This IR com-
prises loop-free branch-free code, with program structure implicitly captured by
dependencies. Throughout the paper, we demonstrated the versatility of Rhyme
by showcasing its applicability in expressive data manipulations, tensor compu-
tations, manipulation of visual aspects, and so on in a declarative manner. It is
worth noting that Rhyme is still in its early developmental stages, and we are
excited about exploring various avenues of interesting future work.

Incrementality While not extensively covered in this paper, the concept
of utilizing intermediate temporaries within the generated code is inspired by
prior works in incremental execution, such as DBToaster [22] and RPAI [7]. An
immediate focus of our future work involves introducing support for incremental
execution. Notably, our generated code is inherently designed to be ‘incremental-
friendly’. This implies that we have the capability to generate code akin to update
triggers, which are invoked whenever a modification is made to the dataset.
Specifically, instead of dense loops used in the current version, update triggers
generate ‘sparse’ loops in the sense that they iterate only over the deltas.

Another dimension of incrementality involves managing query changes. This
entails finding ways to accommodate changes in queries while maximizing the
utilization of previously computed temporaries and sharing state across multiple
queries. Such an approach will be useful in interactive applications, where users
can dynamically modify their queries.

Performance While the ability to generate JS for browser-based execution
is undeniably valuable, there are specific scenarios where optimizing performance
becomes paramount. In such cases, the generation of low-level, specialized C code
becomes imperative to eliminate any potential overhead associated with man-
aged runtimes. A substantial body of prior research has already demonstrated
the efficacy of such compilation mechanisms [15,30,33,36]. Furthermore, it is fea-
sible to leverage existing compiler infrastructures such as LMS [31] or MLIR [23]
for streamlined handling of tasks like IR construction, dependency analysis, and
the eventual generation of highly specialized low-level code.

Acknowledgements We would like to thank our anonymous reviewers for
their valuable feedback that helped improve the paper significantly. This work
was supported in part by NSF awards 1553471, 1564207, 1918483, 1910216,
DOE award DE-SC0018050, as well as gifts from Meta, Google, Microsoft, and
VMware.

16

References

1. Advent of code 2022. https://adventofcode.com/2022/day/1, accessed: 2023-
09-27

2. The asterix query language (aql). https://asterixdb.apache.org/docs/0.9.8/
aql/manual.html, accessed: 2023-09-27

3. jq manual. https://jqlang.github.io/jq/manual/, accessed: 2023-09-27
4. Xquery 3.1: An xml query language. https://www.w3.org/TR/xquery-31/

(2017), accessed: 2023-09-27
5. Jsoniq. https://www.jsoniq.org/ (2018), accessed: 2023-09-27
6. Zorba. https://www.zorba.io/ (2018), accessed: 2023-09-27
7. Abeysinghe, S., He, Q., Rompf, T.: Efficient incrementialization of correlated

nested aggregate queries using relative partial aggregate indexes (RPAI). In: SIG-
MOD Conference. pp. 136–149. ACM (2022)

8. Abeysinghe, S., Wang, F., Essertel, G.M., Rompf, T.: Architecting intermediate
layers for efficient composition of data management and machine learning systems.
CoRR abs/2311.02781 (2023)

9. Amin, N., Byrd, W.E., Rompf, T.: Lightweight functional logic meta-programming.
In: APLAS. Lecture Notes in Computer Science, vol. 11893, pp. 225–243. Springer
(2019)

10. Augustsson, L., Breitner, J., Claessen, K., Jhala, R., Peyton Jones, S., Shivers, O.,
Steele Jr., G.L., Sweeney, T.: The verse calculus: A core calculus for deterministic
functional logic programming. Proc. ACM Program. Lang. 7(ICFP) (2023)

11. Bracevac, O., Wei, G., Jia, S., Abeysinghe, S., Jiang, Y., Bao, Y., Rompf, T.: Graph
irs for impure higher-order languages (technical report). CoRR abs/2309.08118
(2023)

12. Bračevac, O., Wei, G., Jia, S., Abeysinghe, S., Jiang, Y., Bao, Y., Rompf, T.: Graph
irs for impure higher-order languages: Making aggressive optimizations affordable
with precise effect dependencies. Proc. ACM Program. Lang. 7(OOPSLA2), 236:1–
236:31 (2023)

13. Byrd, W.E.: Relational programming in miniKanren: techniques, applications, and
implementations. Ph.D. thesis, Indiana University (2009)

14. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

15. Essertel, G.M., Tahboub, R.Y., Decker, J.M., Brown, K.J., Olukotun, K., Rompf,
T.: Flare: Optimizing apache spark with native compilation for scale-up architec-
tures and medium-size data. In: OSDI. pp. 799–815. USENIX Association (2018)

16. Flores-Montoya, A., Schulte, E.M.: Datalog disassembly. In: USENIX Security
Symposium. pp. 1075–1092. USENIX Association (2020)

17. Florescu, D., Fourny, G.: Jsoniq: The history of a query language. IEEE Internet
Comput. 17(5), 86–90 (2013)

18. Goessner, S.: Jsonpath - xpath for json. https://goessner.net/articles/
JsonPath/ (2007), accessed: 2023-09-27

19. GraphQL: A query language for your api. https://graphql.org/, accessed: 2023-
09-27

20. Hanus, M.: Functional logic programming: From theory to Curry. In: Programming
Logics. Lecture Notes in Computer Science, vol. 7797, pp. 123–168. Springer (2013)

21. Jordan, H., Scholz, B., Subotic, P.: Soufflé: On synthesis of program analyzers.
In: CAV (2). Lecture Notes in Computer Science, vol. 9780, pp. 422–430. Springer
(2016)

17

https://adventofcode.com/2022/day/1
https://asterixdb.apache.org/docs/0.9.8/aql/manual.html
https://asterixdb.apache.org/docs/0.9.8/aql/manual.html
https://jqlang.github.io/jq/manual/
https://www.w3.org/TR/xquery-31/
https://www.jsoniq.org/
https://www.zorba.io/
https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://graphql.org/

22. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D., Shaikhha,
A.: Dbtoaster: higher-order delta processing for dynamic, frequently fresh views.
VLDB J. 23(2), 253–278 (2014)

23. Lattner, C., Pienaar, J.A., Amini, M., Bondhugula, U., Riddle, R., Cohen, A.,
Shpeisman, T., Davis, A., Vasilache, N., Zinenko, O.: MLIR: A compiler infras-
tructure for the end of moore’s law. CoRR abs/2002.11054 (2020)

24. Meijer, E., Beckman, B., Bierman, G.M.: LINQ: reconciling object, relations and
XML in the .net framework. In: SIGMOD Conference. p. 706. ACM (2006)

25. Müller, I., Fourny, G., Irimescu, S., Cikis, C.B., Alonso, G.: Rumble: Data inde-
pendence for large messy data sets. Proc. VLDB Endow. 14(4), 498–506 (2020)

26. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data
model and query language: A capabilities survey of sql-on-hadoop, nosql and newsql
databases. CoRR abs/1405.3631 (2014)

27. Palkar, S., Thomas, J., Shanbhag, A., Narayanan, D., Pirk, H., Schwarzkopf, M.,
Amarasinghe, S.P., Zaharia, M.: A common runtime for high performance data
analysis. In: CIDR. www.cidrdb.org (2017)

28. Reps, T.W.: Solving demand versions of interprocedural analysis problems. In: CC.
Lecture Notes in Computer Science, vol. 786, pp. 389–403. Springer (1994)

29. Rogozhnikov, A.: Einops: Clear and reliable tensor manipulations with einstein-like
notation. In: ICLR. OpenReview.net (2022)

30. Rompf, T., Amin, N.: A SQL to C compiler in 500 lines of code. J. Funct. Program.
29, e9 (2019)

31. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled dsls. Commun. ACM 55(6), 121–130 (2012)

32. Sujeeth, A.K., Brown, K.J., Lee, H., Rompf, T., Chafi, H., Odersky, M., Olukotun,
K.: Delite: A compiler architecture for performance-oriented embedded domain-
specific languages. ACM Trans. Embed. Comput. Syst. 13(4s), 134:1–134:25 (2014)

33. Tahboub, R.Y., Essertel, G.M., Rompf, T.: How to architect a query compiler,
revisited. In: SIGMOD Conference. pp. 307–322. ACM (2018)

34. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press (1989)

35. Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W.S.,
Verdoolaege, S., Adams, A., Cohen, A.: Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. CoRR abs/1802.04730
(2018)

36. Wei, G., Chen, Y., Rompf, T.: Staged abstract interpreters: fast and modu-
lar whole-program analysis via meta-programming. Proc. ACM Program. Lang.
3(OOPSLA), 126:1–126:32 (2019)

37. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56–65 (2016)

18

	Rhyme: A Data-Centric Expressive Query Language for Nested Data Structures

