
A Resource-minimalist Flow Size Histogram Estimator

UMass Technical Report TR-29-2008

Bruno Ribeiro1, Tao Ye2, and Don Towsley1

1Computer Science Department 2Sprint
University of Massachusetts One Adrian Court

Amherst, MA, 01003 Burlingame, CA, 94010
{ribeiro, towsley}@cs.umass.edu Tao.Ye@sprint.com

ABSTRACT

The histogram of network flow sizes is an important yet dif-

ficult metric to estimate in network monitoring. It is im-

portant because it characterizes traffic compositions and is

a crucial component of anomaly detection methods. It is

difficult to estimate because of its high memory and com-

putational requirements. Existing algorithms compute fine

grained estimates for each flow size, i.e. 1, 2,. . . up to the
maximum number observed over a finite time interval. Our

approach instead relies on the insight that, while many ap-

plications require fine grained estimates of small flow sizes,

i.e. {1, 2, . . . , k} with a small k, network operators are of-
ten only interested in coarse grained estimates of larger flow

sizes. Thus, we propose an estimator that outputs a binned

histogram of size distributions. Our estimator computes this

histogram in O(k3 + log W) operations, where W is the

largest flow size of interest to the network operator, while

requiring only a few bits of memory per measured flow. This

translates into more than 4 fold memory savings and an ex-

ponential speedup in the estimator as compared to previous

works, greatly increasing the possibility of performing on-

line estimation inside a router.

1. INTRODUCTION

Measuring the histogram of network flow sizes has
been the subject of a number of recent studies [2–5,8].
Although Internet routers handle traffic on a packet-by-
packet basis at the IP layer, the statistics of the underly-
ing flows are vital to network operators. The histogram
of flow sizes, i.e. the number of flows with i packets, is
an important traffic metric that gives insights to net-
work monitoring applications such as traffic profiling,
and aids fast detection of security attacks. In this work
we refer to this histogram as the size histogram.

Directly computing size histograms requires an of-
ten expensive first step of classifying packet traffic into
flows. Because as many as half a billion flows arrive
every hour at an Internet core router, this task is ex-
tremely resource intensive. Reducing the load by ag-
gressively sampling packets at random [3] (without much

side information) has been shown to produce inaccurate
histogram estimates [8]. Recently a number of alter-
native solutions employ data streaming algorithms to
solve the histogram problem with more accuracy [2,4,5].
Kumar et al. [5] proposed sketches to maintain approxi-
mate flow size counts in an array of counters, then used
a computationally intensive Expectation Maximization
(EM) algorithm to compute the estimation from these
counters. The authors advise network operators to use
at least one 32 bit counter per flow in average. We
argue that although this EM algorithm yields precise
estimates, it is possible to obtain useful estimates much
faster and with much smaller counters. Cormode et
al. [2] computes the histogram using a sketch that main-
tains a tuple (flow size counter, flow id) in memory. It
relies on flow filtering (thinning) to compute histogram
estimates. The drawback of this method comes from
its high memory requirements, which can be as high as
dozens of bytes per flow. Lu et al. [6] uses a streaming
algorithm tailored specifically to measure heavy tailed
distributions that requires little memory space. Their
estimator however needs to compute all flow sizes and
use (even in a best-case scenario) O(W) time, where W
is the largest flow size of interest to the network opera-
tor.

In this work we propose an approach similar to Ku-
mar et al. [5], using a sketch of flow size counters and a
direct estimator. However, we trade-off flow size gran-
ularity for an exponentially faster estimator and less
than 1/4 of memory usage (7 bits per flow) compared
to [5]. In contrast to Lu et al. [6], our approach is ex-
ponentially faster and does not assume we know the
distribution shape.
Reducing memory consumption. We are motivated
by the following insight of traffic monitoring applica-
tions. Since size histogram provides a general overview
of the traffic, rather than a direct measurement of usage,
typical monitoring applications do not need fine grained
counts of all flow sizes. In security event detection, we
are interested in very small flow sizes (mice) such as 1, 2,

1

but only up to a certain value k. To measure the impact
of medium and elephants flows, these larger flow sizes
can be estimated in a binned fashion. Therefore we pro-
pose a new multi-resolution algorithm to estimate the
size histogram with aggregated and probabilistic count-
ing of large flows, and fine-grained counting for flow
sizes up to k packets. As an example, for k = 16, we
maintain per flow counters for each flow sizes 1,..,16,
but flows of sizes from 17 packets to 32 packets, 33 to
64, etc, are counted probabilistically and estimated to-
gether. This allows for a faster estimator with reduced
counter sizes, while still maintaining good accuracy. Us-
ing our approach with 6 bit counters and k = 16 we can
probabilistically count flows of sizes up to W ≈ 1014.
Faster estimator. We also provide a simple estimator
that is almost as accurate as a slower maximum likeli-
hood estimator for small flow sizes. For larger flow sizes
the second part of our technique estimates all histogram
bins in O(log W) time, where W is the largest flow size
of interest for the network operator. This is achieved
by designing a space efficient low collision sketch. Our
sketch divides and folds (multiplexes) Z virtual sketches
into the physical space of one sketch. The low flow col-
lision probability allows us to obtain good histogram
estimates with O(k3 + log W) operations in total. Note
that W and k can be made as small as the network
operator wants with no loss in accuracy. When faced
with very high speed links and relatively low comput-
ing resources for monitoring and statistics gathering,
our simple resource minimalist design makes a strong
case for an in-line inside the router implementation.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of the algorithm. Section 3
illustrates data structure design and our estimator in
details. Experiment results using trace data are shown
in Section 4. We conclude with Section 5.

2. OVERVIEW

We follow a common design of breaking down the
packet stream by measurement epochs. In each epoch
our algorithm contains two phases: upon each packet
arrival a data structure to count flow sizes is updated,
at the end of the epoch we use an estimator to compute
the histogram from this data structure.

The data structure works as follows. Each newly ar-
rived packet is used to update a counter through a hash
function, where all packets in a flow hash to the same
counter. We keep M of such counters in a vector that we
refer as the sketch. We choose a universal hash function,
where a randomized algorithm is used to generate hash
values for distinct flows. Hence, the collision probability
of different flows hashed to the same counter is a simple
function of the number of flows divided by the size of the
sketch. We increase counter values probabilistically, in
a variation of the approach in Morris [7]. Counters are

Physical sketch

Legend

counter = 0
counter > 0
index <= M

counter > 0
index > M

Counters 1 to M
always win
contetions

01

Virtual sketch

0

Counters 1 to M Counters M+1 to 2M

M counters

Figure 1: Multiplexing a sketch. One extra bit
is used to store ownership in the physical sketch.
Note that counters with index ≤M in the virtual
sketch always win contentions against counters
with index > M .

incremented by 1 with probability 1 if the counter value,
C, is less than k (a small constant defined by the net-
work operator). Otherwise, if C ≥ k we increment the
counter with probability 2−C+k−1. This translates into
grouping medium to large flow sizes into histogram bins
Bm = [k+2m−1, k+2m+1−1], m = 0, . . . , log2 W −1,
where W is the largest flow size as defined by the net-
work operator. As a result of this binning, we only need
to use tiny counters (our experiments use 7 bit coun-
ters) as compared to other schemes, drastically lower-
ing memory requirements. Note that this approach is
performed entirely in software and does not require spe-
cialized hardware. In Section 3 we explain the details
and also present a practical and efficient way to emu-
late a probabilistic counter without resorting to (slow)
pseudo-random number generators.

At each sketch update our algorithm also updates a
histogram of the sketch values. In the estimation phase,
our estimator uses this sketch histogram to estimate the
size histogram. It is shown in [5] that to estimate a
flow of size i we need at least O(i3) operations to un-
tangle the corresponding hash collisions. This results
in a prohibitively high CPU cost with large maximum
flow sizes, W ≫ 1. Thus a fast estimator depends on a
small fraction of hash collisions. Fortunately, universal
hashing allows us to reduce the collision probability by
simply increasing the sketch size, giving us the oppor-
tunity to reduce the estimator complexity.

However, a large sketch size is not desirable due to the
corresponding increase in memory requirements. We
therefore arrive at the sketch design shown in Figure 1
where the number of virtual sketches Z = 2. The idea is
to use a virtual sketch that physically occupies half of its
virtual size. Two virtual sketch counters share the same

2

physical sketch counter if both counters are zero. If one
or both virtual counters are not zero we use the con-
tention resolution algorithm described in Section 3.1.1.
Our contention resolution has an overhead of ⌈log Z⌉
bits per physical counter. Let’s look at an example on
contention in Figure 1. Counters with indexes M and
2M in the virtual sketch contend for the same physical
counter. Virtual counter M wins and virtual counter
2M is evicted from the virtual sketch. In Section 3.1.1
we see that virtual counter eviction is equivalent to flow
thinning. In our experiments in Section 4 at most 15%
of the flows are discarded due to counter eviction. Extra
memory space could be used to store these evicted coun-
ters if flow thinning must be avoided. It is important to
note that the extra CPU overhead using this approach
when compared to a regular sketch is negligible.

Small counters with their exponential histogram bin
sizes and small hash collision probabilities allow us to
propose a O(k3 + log W) histogram estimator. Note
that k is a small constant typically k ≪ W (in our
experiments we use k = 16 and W = 1014). In what
follows we detail our sketch data structure and simple
estimator.

3. ALGORITHM

Our algorithm is made of two components, the sketch
data structure and the estimator. We first describe the
data structure used to sketch flow sizes based on each
packet, then we describe our estimator that summarizes
the distribution from the sketch.

3.1 Data structures

Our sketch data structure consists of three structures:

1. Sketch: This is the main structure that holds a
sketch of flows and its sizes. Each packet is hashed
into the sketch to increment its flow size count.
There are M b-bit counters labeled [cm], m =
1, . . . , M , plus one ownership bit per counter (in
our experiments b = 6).

2. Sketch histogram: g = (g0, . . . , g2b−1) is the nor-
malized histogram of the above counter values; it
is updated upon changes of the ownership bits.

3. Pseudo-random auxiliary counters: We use O(log W)
auxiliary counters to implement random sampling
for flow counters in the sketch.

Here W is the maximum flow size of interest and

b ≥ ⌈log2(log2 W + 1 + k)⌉.

In what follows we illustrate the role of each of these in
our algorithm.

3.1.1 Sketch

Our sketch is a virtual sketch with ZM counters,
Z ∈ {2, 3, . . .}, occupying the physical space of a sketch
with M counters. We refer to this virtual sketch as a
Z-fold virtual sketch or just a virtual sketch if the value
of Z is clear from the context. Counters in the physical
sketch are indexed from 1 to M . A counter in the phys-
ical sketch is shared by Z virtual sketch counters; each
physical sketch counter has ⌈log2 Z⌉ ownership bits. We
call counters in the virtual sketch virtual counters or
just counters. We call counters in the physical sketch
physical counters. In what follows we consider Z = 2
to simplify our exposition. Let’s follow the example
shown in Figure 1. Virtual counters with indices c and
M + c, c = 1, . . . , M , are mapped into the physical
counter with index c. A physical counter value repre-
sents the value of a virtual counter with index ≤ M
if its ownership bit is zero. Otherwise it represents a
virtual counter with index > M . Physical counters are
initialized with value zero and with ownership bits set
to one. Packets of a flow assigned to a virtual counter
with index > M will not change its corresponding phys-
ical counter if the physical counter has ownership bit
zero. These flows are considered to belong to evicted
virtual counters. Also, if a packet assigned to counter
index ≤ M arrives and finds its corresponding virtual
counter with ownership bit one, it sets the counter to
one and the ownership bit to zero. This means that
the previous virtual counter (of index > M) that occu-
pies the same physical position is evicted from the vir-
tual sketch. Note that counters are evicted uniformly
at random (because the hash function assigns flows to
counters randomly); this is equivalent to randomly dis-
carding flows, also called flow thinning. In the example
of Figure 1 virtual counter 2M is evicted from the vir-
tual sketch. In what follows we assume that evicted
counters are discarded.

Flow sampling (see [3]) in its simplest form can be
seen as a particular case of the above sketch where num-
ber of virtual sketches, Z, goes to infinity, ownership
bits are unique flow IDs, and virtual counters can only
evict zero-valued counters in the physical sketch. Note
that when Z goes to infinity there are no flow collisions
in the virtual sketch. However, using a simple flow mul-
tiplexing argument, one can show that the amount of
flow thinning increases with Z. Thus we want to keep Z
as small as possible provided that flow size histogram
estimates are accurate. We return to this discussion
when evaluating our approach in Section 4.

3.1.2 Sketch histogram

A histogram of the counter values of the virtual sketch
is kept in vector g = (g0, . . . , g2b−1). This vector is
initialized with zero except for g0 = 2 M . Whenever
a counter with value j has its ownership bit changed
from one to zero, gj is decremented by one. This simple

3

operation reflects the reduction in the number of virtual
counters due to contention. The remaining histogram
updates are quite trivial.

3.1.3 Pseudo-random auxiliary counters

Our sketch counters perform random (Bernoulli) sam-
pling with probabilities taken from {2−j | j = 1, . . . , 2b−
k} for counter values larger than k. In a high level our
approach follows the same simple principle of Morris [7],
which requires us to perform pseudo-random sampling
at line speed. Since traditional pseudo-random num-
ber generators are computationally intensive, we in-
stead propose an alternative that is best-case deter-
ministic and worst-case probabilistic. We assume there
are N i.i.d. (independent and identically distributed)
flows that increment their respective hash counters with
probability 1/h. We start by creating an auxiliary counter
ch and initialize it with ch ← h − 1. Upon a packet
arrival (from any of these N flows) ch is decremented
by one. If ch = −1 we sample the packet (i.e. in-
crement the respective sketch counter) and reinitialize
ch ← h − 1. Note that for N = 1 this corresponds to
deterministic sampling. Since we only need to maintain
one additional counter per value h we need O(log W)
auxiliary counters for our sketch. Appendix A shows
that as N →∞ packets are sampled randomly (accord-
ing to a Bernoulli process) at rate 1/h, as if we were
using a true random number generator.

In the next section we see how the algorithm esti-
mates the flow size histogram from the sketch histogram
described above.

3.2 Flow size estimator

In this section we present a flow size estimator that
uses the empirical sketch histogram g and outputs a
flow size histogram in O(k3 + log W) operations. Let
the sketch load define the number of measured flows
divided by the virtual sketch size. Our estimator works
as follows: As soon as either the measurement epoch is
reached or the load achieves L = 1/2, we save g (which
is always up-to-date), reinitialize all variables and start
another measurement epoch. We use g to refer to the
“saved g”. With g we can estimate the size histogram
using a two step estimator. Section 3.2.1 presents the
first step where we estimate flows of size smaller than
k (k is the deterministic counting threshold defined in
Section 2); Section 3.2.2 presents the second step where
we estimate the histogram bins for flow sizes ≥ k. In
this section we also show that for our estimator there is
no gain in having sketch counters being able to count
more than i packets if we only seek to estimate flows of
size smaller than i.

We start with some definitions that are common to
Sections 3.2.1 and 3.2.2. Let θ = [θi], i = 1, 2, . . . de-
note the flow size distribution. Note that θi L is the av-

erage number of flows of size i associated to a counter at
the end of the measurement epoch. In this work we as-
sume that the total number of flows of size i = 1, 2, . . .
measured in an epoch is Poisson distributed. This as-
sumption holds true for our traces and has been re-
ported true for other Internet traces [1]. This is also a
fairly weak assumption.

As the total number of flows of size i is Poisson dis-
tributed and the hash function randomly assign flows
to counters, it is easy to see that the number of flows
of size i hashed to a counter are i.i.d. Poisson random
variables with parameter θi L. Let G be the sum of all
elements in g, i.e. G =

∑

∀j gj.

3.2.1 Estimates of flows with size < k

Using the above we have the following rather trivial
set of equations that describe the relationship between
the flow size distribution θ, the counter value histogram
g, and the counter load L: The average number of coun-
ters with value zero is

E[g0] = G exp(−L

∞
∑

i=1

θi) = G exp(−L), (1)

where E[g0] is the expected value of g0. The next equa-
tion derives the average number of counters with value
one

E[g1] = θ1 L E[g0]. (2)

More generally, for 2 ≤ j < k, we have

E[gj] =

(

θj L +

j
∑

m=2

Lm hθ(j, m)

)

E[g0] , (3)

where function hθ gives the probability that, in a sketch
with load one and flow size distribution θ, m flows are
hashed into the same counter and their sizes sum up
to j; a recursive O(j3) time algorithm to compute h is
given in Appendix C1.

The sketch load is estimated from equation (1), i.e.

L̂ = − ln(g0/G). Now θ1 can be easily estimated from
equations (1) and (2) as

θ̂1 = (g1/g0)/L̂,

and the number of flows of size one is estimated as G θ̂1;
with θ̂1 and g2 we can also estimate θ2. More generally,
we can estimate θj using equation (3), L̂, and θ̂i for
i = 1, . . . , j − 1

θ̂j = (gj/g0)/L̂−

j
∑

m=2

L̂m−1 hθ̂(j, m). (4)

Thus, estimating all flow sizes with size less than k
takes O(k3) operations if intermediate results are saved.
These estimates are quite precise as we will observe in

1A simplified version of the non-recursive algorithm is in [5]

4

the next section. In what follows we see how small
sketch loads can help us design a fast estimator for flows
of size ≥ k.

3.2.2 Estimates of larger flows sizes (≥ k)

Estimating larger flow sizes encounters a problem:
sketch counters are counted probabilistically for values
≥ k. We can derive an equation similar to (3) that
accounts for the probabilistic nature of gj for j ≥ k

E[gj] =E[g0]L

∞
∑

i=j

(

f(i− k, j − k) θi+

f(i− k, j − k)

i
∑

m=2

Lm−1 hθ(i, m)
)

,

(5)

where function f , described in Appendix B, is the prob-
ability that i − k packets triggers j − k increments on
a counter with value k. From equation (5) we see that
estimating θj is not an easy task. In what follows we
derive a rough approximation to equation (5) that lead
to a very simple estimator. Let

Bj = {k+2j−1−1, . . . , k+2j−2}, j = k, . . . , (2b−1−k)
(6)

be the bins of our histogram for j ≥ k and let

Θj =
∑

∀i∈Bj

θi, j = k, . . . , (2b − 1− k)

be the fraction of all flows with size i ∈ Bj. Assume that
j is large. In what follows we approximate the proba-
bilistic counting by deterministic counting, i.e. f(i −
k, j − k) = 1 if i ∈ Bj and zero otherwise. We also
assume that most of the flow size distribution probabil-
ity rests in flows with sizes much smaller than 2j . In
this case, collisions of flows whose flow size sums are
in Bj are either: (1) a large number of small flow col-
lisions; or (2) few collisions between small and large
flows. Let’s look at the first case, a large number of
small flow collisions. As observed in [5], the probabil-
ity of 3 or more flow hashing into the same counter
is small when L < 1. In our case this is particularly
true as L = 1/2. Thus the effect of a large number of
flow collisions is negligible as the summation over hθ in
equation (5) becomes vanishingly small as m increases.
Now we consider the second case, a small number of
collisions between small and large flows. As j is large,
most flows of sizes i ∈ Bj are at least twice as large
as flows of smaller sizes not in Bj . This means that
two or three collisions of flows with sizes not in Bj are
unlikely to sum up to a size in Bj . Then, apart from
degenerated cases like

∑

∀i∈Bj
θi ≪

∑

∀i∈Bj−1
θi, most

of the collisions between small and large flows that fall
into Bj are between small flows and flows whose sizes
are in Bj . This motivates us to propose the following

approximation to equation (5)

E[gj] ≈ E[g0]LΘj .

With the above equation we have the following estimate
for Θj :

Θ̂j ≈ (gj/g0)/L . (7)

Our experiments show that equation (7) is a good ap-
proximation to Θj (specially for large values of j).

In what follows we evaluate our approach against In-
ternet traces and a synthetic hard-to-estimate distribu-
tion.

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1
5 10 15 [32,47] [528,1039] [16400,32783]

#
 o

f
flo

w
s

Flow size interval

True flow size histogram

Virtual sketch:

 Estimated avg. + 95% conf. intervals

Regular sketch:

 Estimated avg.

Figure 2: Histogram estimates with 8MB of
memory. BB-East-2 trace histogram (line) v.s.
histogram estimates (with a virtual sketch and
with a regular sketch). Experiment: 9.6 million
flows (average), 6 bit counters (7 bits per flow),
37 runs.

4. EVALUATION

In this section we evaluate our approach using Inter-
net traces and one synthetic extreme-case distribution.
All experiments use parameters: k = 16 and W ≈ 1014

(thus the sketch counter requires b = 6 bits). In our first
experiment we use the flow size histogram of a Tier 1
backbone trace BB-East-2 described in [8]. This trace
has 9.5 million distinct flows collected over a two hour
period. This means that an 8MB physical sketch has a
2-fold virtual sketch load L ≈ 1/2. In our experiments
we choose Z = 2 (a 2-fold virtual sketch) as it has a low
virtual sketch load, L, and Z = 2 is the folding value
with the smallest flow thinning probability. We use the
empirical histogram as a base for generating a series
of 37 synthetic traces that will feed our data stream
algorithm. In another experiment we repeat the same
scenario but replace the multiplexed sketch by a regu-
lar sketch. A regular sketch does not need to keep an
extra ownership bit and can use this space to reduce its
load. Measuring the same number of flows the regular

5

sketch has load L = b/(b + 1) = 0.86, in contrast to the
load L = 1/2 of a 2-fold virtual sketch. Our estimator
takes less than one second to compute all estimates in
both scenarios. Figure 2 show the results of both exper-
iments. The first experiment (with the virtual sketch)
also shows the 95% percentile confidence intervals. For
the virtual sketch we can see that our algorithm was
able to obtain very good histogram estimates as well
asvery tight confidence intervals. Note that for all flow
sizes < k our estimator is unbiased. In the case where
flow sizes are ≥ k we see that equation (7) provides us
with estimates that are fairly close to the actual his-
togram values. On the other hand, the results of our
second experiment (with a regular sketch) indicate that
a regular sketch performs poorly for flow sizes greater
than k.

A more heavily utilized backbone link BB-East-1 from [8]
contains 250 million measured flows during a 30 minute
interval. This trace requires a 220MB sketch and our
estimator still takes less than one second for all esti-
mates. The estimates are even more precise than the
ones obtained for BB-East-2, due to the order of mag-
nitude increase in the number of samples.

Next we test our estimator with a histogram whose
tail decreases exponentially, i.e. θi ∝ exp(−αi). This
is a good extreme-case test of our ability to measure
the histogram tail. In this scenario hθ(i, m) = hθ(i, m

′)
for any m, m′ = 1, . . . , i, which makes equation (7)
a much worst approximation than the case where his-
tograms are heavy tailed. Figure 3 shows the results
of an experiment where θi ∝ exp(−0.01i). We can see
that our estimator performs reasonably well for flows
of size as large as 32,000 packets. Note that we are
also able to capture the overall trend of the tail, al-
though the actual values for very large flow sizes are
quite over-estimated. However, this flow size histogram
is not based on Internet traces and is presented here to
assess the performance of our estimator in a worst-case
scenario.

5. CONCLUSIONS

In this work we presented a resource minimalist flow
size histogram estimator. By trading-off flow size gran-
ularity, we count flow sizes in an aggregated and prob-
abilistic manner. This leads to a small memory foot-
print and an exponential speed up of the time required
to compute estimates over previous streaming methods.
We tested our scheme using both Tier-1 backbone traces
and synthetic distributions with satisfactory accuracy.

6. ACKNOWLEDGMENTS

We thank Jun Xu for many helpful discussions. This
work has been supported in part by the National Science
Foundation under award number ANI-0325868; and by
Sprint ATL and CAPES under award number 2165031.

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1
5 10 15 [32,47] [528,1039] [16400,32783]

#
 o

f
flo

w
s

Flow size interval

Trace histogram (line)

Estimated histogram

Figure 3: Histogram estimates with 16MB of
memory. Exponential histogram (line) with θi =
exp(−i/104)/9999.5 v.s. histogram estimates (95%
confidence interval is too small). Experiment:
20 million flows (average), 6 bit counters (7 bits
per flow), 43 runs.

Part of this work was carried out when Bruno Ribeiro
was an intern at Sprint ATL. Any opinions, findings and
conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

APPENDIX

A. PSEUDO-RANDOM COUNTING

Here we prove that when N , the number of flows us-
ing pseudo-random counter ch, approaches infinity then
packets of any of these flows are sampled according to
a Bernoulli process. Initialize ch ← h− 1, remembering
that ch counts down to zero. When ch is decremented,
p is the probability that a given flow decremented it and
1−p be the probability that other flows decremented it.
Let X be the number of subtractions by a flow between
ch rollovers (a rollover is when counter goes instantly
from ch = 0 back to ch = h). Define

Pm = P [X = m], m = 1, . . . , h− 1.

It is easy to see that if we assume that
(

k
j

)

= 0 whenever
j > k we have

Pm =

(

h− 1

m− 1

)

(1− p)h−mpm +

m−1
∑

i=0

(

h− 1

i

)

(1− p)h−i pi Pm−i, m = 1, 2, . . . , h.

(8)

Now we prove that the flow is Bernoulli sampled. Proof

6

by induction on m.

P1 = (1− p)h−1p + (1 − p)h P1 → P1 =
(1 − p)h−1p

1− (1 − p)h

as N →∞, p→ 0 and then P1 = 1/h.
Induction:

Assume Pi = (1 − 1/h)i−11/h for i = 1, 2, . . . , m − 1.
Then equation (8) becomes

Pm =(h− 1)p Pm−1 + (1 − p)h Pm + O(p2)

=(h− 1)p(1− 1/h)m−21/n + (1 − p)h Pm + O(p2),

passing all variables Pm to the left side

Pm =((h− 1)p(1− 1/h)m−21/n + O(p2))/(1 − (1− p)h)

=(1 − 1/h)m−11/h + O(p).

As p → 0, Pm = (1 − 1/h)m−11/h, which is geometri-
cally distributed and thus the flow is Bernoulli sampled.

B. COUNTER INCREMENTPROBABILITY

The probability of having j counter increments out of
i packets is given by f(i, j) = 2−(j(j+1)/2)f ′(i−j, j+1),
where

f ′(i, j) =

{

∑i
m=0(1 − 2−j)mf ′(i−m, j − 1) if j ≥ 2

(1− 2−1)i otherwise.

C. FLOW COLLISION FUNCTION

Function hθ(j, m) = h′
θ(j, 1, m) can be computed us-

ing the following recursion.

h′
θ(j, w, m) =

{

exp(−
∑

i θi) if j = m = 0
0 if w > j or w m > j

otherwise

h′
θ(j, w, m) =

min(⌊j/w⌋,m)
∑

r=0

(θw)r

r!
h′

θ(j−r w, w+1, m−r);

caching its intermediate results hθ is known to have
complexity O(j3) [5].

1. REFERENCES

[1] Chadi Barakat, Patrick Thiran, Gianluca
Iannaccone, Christophe Diot, and Philippe
Owezarski. Modeling internet backbone traffic at
the flow level. IEEE Transactions on Signal
Processing, 51(8):2111–2124, August 2003.

[2] Graham Cormode, S. Muthukrishnan, and Irina
Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse
sampling. In VLDB, pages 25–36, 2005.

[3] Nick Duffield, Carsten Lund, and Mikkel Thorup.
Estimating flow distributions from sampled flow
statistics. IEEE/ACM Transactions on
Networking, 13(5):933–946, 2005.

[4] Abhishek Kumar, Minho Sung, Jun Xu, and
Ellen W. Zegura. A data streaming algorithm for
estimating subpopulation flow size distribution. In
Proceeding of the ACM SIGMETRICS, pages
61–72, 2005.

[5] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and
Jia Wang. Data streaming algorithms for efficient
and accurate estimation of flow size distribution. In
Proceeding of the ACM SIGMETRICS, pages
177–188, 2004.

[6] Yi Lu, Andrea Montanari, Balaji Prabhakar,
Sarang Dharmapurikar, and Abdul Kabbani.
Counter braids: A novel counter architecture for
per-flow measurement. In Proceeding of the ACM
SIGMETRICS, 2008.

[7] Robert Morris. Counting large numbers of events
in small registers. Communications of the ACM,
21(10):840–842, 1978.

[8] Bruno Ribeiro, Don Towsley, Tao Ye, and Jean
Bolot. Fisher information of sampled packets: an
application to flow size estimation. In ACM
Internet measurement conference, pages 15–26,
2006.

7

