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Abstract—In this work we study the activity span of MySpace 1 e,
accounts and its connection to the distribution of the number of
friends. The activity span is the time elapsed since the creation 10t b

of the account until the user’s last login time. We observe
exponentially distributed activity spans. We also observer that
the distribution of the number of friends over accounts with
the same activity span is well approximated by a lognormal
with a fairly light tail. These two findings shed light into the 107 ¢
puzzling (yet unexplained) shape of the distribution of friends -
in MySpace when plotted in log-log scale: Two straight lines 104 |
with different parameters joined by an inflection point (knee).
We argue that the inflection point is more likely related to the 107 L ‘ ‘ ‘ ‘ ‘ ‘
inflection point of Reed’s (Double Pareto) Geometric Brownian 1 10 102 103 10% 10° 10°
Motion with Exponential Stopping Times model than to the Number of friends

Dunbar number hypothesis of online social networks, which
argues, without proof, that the inflection point is due to the
Dunbar number (a theoretical limit on the number of people that
a human brain can sustain active social contact with). While we
answer many questions, we leave many others open.

CCDF

Fig. 1. Empirical Complementary cumulative distribution of the
number of friends in MySpace.

account until the user’s last login time. (2) Inspired byiwas
|. INTRODUCTION works on the Double Pareto distribution [10], [11] we also

MySpace is one of the largest on-line social networks Rpserve that the distribution of the number of friend among
date with approximately 200 million accounts (users) ge@ccounts with roughly the same activity span can be well
graphically distributed around the globe. In this work Wgesc;rlbed by a Iognormal distribution whose average number
collect 400,000 randomly sampled MySpace accounts. A friends grows according to the square root of the acceunt’
unbiased estimate of the distribution of the number of ttgen SPan. Our findings provide a sound alternative hypothesis fo
of MySpace users can be seen in log-log scale in Figure 1. 1the emergence of a “knee” in the distribution of friends in on
shape of the distribution seen in Figure 1 agrees with pusvioline social networks: The mixture of multiple lognormal dis
unbiased estimates for MySpace [4]. Our findings in this wofkbutions with exponentially distributed averages. Bying
shed light into the puzzling (yet unexplained) shape of tfbat no such “knee” exists in the dlgtrlbutlon of friend over
distribution of friends seen in Figure 1: two Pareto-shapé$counts with roughly the same activity span, we challenge
distributions with different parameters joined by an infiec an alternative hypothesis (formulated in [1] for the Cy\Vdorl
point (knee). The choice of MySpace for our study comes froff1-liné social network) in which the “knee” is seen as a
two valuable records available in most of MySpace accounf&nsequence of the Dunbar's number, a theoretical cognitiv
the date in which the account was created and the uséifit Of the number of people (about47.8) with whom
last login date. By randomly sampling MySpace accounts &€ can mamtam stable social relationships [5]. Our'wsrk i
observe that: (1) Using this data we find activity spans to [§&ploratory in nature. We answer a number of questions, but
exponentially distributed. This phenomenon may explaicimu@lSo leave a number of other interesting questions open.
of the shape of the friends distribution shown in Figure 1. This work is organized as follows. In Section Il we review

The activity span is the time elapsed since the creationef the data collected from MySpace. In Section Il we analyze th
data collected from MySpace. Section IV connects the Double

This work was supported by ARO MURI W911NF-08-1-0233. Pareto distribution with the analysis provided in Sectitin |



showing possible connections between the number of friends Age: Time between the creation of an account and when

in a MySpace account and Geometric Brownian Mation. it is probed(recorded in our trace). Age is also studied in [15].

« Inter-login time: Time between two consecutive logins
into the same account.

Unfortunately, studying such a large and active social ngtigure 2 shows the complementary cumulative distribution
work has its drawbacks. The massive number of user accougjgction (CCDF) of MySpace activity spans where thaxis
combined with MySpace’s stringent rules on crawling itfs shown in log scale. We see that the majority of accounts in
network forces researchers to rely on statistics from incorytyspace are active for a very short period of time. The CCDF
plete datasets. We collect data from MySpace by sampligg activity spans divide into two parts. The first part with
account profiles uniformly at random. An entry in our datasgktivity spans< 26.5 months follow an exponential distribution
is comprised of user ID, IDs of all user friends, the date igstraight line in log-scale). This first part accounts forrmo
which the account was created, and the user’s last login daifang0% of the accounts. The second part with activity spans
Our data was collected in two phases: During the first phase,2g 5 months follow a parabolaxp(— activity spad)) in
denoted “fast probing”, we obtained a (time) snapshot of thgg-scale. The fast tail decay is, in part, a consequencheof t
MySpace graph. In 4 days we randomly sampled 1 milliopyncation of the distribution, as MySpace was launched in
IDs where 70,000+ correspond ¥alid public accounts. This aAygust 2003 and the data was collected in March 2009 (65

measurement had to be shut down due to complaints frefibnths later). The shaded area in Figure 2 shows the fitted
MySpace. During the second phase, denoted “slow probingjistributions and their divisions.

we obtained 312,718alid public MySpace accounts over a
period of 7 months. 1 4
The data collected during the “fast probing” phase is used
for our snapshot-sensitive analysis, e.g. the activitynspa &
distribution. As we are not too interested in the tail of thes
distributions, we believe that 70,000+ samples suffice taiob
good estimates. The data collected during the “slow prébing €
phase is used to obtain the distribution of friends of act®un
with the same activity span. The results obtained from the®
fast probing phase is also used to double check the resuIL@_
obtained in the slow probing phase. In this preliminary workQ 0.001
we hypothesize that private profiles (profiles from which weO
cannot obtain friends information) do not affect our resulte
leave as future work the task to collect data that can verify 0.0001
this hypotheses. 10 26.5 40 50
One of the challenges of this work is to perform statistical x= Lifespan (in months)
analysis using relatively few samples. The quality of our
conclusions depends directly on the quality of our estigatdig- 2. Empirical complementary cumulative histogram of account

. : activity activity spans. The red points represent the activity span
In our experiments we sample neary25% of all valid distribution observed in our data and the lines correspond to the

accounts. Appendix A analyzes the impact of the incomplei§ves shown in the equations below the curve. More i of
data over our estimates. In what follows we describe thiee probability mass follows an exponential law (the remairifgh
statistics obtained using this data. decays faster than an exponential).

Il. MEASUREMENT METHODOLOGY

0.1

t lifespa
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| | |

I1l. DATA ANALYSIS Figure 2 may leave the false impression that exponential

In this section we focus on the impact of activity spans o#ctivity spans are a possible consequence of an exponential
the distribution of friends. In what follows we look at acou growth in the number of accounts, i.e., activity spans are ex
activity span and friends distribution. While the friends-di ponentially distributed because account ages are exgatent
tribution of social networks has been extensively studied distributed. This is not the case for MySpace. Figure 3 shows
the literature, including a MySpace study [4] (that, liker outhe distribution of account ages (in months). Unlike atyivi
work, presents an unbiased estimate of the distributiom@f tspans, the distribution of account ages is not exponeptiall
number of friends), we show crucial statistical propertiest distributed. We see that less than% of the total number
have escaped the attention of previous works. of accounts (accounts older than 37 months, created during
- o MySpace’s early years) were created when MySpace experi-
A. Activity span distribution enced exponential growth. The remainif@% of MySpace

In this section we analyze three statistics collected in OHecounts (accounts newer than 37 months) shows that the
experiment: recent growth of MySpace has been (at best) linear (the

« Activity span: Time between the creation of an accounmigration of MySpace users has been studied in [15]). These

and the last time the user logged in. two modes of growth in the age of MySpace accounts may



be the reason behind the two distinctive modes in the accoun

activity span distribution. o
—— Estimated inter-arrival times
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expected as many users abandon their MySpace accounts. The sharp
drop at the end of the tail is due to an artificial constraint that there
are no inter-login times greater than 3 years.

Age (in months)

Fig. 3. Fraction of MySpace accounts with age =T{me of
scap- - <Member Since). After an exponential growth from 2003

(MySpace’s launch) to 2005, the number of new accounts transitions ) o
to linear growth. in quite often during the account activity span. Also, most

accounts that are not active during the span of one year are

We believe that account activity spans are one of the m@t likely to be active in less than three years. This is etquc
important statistics that one can obtain from an OSN su@% accounts inactive for more than one year are likely to have

as MySpace. We also argue that account ages are notPgen aban_doned. Figure 4 also sh_ows the distribuf[ion aatain
relevant. This is because friends are not automaticallyeaddom the difference between the time of the probing and the
into MySpace accounts. Users must log into their accounts3ReoUNt's last login time, which is the input data used in our
order to add or accept friends. Therefore, an account creafStimator.
and later abandoned cannot play a significant role in thedge
distribution after it is abandoned. Also note that MySpacesd
not delete accounts due to inactivity. 01l
The activity span distribution brings us to another questio
How frequently do users log into their accounts? Note that
one could generate the same activity span statistics ifsuser
logged in just once. In order to answer this question we need t
estimate the time between two consecutive logins into threesa
account inter-login time). Assuming that our probes arrive

lprm ®

0.001 |-

0.0001 |

CCDF (conditioned on the activity span)

at points in time that are distributed uniformly at random, reos | I IRy
. . . . . . . . months of activity *
we can estimate the inter-login time distribution using the 30 monins o ey -
) H H . . . ) ‘mom S O acnw‘y ‘ ‘ ‘
account’s last login time and the time of the probing. It is 106 Lt Ty o 000 oor0 108000

Number of friends

clear that we are more likely to probe long inter-login times
than short ones. This sampling phenomenon is known as ffi& 5 Log-log plot of the CCDF of friends for accounts with activity
inspection paradox [12]. Appendix B presents a maximum®SPans o(<1,1,2,10,20,30} months.

likelihood estimator that is used to obtain the CCDF of inter

login times (Figure 4). In order to speedup calculation af ou . , o
estimates we assume that there are no inter-login timesegred: Conditional friends distribution

than 3 years. We believe this assumption to be reasonablélere we present an important statistic missing from the
as MySpace had existed for only 6 years at the time bferature: the distribution of MySpace friends from acotsu

our measurements and we observed that fewer #éh of with the same activity span (in months). Figure 5 shows the
MySpace accounts in our trace were created more than 3 ydagslog plot of the CCDF of friends for accounts with actyit
from the time of our measurements. Unfortunately, we capans of<1,1,2,10, 20,30} months. Note that as the activity
only rely on our estimates as we do not have access to gpan increases the CCDF approaches a lognormal shape, the
ground truth. However, the results shown in Figure 4 seem @CDF for activity spans ofl0, 20, and 30 months have a
agree with our intuition. First, we observe that most acte®urshape similar to a lognormal (other months betw&eand

are logged in quite frequently. This is a sign that users ld§ have a similar lognormal shape). The CCDF of months



in Figure 7 shows these same conditional CCDFs (Figure 5)
unconditioned upon the activity span (Figure 2). We see that
the unconditional graph presents an inflection point rngar
friends. This indicates that the inflection point in Figures
consequence of the exponential activity spans and not atdire
consequence of the Dunbar number.
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(b) "Normalized" sample quantiles Number of friends
Fig. 7. Log-log plot of the CCDF of friends for accounts with activity
Fig. 6. QQ-plots of the distributions of friends within accounts withspans (greater thahmonths) unconditioned on their account activity
the same number of months of activity span. These graphs plot §8ans (also in months).
curves that correspond to the distributions of 3 months of activity
until up to 65. The theoretical quantiles are given by the t-Student

distribution (tests if the samples come from a standard Normal). . .
In order to test if the CCDF of activity spans frotto

65 months follow lognormal distribution we use the QQ-plots

qwn in Figure 6. Figure 6(a) shows B QQ-plot curves

{1,2} seem to have an intermediate shape between the sh % . .
of <1 (which is not power-law due to the jump frosnfriends ?} m 3 months toG5 months. The _strf';ught line represents
a perfect match to a lognormal distribution. Both axes in

(0.75) to 4 friends (0.16)) and the lognormal shapes of activity,

L Figure 6 are not the number of friends as seen in a regular
li t ths. The CCDF of activit 1 . )
spans froms to 65 montns © O actvity spatt QQ-plot. If plotted in their regular scale, the regular Q@wes

shows an outlier with close to 1 million friends (with Iessgannot be compared in the same plot as they have different
than a month of activity!). A likely cause are bots (program .
v y (prog erages. We need to get around the fact that accounts with

that automatically send friend requests to other MySpa rent activity spans have different loanormal bar "
users from bogus accounts). MySpace closely monitors u y spar 199 paraens:
us, we apply a simple transformation observing that the

accounts. If an user behaves suspiciously, MySpace blo of a loanormal random variable is Normallv distributed:
the account until the user proves to be legitimate. Thus, o 9 g varl ’ y distributed:
- ﬁkgply the log to the data, subtract the result from their

mple average, and divide it by the sample standard daviati
reasons, we were unable to confirm if the outlier was hus, if _the fmgmal data is 'Ogr.‘o”_“a“ the new t_ransformed
(anormallzed) data must be distributed according to a t-

bot. An alternate (mathematical) explanation for this ieutl NI )
is given in Appendix A. It is interesting to note that WhileStudent distribution whose degrees of freedom is the number

the unconditional CCDF (Figure 1) has an inflection poian data points. Because many curves in Figure 6(a) intersect

near 100 friends, the conditional CCDF (Figure 5) has ng'e opt to also show, in Figure 6(b), the heatmap of Figure 6(a)

such inflection point. This sheds light into the Dunbar numbg\'here cplors (_from blue to yel!ow) indicat_e the density of
hypothesis applied to on-line social networks, first présen overlapping points (from low to high, respectively). Framese

in [1] for the CyWorld network, which argues that a drasti%raphs we see that all these distributions can be well destri

drop in the CCDF near the Dunbar numbet7.8 (such as y a lognormal distribution.

the one in Figure 1) is a consequence of the theoreticalEstimates of the lognormal parametefs, o) for each
cognitive limit of the number of people (about7.8) with activity span value (in months) are plotted in Figure 8. Note
whom one can maintain stable social relationships [5]. Abat for activity spans greater than 4, the average number of
the Dunbar number should be valid for all "human” userstiends ;. seems to grow according t¢7" while the standard
the hypothesis should clearly apply to the conditional CCDdeviation o remains constant. In what follows we combine
as well. However, the conditional CCDFs (Figure 5) shothe above results to understand the distribution of frieinds
no such point of inflection. On the other hand, the grap¥iySpace.

and large number of friends. Unfortunately, due to priva
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leave as future work understanding the odd behavior of the

12 ﬁAje};ng N lognormal parameters in MySpace. Léf; be a random
ok Standard deviation variable that denotes the number of friends of a randomly
chosen account with activity span éfdays. Let

Xqg=FqgXq1 1)

IS
I

whereF;, i = 1,2, ... are independent random variables with

finite mean and variance ankiy = 1 (MySpace accounts start
I ! ! ! ! ! with “Tom” (MySpace’s creator) as their friend). Applyinge

<) 10 20 20 40 50 log to both sides of equation (1) we have

T = Activity span (in months)

-+

Number of friends within accounts with span
[0
I

d—1
Fig. 8. The average number of friends as a function of the account log(X.)) — log(F: 2
activity spanT’ grows according ta/7 while the standard deviation 0g(Xa) 2—21 0g(F3)- 2)
remains constant. '

The Central Limit Theorem (CLT) states that an infinite sum

of independent random variables, where no random variable
IV. DOUBLE PARETO AND THE DISTRIBUTION OF FRIENDS dominates the sufiin equation (2), converges to the Normal

Reed [11] shows that lognormally distributed random varflistribution [14]. A direct consequence of the CLT is that
ables with parametei.T’, 27" given a fixed activity spaf’, the Normal distribution is stable, i.e., the sum of two Nokma
whereT itself is a exponentially distributed random variabledistributions is also Normal. The assumption that no random
results in a distribution that is characterized by its graggr  variable dominates the sum is actually more important than
log CCDF plot: Two straight line segments that meet at the assumption of an infinite sum [14]. Thus, it is reasonable
transition point [10]. Known as the Double Pareto distritmt to expect that if no sample of thieg(F;)'s dominates the
we can see the connection between Reed’s Double Parggén, even finite sums can be well approximated by a Normal
distribution and the distribution of MySpace friends showgistribution. This simple model provides a plausible erpla
in Figure 1. tion behind the lognormals seen in the conditional distidns

The Double Pareto-like shape of MySpace’ friends distrf friends in Section I1I-B, although it does not explain the
bution is not surprising according to the statistics seen idgnormal parameters seen in Figuret8is important to note
Section IIl. In Section Il we have shown that the distrilbmti that this model makes no assumption on how friends connect
of MySpace friends shown in Figure 1 is a mixture of: to each other.

1) Exponential activity spans (Figure 2) (where active siser

log into their accounts quite frequently, as seen in . i
Figure 4) with Closely related to the above observation is the observation

2) the lognormal distribution of friends given a fixed® Huberman and Adamic [7], in 1999, that the exponential

activity span (Figure 6) with parameteigy/T, o2) growth of the World Wide Web (WWW) graph could explain
(Figure 8). its power law degree distribution. A webpage, like a MySpace

The parameters of the lognormals are the main differentg®" adds and removes links (friends”). But note that the

between the statistics presented in this section and Ree gdel in Huberman and Adamic [7] implicitly assumes that

model [11]. In Reed’s model the lognormal parameters aQéOSt webpages undergo sustained changes (addition and dele

(uT, 02T whereas in MySpace they are jsty/T, o). While tion of Iinkg) from the momen_t they were created unti! when
this is not a trivial difference, in our case the end result t%:bp?:g:s [asresr?g/%lregl')azggn:as d evce/%li\llslﬁri]; itsoa&fljisr L:';\ns“sr:ﬁngt]iztn
surprisingly similar, which deserves future study. about the WWW in 1999, this assumption does not apply to
A. Lognormals and the Discrete Geometric Brownian Motion  MySpace, as many MySpace users create accounts and quickly

First proposed by Huberman and Adamic [7] to exmaiﬁbandon them. In MySpace, Huberman and Adamic’s assump-
the degree distribution of the WWW graph, later formalizeion of exponential growth is replaced by the assumption of
by Reed [11] in the context of income distributions, ang@xponential activity spans (during which MySpace users are
further extended to explain file size distributions [10]e th@ble to include and remove friends). Mitzenmacher [10] has
model behind the Double Pareto distribution is a powerf@foposed a mechanism similar to Reed's to describe Web file
tool that is able to connect power law distributions with GediZes. Seshadri et al. [13] has proposed a similar mechanism
metric Brownian Motion (GBM) processes. The following id© describe the duration of cell phone calls which makes
a thought experiment based on the Huberman and Adamic Fﬁsumptions about the wealth of the callers. The migration
and Mitzenmacher [10] models that connects our results widh MySpace users has been studied in [15] where the authors
a “discrete GBM model". In this model the standard deviation, , -

It is easy to see that as the number of elements in sum goes tiyirtffie

grows linearly with the account activity span, which seemgqymption that “no random variable dominates the sum’ canpacei by
to contradict our the empirical data, shown in Figure 8. e assumption that eadR; has finite mean and variance.

V. RELATED WORK



looked at the last login times. Our work, on the other handre no exception, there is still much that can be said abeut th
uses another metric (the activity span) to understand ttal. In what follows we show how this is possible.

distribution of the number of friends. In what follows we provide a detailed analysis of the
estimation error and the maximum likelihood estimate of our
VI. SUMMARY & CONCLUSIONS data.

In this work we studied the activity span of MySpacgs Egimation error
accounts and its connection to the distribution of the nurnbe . e
friends. We observed exponentially distributed activiparss Let ¢, be the fraction of MySpace accounts witfiriends

served exponentially PASS 2nd6 — {6i]i = 1,...}. Let

and that the distribution of friends over accounts with thé ¢ B
same activity spans can be well approximated by a lognormal >
with a fairly light tail. These new findings shed light intoeth Oa= ) 0i
puzzling (yet unexplained) shape of the distribution oérfids
in MySpace when plotted in log-log scale: Two Pareto-shap8@ the fraction of accounts with more thahfriends. Let
distributions with different parameters joined by an infiec Y = {Yi}/L, be the (incomplete) raw data obtained from
point (knee). We argued that the inflection point is mor& sampled MySpace accounts. We define saepled dis-
likely related to the inflection point of Reed’s (Double Raje tribution to be the distribution of friends obtained from the
Geometric Brownian Motion with Exponential Stopping Time#icomplete dataseY. Let 7,;(Y) be an unbiased estimate of
model than to the Dunbar number hypothesis of online sock i-€., E[Tu(Y)] = ©4. Also let
networks in [1]. While our work answers many question, we T* = argmin E[(Q4 — Td(Y))Q],
leave many others open, such as reason behind the puzzling T,
constant standard deviation of the friends distributiondio i.e., estimatorT* has the smallest mean squared error among
tioned on an activity span. Another related open questioh isy|| ynpiased estimators (we assume &kafegularity [8]). In
Reed’s Geometric Brownian Motion with exponential stopinnat follows we answer the following questions:
times model can be changed to accommodate Iognorme&) How accurate cafi™* be?

distributions with parametergv'T’, o). (2) What is the most likely shape of the original distribu-
tion?

For now we assume that the only information ab@uton-
tained in the accounts is the number of friends. If accounts
display only the number of friends (not their IDs) and as

This section is dedicated to explain the methodology us#® sample accounts independently at random, sampling ac-
to substantiated our claims and describe the implicatidns @unts is equivalent to sampling degrees directly fi@m_et
working with incomplete (sampled) data. The following expo# (Y == d) denote the number of sampled accounts with
sition is quite straightforward but needed to ensure usdbat friends. We have
conclusions are sound. Fitting distributions to sampleta da N 11 ok N—k
somewhat of a controversial topic [6]. In the complex netsor PRHY ==d) = k] = (1 = 6a) """
literature heavy-tailed distributions are often found liserved From the above it is easy to see that the following inequality
(incomplete) data: links in Web pages [2], [7], file sizes][10holds

. : - 2] . Oa(l —04)

among many others. This comes as no surprise as, according to E [(@d - T(Y)) } >4 T4 ()
the theory of stable laws, heavy-tailed distributions aasilg N

Cranér-Rao inequality [3]. Andl'™* obtains the sampled dis-

A. Truncated tail tribution making the bound in eq. (3) tight. The above aralys
The study of heavy-tailed distributions requires a bridf duite trivial butit has a remarkable impact on our abittty
warning about the tail of the distribution. In most, if not, al draw conclusions from our sampled data. In order to exesnplif
scenarios these tails are truncated. A good example is {i§ Implications of equation (3) over the accuracy of our

distribution of the energy of earthquakes. While, from thgStmates, we assume, for the sake of argumentithat d "

sampled data already collected, such distribution appgedre with "ﬁ zlandd=1,..., ie., distripution? is. queto with
heavy-tailed, it is clear that the tail of the distributinriot Sc@lé=1 and shape > 1. The empirical distribution of the

truly “heavy” as there is a limit to the amount of energy thd?umber of friends_in our MySpac_e tra}ces has shape parameter
can be released from the Earth’s interior [9]. Our applaats * ~— :]'47 at the t]‘?”' In order to simplify our analysis we use
no exception and has an obvious truncation point (the numigI°ther metric of accuracy,
of users in MySpace). In what follows we refer to the “tail€"™" (oF NRMSE):

of our distributions as all points that are “far from zero”

2
but smaller than the truncation point. While there is great \/E [(@d - T(Y)) } ar —1
inaccuracy in measuring the tail [6], and our measurements NRMSHT) = 0y = N

i=d+1

APPENDIX

APPENDIXA
THE IMPACT OF SAMPLING ON OUR ESTIMATES

the normalized root mean square




recall thatV is the number of sampled MySpace accounts. THene probability that we will sample an interval of sizej is
inequality in the equation above comes from equation (3¢ Th jPIX = j]
NRMSE is a metric that gives the average error of estimator

®)

as a fraction of the quantity being estimated. With= 4 x 10° . _ 2=y RPIX = K]

(400,000 sampled accounts) we have Putting equations (4) and (5) together we have
NRMSE(T) > /(@ — 1)/(4 x 10°). Py _q_N~L_ JPIX=4 _ PIX>i]

| _ V== Sy =H B

Thus, any unbiased estimate @900 has an average J

NRMSE of at least.38 - ©1¢ op0. This reasonably large error Thus we can recursively calculat{X > 4] from:

is one of the reasons why fitting a distribution to the tail of 1

a sampled distribution is a controversial topic. Pleaserref E[X] = PY =1’ and ,

to Gong et al. [6] for an interesting look at the difficulty in PIX>i = E[X]P[Y =i

estimating the tail of Web file size distributions. An intgtiag

question for future work is whether the poor accuracyiosf ~ As we only have an estimate @f[Y" = ¢] and not its true

implies that we cannot be confident about the shape of thglue, the above estimate is subject to sampling noiseethde

original distribution. In what follows we estimate the like using the above estimator in our dataset we obtain a number of

shape of the distribution. negativeP[X = j] values. In order to obtain better estimates,
we use the maximum log-likelihood estimator

C. Maximum likelihood estimation i1 .
1-3" P[X =]

Here we find the most likely non-parametric distributionttha argmax Yi——o5 PX =
generated the sampled data. We wish to finithat maximizes {PIX=il} "y, kg KPIX = K]
the probability thafy’ =y, i.e., we wish to find the maximum wherey; is the number of samples af with valuei. We also
likelihood estimate enforce the constrainB < P[X = j] <1,j=1,2,... and
9=argmaxP[Y:y\0]_ ZVjP[X:J]:l-
)
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