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Abstract—In this work we study the activity span of MySpace
accounts and its connection to the distribution of the number of
friends. The activity span is the time elapsed since the creation
of the account until the user’s last login time. We observe
exponentially distributed activity spans. We also observer that
the distribution of the number of friends over accounts with
the same activity span is well approximated by a lognormal
with a fairly light tail. These two findings shed light into the
puzzling (yet unexplained) shape of the distribution of friends
in MySpace when plotted in log-log scale: Two straight lines
with different parameters joined by an inflection point (knee).
We argue that the inflection point is more likely related to the
inflection point of Reed’s (Double Pareto) Geometric Brownian
Motion with Exponential Stopping Times model than to the
Dunbar number hypothesis of online social networks, which
argues, without proof, that the inflection point is due to the
Dunbar number (a theoretical limit on the number of people that
a human brain can sustain active social contact with). While we
answer many questions, we leave many others open.

I. I NTRODUCTION

MySpace is one of the largest on-line social networks to
date with approximately 200 million accounts (users) geo-
graphically distributed around the globe. In this work we
collect 400,000 randomly sampled MySpace accounts. An
unbiased estimate of the distribution of the number of friends
of MySpace users can be seen in log-log scale in Figure 1. The
shape of the distribution seen in Figure 1 agrees with previous
unbiased estimates for MySpace [4]. Our findings in this work
shed light into the puzzling (yet unexplained) shape of the
distribution of friends seen in Figure 1: two Pareto-shaped
distributions with different parameters joined by an inflection
point (knee). The choice of MySpace for our study comes from
two valuable records available in most of MySpace accounts:
the date in which the account was created and the user’s
last login date. By randomly sampling MySpace accounts we
observe that: (1) Using this data we find activity spans to be
exponentially distributed. This phenomenon may explain much
of the shape of the friends distribution shown in Figure 1.
The activity span is the time elapsed since the creation of the
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Fig. 1. Empirical Complementary cumulative distribution of the
number of friends in MySpace.

account until the user’s last login time. (2) Inspired by previous
works on the Double Pareto distribution [10], [11] we also
observe that the distribution of the number of friend among
accounts with roughly the same activity span can be well
described by a lognormal distribution whose average number
of friends grows according to the square root of the account’s
span. Our findings provide a sound alternative hypothesis for
the emergence of a “knee” in the distribution of friends in on-
line social networks: The mixture of multiple lognormal dis-
tributions with exponentially distributed averages. By noting
that no such “knee” exists in the distribution of friend over
accounts with roughly the same activity span, we challenge
an alternative hypothesis (formulated in [1] for the CyWorld
on-line social network) in which the “knee” is seen as a
consequence of the Dunbar’s number, a theoretical cognitive
limit of the number of people (about147.8) with whom
one can maintain stable social relationships [5]. Our work is
exploratory in nature. We answer a number of questions, but
also leave a number of other interesting questions open.

This work is organized as follows. In Section II we review
the data collected from MySpace. In Section III we analyze the
data collected from MySpace. Section IV connects the Double
Pareto distribution with the analysis provided in Section III,
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showing possible connections between the number of friends
in a MySpace account and Geometric Brownian Motion.

II. M EASUREMENT METHODOLOGY

Unfortunately, studying such a large and active social net-
work has its drawbacks. The massive number of user accounts
combined with MySpace’s stringent rules on crawling its
network forces researchers to rely on statistics from incom-
plete datasets. We collect data from MySpace by sampling
account profiles uniformly at random. An entry in our dataset
is comprised of user ID, IDs of all user friends, the date in
which the account was created, and the user’s last login date.
Our data was collected in two phases: During the first phase,
denoted “fast probing”, we obtained a (time) snapshot of the
MySpace graph. In 4 days we randomly sampled 1 million
IDs where 70,000+ correspond tovalid public accounts. This
measurement had to be shut down due to complaints from
MySpace. During the second phase, denoted “slow probing”,
we obtained 312,713valid public MySpace accounts over a
period of 7 months.

The data collected during the “fast probing” phase is used
for our snapshot-sensitive analysis, e.g. the activity span
distribution. As we are not too interested in the tail of these
distributions, we believe that 70,000+ samples suffice to obtain
good estimates. The data collected during the “slow probing”
phase is used to obtain the distribution of friends of accounts
with the same activity span. The results obtained from the
fast probing phase is also used to double check the results
obtained in the slow probing phase. In this preliminary work
we hypothesize that private profiles (profiles from which we
cannot obtain friends information) do not affect our results. We
leave as future work the task to collect data that can verify
this hypotheses.

One of the challenges of this work is to perform statistical
analysis using relatively few samples. The quality of our
conclusions depends directly on the quality of our estimates.
In our experiments we sample nearly0.25% of all valid
accounts. Appendix A analyzes the impact of the incomplete
data over our estimates. In what follows we describe the
statistics obtained using this data.

III. D ATA ANALYSIS

In this section we focus on the impact of activity spans on
the distribution of friends. In what follows we look at account
activity span and friends distribution. While the friends dis-
tribution of social networks has been extensively studied in
the literature, including a MySpace study [4] (that, like our
work, presents an unbiased estimate of the distribution of the
number of friends), we show crucial statistical propertiesthat
have escaped the attention of previous works.

A. Activity span distribution

In this section we analyze three statistics collected in our
experiment:

• Activity span: Time between the creation of an account
and the last time the user logged in.

• Age: Time between the creation of an account and when
it is probed(recorded in our trace). Age is also studied in [15].

• Inter-login time: Time between two consecutive logins
into the same account.

Figure 2 shows the complementary cumulative distribution
function (CCDF) of MySpace activity spans where they-axis
is shown in log scale. We see that the majority of accounts in
MySpace are active for a very short period of time. The CCDF
of activity spans divide into two parts. The first part with
activity spans<26.5 months follow an exponential distribution
(straight line in log-scale). This first part accounts for more
than80% of the accounts. The second part with activity spans
≥ 26.5 months follow a parabola (exp(− activity span2)) in
log-scale. The fast tail decay is, in part, a consequence of the
truncation of the distribution, as MySpace was launched in
August 2003 and the data was collected in March 2009 (65
months later). The shaded area in Figure 2 shows the fitted
distributions and their divisions.
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Fig. 2. Empirical complementary cumulative histogram of account
activity activity spans. The red points represent the activity span
distribution observed in our data and the lines correspond to the
curves shown in the equations below the curve. More than80% of
the probability mass follows an exponential law (the remaining20%

decays faster than an exponential).

Figure 2 may leave the false impression that exponential
activity spans are a possible consequence of an exponential
growth in the number of accounts, i.e., activity spans are ex-
ponentially distributed because account ages are exponentially
distributed. This is not the case for MySpace. Figure 3 shows
the distribution of account ages (in months). Unlike activity
spans, the distribution of account ages is not exponentially
distributed. We see that less than20% of the total number
of accounts (accounts older than 37 months, created during
MySpace’s early years) were created when MySpace experi-
enced exponential growth. The remaining80% of MySpace
accounts (accounts newer than 37 months) shows that the
recent growth of MySpace has been (at best) linear (the
migration of MySpace users has been studied in [15]). These
two modes of growth in the age of MySpace accounts may
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be the reason behind the two distinctive modes in the account
activity span distribution.
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Fig. 3. Fraction of MySpace accounts with age = (<Time of
scan> - <Member Since>). After an exponential growth from 2003
(MySpace’s launch) to 2005, the number of new accounts transitions
to linear growth.

We believe that account activity spans are one of the most
important statistics that one can obtain from an OSN such
as MySpace. We also argue that account ages are not as
relevant. This is because friends are not automatically added
into MySpace accounts. Users must log into their accounts in
order to add or accept friends. Therefore, an account created
and later abandoned cannot play a significant role in the friends
distribution after it is abandoned. Also note that MySpace does
not delete accounts due to inactivity.

The activity span distribution brings us to another question:
How frequently do users log into their accounts? Note that
one could generate the same activity span statistics if users
logged in just once. In order to answer this question we need to
estimate the time between two consecutive logins into the same
account (inter-login time). Assuming that our probes arrive
at points in time that are distributed uniformly at random,
we can estimate the inter-login time distribution using the
account’s last login time and the time of the probing. It is
clear that we are more likely to probe long inter-login times
than short ones. This sampling phenomenon is known as the
inspection paradox [12]. Appendix B presents a maximum
likelihood estimator that is used to obtain the CCDF of inter-
login times (Figure 4). In order to speedup calculation of our
estimates we assume that there are no inter-login times greater
than 3 years. We believe this assumption to be reasonable
as MySpace had existed for only 6 years at the time of
our measurements and we observed that fewer than20% of
MySpace accounts in our trace were created more than 3 years
from the time of our measurements. Unfortunately, we can
only rely on our estimates as we do not have access to the
ground truth. However, the results shown in Figure 4 seem to
agree with our intuition. First, we observe that most accounts
are logged in quite frequently. This is a sign that users log
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Fig. 4. CCDF of estimated inter-login times. Note that a heavy tail is
expected as many users abandon their MySpace accounts. The sharp
drop at the end of the tail is due to an artificial constraint that there
are no inter-login times greater than 3 years.

in quite often during the account activity span. Also, most
accounts that are not active during the span of one year are
not likely to be active in less than three years. This is expected
as accounts inactive for more than one year are likely to have
been abandoned. Figure 4 also shows the distribution obtained
from the difference between the time of the probing and the
account’s last login time, which is the input data used in our
estimator.
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Fig. 5. Log-log plot of the CCDF of friends for accounts with activity
spans of{<1, 1, 2, 10, 20, 30} months.

B. Conditional friends distribution

Here we present an important statistic missing from the
literature: the distribution of MySpace friends from accounts
with the same activity span (in months). Figure 5 shows the
log-log plot of the CCDF of friends for accounts with activity
spans of{<1, 1, 2, 10, 20, 30} months. Note that as the activity
span increases the CCDF approaches a lognormal shape, the
CCDF for activity spans of10, 20, and 30 months have a
shape similar to a lognormal (other months between3 and
65 have a similar lognormal shape). The CCDF of months
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Fig. 6. QQ-plots of the distributions of friends within accounts with
the same number of months of activity span. These graphs plot 63
curves that correspond to the distributions of 3 months of activity
until up to 65. The theoretical quantiles are given by the t-Student
distribution (tests if the samples come from a standard Normal).

{1, 2} seem to have an intermediate shape between the shape
of <1 (which is not power-law due to the jump from3 friends
(0.75) to 4 friends (0.16)) and the lognormal shapes of activity
spans from3 to 65 months. The CCDF of activity span< 1
shows an outlier with close to 1 million friends (with less
than a month of activity!). A likely cause are bots (programs
that automatically send friend requests to other MySpace
users from bogus accounts). MySpace closely monitors user
accounts. If an user behaves suspiciously, MySpace blocks
the account until the user proves to be legitimate. Thus, one
is expected to find user accounts with short activity spans
and large number of friends. Unfortunately, due to privacy
reasons, we were unable to confirm if the outlier was a
bot. An alternate (mathematical) explanation for this outlier
is given in Appendix A. It is interesting to note that while
the unconditional CCDF (Figure 1) has an inflection point
near 100 friends, the conditional CCDF (Figure 5) has no
such inflection point. This sheds light into the Dunbar number
hypothesis applied to on-line social networks, first presented
in [1] for the CyWorld network, which argues that a drastic
drop in the CCDF near the Dunbar number147.8 (such as
the one in Figure 1) is a consequence of the theoretical
cognitive limit of the number of people (about147.8) with
whom one can maintain stable social relationships [5]. As
the Dunbar number should be valid for all ”human” users,
the hypothesis should clearly apply to the conditional CCDF
as well. However, the conditional CCDFs (Figure 5) show
no such point of inflection. On the other hand, the graph

in Figure 7 shows these same conditional CCDFs (Figure 5)
unconditioned upon the activity span (Figure 2). We see that
the unconditional graph presents an inflection point near130
friends. This indicates that the inflection point in Figure 1is a
consequence of the exponential activity spans and not a direct
consequence of the Dunbar number.
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Fig. 7. Log-log plot of the CCDF of friends for accounts with activity
spans (greater than2 months) unconditioned on their account activity
spans (also in months).

In order to test if the CCDF of activity spans from3 to
65 months follow lognormal distribution we use the QQ-plots
shown in Figure 6. Figure 6(a) shows all63 QQ-plot curves
from 3 months to65 months. The straight line represents
a perfect match to a lognormal distribution. Both axes in
Figure 6 are not the number of friends as seen in a regular
QQ-plot. If plotted in their regular scale, the regular QQ-curves
cannot be compared in the same plot as they have different
averages. We need to get around the fact that accounts with
different activity spans have different lognormal parameters.
Thus, we apply a simple transformation observing that the
log of a lognormal random variable is Normally distributed:
Apply the log to the data, subtract the result from their
sample average, and divide it by the sample standard deviation.
Thus, if the original data is lognormal, the new transformed
(“normalized”) data must be distributed according to a t-
Student distribution whose degrees of freedom is the number
of data points. Because many curves in Figure 6(a) intersect,
we opt to also show, in Figure 6(b), the heatmap of Figure 6(a)
where colors (from blue to yellow) indicate the density of
overlapping points (from low to high, respectively). From these
graphs we see that all these distributions can be well described
by a lognormal distribution.

Estimates of the lognormal parameters(µ, σ) for each
activity span value (in months) are plotted in Figure 8. Note
that for activity spans greater than 4, the average number of
friendsµ seems to grow according to

√
T while the standard

deviation σ remains constant. In what follows we combine
the above results to understand the distribution of friendsin
MySpace.
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Fig. 8. The average number of friends as a function of the account
activity spanT grows according to

√
T while the standard deviation

remains constant.

IV. D OUBLE PARETO AND THE DISTRIBUTION OF FRIENDS

Reed [11] shows that lognormally distributed random vari-
ables with parameters(µT, σ2T ) given a fixed activity spanT ,
whereT itself is a exponentially distributed random variable,
results in a distribution that is characterized by its graphlog-
log CCDF plot: Two straight line segments that meet at a
transition point [10]. Known as the Double Pareto distribution,
we can see the connection between Reed’s Double Pareto
distribution and the distribution of MySpace friends shown
in Figure 1.

The Double Pareto-like shape of MySpace’ friends distri-
bution is not surprising according to the statistics seen in
Section III. In Section III we have shown that the distribution
of MySpace friends shown in Figure 1 is a mixture of:

1) Exponential activity spans (Figure 2) (where active users
log into their accounts quite frequently, as seen in
Figure 4) with

2) the lognormal distribution of friends given a fixed
activity span (Figure 6) with parameters(µ

√
T , σ2)

(Figure 8).
The parameters of the lognormals are the main difference
between the statistics presented in this section and Reed’s
model [11]. In Reed’s model the lognormal parameters are
(µT, σ2T ) whereas in MySpace they are just(µ

√
T , σ). While

this is not a trivial difference, in our case the end result is
surprisingly similar, which deserves future study.

A. Lognormals and the Discrete Geometric Brownian Motion

First proposed by Huberman and Adamic [7] to explain
the degree distribution of the WWW graph, later formalized
by Reed [11] in the context of income distributions, and
further extended to explain file size distributions [10], the
model behind the Double Pareto distribution is a powerful
tool that is able to connect power law distributions with Geo-
metric Brownian Motion (GBM) processes. The following is
a thought experiment based on the Huberman and Adamic [7]
and Mitzenmacher [10] models that connects our results with
a “discrete GBM model”. In this model the standard deviation
grows linearly with the account activity span, which seems
to contradict our the empirical data, shown in Figure 8. We

leave as future work understanding the odd behavior of the
lognormal parameters in MySpace. LetXd be a random
variable that denotes the number of friends of a randomly
chosen account with activity span ofd days. Let

Xd = FdXd−1 (1)

whereFi, i = 1, 2, . . . are independent random variables with
finite mean and variance andX0 = 1 (MySpace accounts start
with “Tom” (MySpace’s creator) as their friend). Applying the
log to both sides of equation (1) we have

log(Xd) =

d−1
∑

i=1

log(Fi). (2)

The Central Limit Theorem (CLT) states that an infinite sum
of independent random variables, where no random variable
dominates the sum2 in equation (2), converges to the Normal
distribution [14]. A direct consequence of the CLT is that
the Normal distribution is stable, i.e., the sum of two Normal
distributions is also Normal. The assumption that no random
variable dominates the sum is actually more important than
the assumption of an infinite sum [14]. Thus, it is reasonable
to expect that if no sample of thelog(Fi)’s dominates the
sum, even finite sums can be well approximated by a Normal
distribution. This simple model provides a plausible explana-
tion behind the lognormals seen in the conditional distributions
of friends in Section III-B, although it does not explain the
lognormal parameters seen in Figure 8.It is important to note
that this model makes no assumption on how friends connect
to each other.

V. RELATED WORK

Closely related to the above observation is the observation
of Huberman and Adamic [7], in 1999, that the exponential
growth of the World Wide Web (WWW) graph could explain
its power law degree distribution. A webpage, like a MySpace
user, adds and removes links (“friends”). But note that the
model in Huberman and Adamic [7] implicitly assumes that
most webpages undergo sustained changes (addition and dele-
tion of links) from the moment they were created until when
the page is sampled. This is equivalent to assuming that
webpages are never abandoned. While this is a fair assumption
about the WWW in 1999, this assumption does not apply to
MySpace, as many MySpace users create accounts and quickly
abandon them. In MySpace, Huberman and Adamic’s assump-
tion of exponential growth is replaced by the assumption of
exponential activity spans (during which MySpace users are
able to include and remove friends). Mitzenmacher [10] has
proposed a mechanism similar to Reed’s to describe Web file
sizes. Seshadri et al. [13] has proposed a similar mechanism
to describe the duration of cell phone calls which makes
assumptions about the wealth of the callers. The migration
of MySpace users has been studied in [15] where the authors

2It is easy to see that as the number of elements in sum goes to infinity the
assumption that “no random variable dominates the sum” can be replaced by
the assumption that eachFi has finite mean and variance.
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looked at the last login times. Our work, on the other hand,
uses another metric (the activity span) to understand the
distribution of the number of friends.

VI. SUMMARY & CONCLUSIONS

In this work we studied the activity span of MySpace
accounts and its connection to the distribution of the number of
friends. We observed exponentially distributed activity spans
and that the distribution of friends over accounts with the
same activity spans can be well approximated by a lognormal
with a fairly light tail. These new findings shed light into the
puzzling (yet unexplained) shape of the distribution of friends
in MySpace when plotted in log-log scale: Two Pareto-shaped
distributions with different parameters joined by an inflection
point (knee). We argued that the inflection point is more
likely related to the inflection point of Reed’s (Double Pareto)
Geometric Brownian Motion with Exponential Stopping Times
model than to the Dunbar number hypothesis of online social
networks in [1]. While our work answers many question, we
leave many others open, such as reason behind the puzzling
constant standard deviation of the friends distribution condi-
tioned on an activity span. Another related open question isif
Reed’s Geometric Brownian Motion with exponential stopping
times model can be changed to accommodate lognormal
distributions with parameters(µ

√
T , σ).

APPENDIX

APPENDIX A
THE IMPACT OF SAMPLING ON OUR ESTIMATES

This section is dedicated to explain the methodology used
to substantiated our claims and describe the implications of
working with incomplete (sampled) data. The following expo-
sition is quite straightforward but needed to ensure us thatour
conclusions are sound. Fitting distributions to sampled data is
somewhat of a controversial topic [6]. In the complex networks
literature heavy-tailed distributions are often found in observed
(incomplete) data: links in Web pages [2], [7], file sizes [10],
among many others. This comes as no surprise as, according to
the theory of stable laws, heavy-tailed distributions are easily
generated from a number of stochastic processes.

A. Truncated tail

The study of heavy-tailed distributions requires a brief
warning about the tail of the distribution. In most, if not all,
scenarios these tails are truncated. A good example is the
distribution of the energy of earthquakes. While, from the
sampled data already collected, such distribution appearsto be
heavy-tailed, it is clear that the tail of the distribution is not
truly “heavy” as there is a limit to the amount of energy that
can be released from the Earth’s interior [9]. Our application is
no exception and has an obvious truncation point (the number
of users in MySpace). In what follows we refer to the “tail”
of our distributions as all points that are “far from zero”
but smaller than the truncation point. While there is great
inaccuracy in measuring the tail [6], and our measurements

are no exception, there is still much that can be said about the
tail. In what follows we show how this is possible.

In what follows we provide a detailed analysis of the
estimation error and the maximum likelihood estimate of our
data.

B. Estimation error

Let θi be the fraction of MySpace accounts withi friends
andθ = {θi|i = 1, . . . }. Let

Θd =
∞
∑

i=d+1

θi,

be the fraction of accounts with more thand friends. Let
Y = {Yi}N

i=1 be the (incomplete) raw data obtained from
N sampled MySpace accounts. We define thesampled dis-
tribution to be the distribution of friends obtained from the
incomplete datasetY. Let Td(Y) be an unbiased estimate of
Θd, i.e., E[Td(Y)] = Θd. Also let

T ⋆
d = argmin

Td

E[(Θd − Td(Y))
2
],

i.e., estimatorT ⋆ has the smallest mean squared error among
all unbiased estimators (we assume Hajék regularity [8]). In
what follows we answer the following questions:

(1) How accurate canT ⋆ be?
(2) What is the most likely shape of the original distribu-

tion?
For now we assume that the only information aboutθ con-
tained in the accounts is the number of friends. If accounts
display only the number of friends (not their IDs) and as
we sample accounts independently at random, sampling ac-
counts is equivalent to sampling degrees directly fromθ. Let
#(Y == d) denote the number of sampled accounts withd
friends. We have

P [#(Y == d) = k] = θk
d(1 − θd)

N−k.

From the above it is easy to see that the following inequality
holds

E
[

(Θd − T (Y))
2
]

≥ Θd(1 − Θd)

N
. (3)

The above inequality is a straightforward application of the
Craḿer-Rao inequality [3]. AndT ⋆ obtains the sampled dis-
tribution making the bound in eq. (3) tight. The above analysis
is quite trivial but it has a remarkable impact on our abilityto
draw conclusions from our sampled data. In order to exemplify
the implications of equation (3) over the accuracy of our
estimates, we assume, for the sake of argument, thatΘd = d−µ

with µ ≥ 1 andd = 1, . . . , i.e., distributionθ is Pareto with
scale=1 and shapeµ ≥ 1. The empirical distribution of the
number of friends in our MySpace traces has shape parameter
µ̂ = 1.47 at the tail. In order to simplify our analysis we use
another metric of accuracy, the normalized root mean squared
error (or NRMSE):

NRMSE(T ) =

√

E
[

(Θd − T (Y))
2
]

Θd
≥

√

dµ − 1

N
,
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recall thatN is the number of sampled MySpace accounts. The
inequality in the equation above comes from equation (3). The
NRMSE is a metric that gives the average error of estimatorT
as a fraction of the quantity being estimated. WithN = 4×105

(400,000 sampled accounts) we have

NRMSE(T ) ≥
√

(dµ − 1)/(4 × 105).

Thus, any unbiased estimate ofΘ10,000 has an average
NRMSE of at least1.38 ·Θ10,000. This reasonably large error
is one of the reasons why fitting a distribution to the tail of
a sampled distribution is a controversial topic. Please refer
to Gong et al. [6] for an interesting look at the difficulty in
estimating the tail of Web file size distributions. An interesting
question for future work is whether the poor accuracy ofT ⋆

implies that we cannot be confident about the shape of the
original distribution. In what follows we estimate the likely
shape of the distribution.

C. Maximum likelihood estimation

Here we find the most likely non-parametric distribution that
generated the sampled data. We wish to findθ̂ that maximizes
the probability thatY = y, i.e., we wish to find the maximum
likelihood estimate

θ̂ = argmax
θ

P [Y = y |θ].

The maximum likelihood estimate of the above Binomial
random variable iŝθd = 1/#(y == d), i.e., θ̂ is the sampled
distribution ofy. Note that#(y == d) denotes the number of
sampled accounts withd friends. Figure 1 shows the empirical
distribution of friends in our MySpace traces. The rather trivial
conclusion is that the empirical curve seen in Figure 1 is the
most likely distribution of friends in MySpace.

D. Changes to the original (incomplete) data

Zero friends: When someone joins MySpace they have the
creator of MySpace “Tom” as their friend. Thus, there are very
few accounts with zero friends. For the sake of simplicity we
ignore accounts with zero friends.

APPENDIX B
USER INTER-LOGIN TIME DISTRIBUTION

Let Y be the time (in days) between when an account is
probed and the last time it was logged in. If the difference in
time is less than 24 hours thenY = 1, if the difference in time
is between 24 and 48 hours thenY = 2, and so forth. Assume
that, collectively, users login an infinite number of times.Let
X be the time (in days) between two consecutive logins of an
user. In what follows we assume that accounts do not go stale
(in reality many users abandon their accounts).

If we assume that the time we sample the account is
distributed uniform at random, the probability of landing on
an interarrival time of sizex is

P [Y = i|X = j] =

{

0 if j < i
1/i otherwise

. (4)

The probability that we will sample an intervalX of sizej is

jP [X = j]
∑∞

k=1 kP [X = k]
. (5)

Putting equations (4) and (5) together we have

P [Y = i] =

∞
∑

j=i

1

j

jP [X = j]
∑∞

k=1 kP [X = k]
=

P [X ≥ i]

E[X]

Thus we can recursively calculateP [X ≥ i] from:

E[X] =
1

P [Y = 1]
, and ,

P [X ≥ i] = E[X]P [Y = i].

As we only have an estimate ofP [Y = i] and not its true
value, the above estimate is subject to sampling noise. Indeed,
using the above estimator in our dataset we obtain a number of
negativeP [X = j] values. In order to obtain better estimates,
we use the maximum log-likelihood estimator

argmax
{P [X=j]}

∑

∀i

yi

1 − ∑i−1
j=1 P [X = j]

∑∞
k=1 kP [X = k]

,

whereyi is the number of samples ofY with valuei. We also
enforce the constraints0 ≤ P [X = j] ≤ 1, j = 1, 2, . . . and
∑

∀j P [X = j] = 1.
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