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Abstract— Estimating characteristics of large graphs via
sampling is vital in the study of complex networks. In this
work, we study the Mean Squared Error (MSE) associated
with different sampling methods for the degree distribution.
These sampling methods include independent random vertex
(RV) and random edge (RE) sampling, and crawling methods
such as random walks (RWs) and the widely used Metropolis-
Hastings algorithm for uniformly sampling vertices (MHRWu).
We see that the RW MSE is proportional to the RE MSE
and inversely proportional to the spectral gap of the RW
transition probability matrix. We also determine conditions
under which RW is preferable to RV. Finally, we present an
approximation of the MHRWu MSE. We evaluate the accuracy
of our approximations and bounds through simulations on large
real world graphs.

I. INTRODUCTION

A number of recent studies [2], [5], [6], [11], [17], [12],
[18] (to cite a few) are dedicated to the characterization
of network graphs. Here a network is represented by an
undirected graph with labeled vertices and edges. Network
characteristics of interest include the degree distribution, the
average number of copies of a file in a peer-to-peer (P2P)
network [6], [17], the assortativity coefficient [14], and the
global clustering coefficient [14].

Characterizing graphs requires querying vertices and/or
edges; each query has an associated resource cost (time,
bandwidth, money). Querying the whole graph is often too
costly. As a result, researchers have turned their attention to
the estimation of graph characteristics based on incomplete
(sampled) data.

RV sampling: In networks where each vertex is assigned
a unique user-id (e.g., travelers and their passport numbers,
Facebook, MySpace, Flickr, and Livejournal) a widespread
practice is to perform random vertex (RV) sampling by
querying randomly generated user-ids. However, uniform
RV sampling may be undesirable when the user-id space
is sparsely populated (in MySpace the ratio between the
number valid users retrieved and the total number of queries
is 10% [13]). Moreover, queries are often subject to re-
source constraints (e.g., queries are rate-limited in Flickr,
Livejournal [11], and Bittorrent [9]). As we see in this
work, even when RV sampling is not severely resource-
constrained, some characteristics may be better estimated
with other sampling methods (e.g., the tail of the degree
distribution of a graph).

RE sampling: In independent Random Edge (RE) sam-
pling, a vertex is sampled by first sampling an edge indepen-
dent and uniformly from the set of edges, and then randomly
choosing one of the edge end points. In practice one should
use both end points of a sampled edge. However, in order to
simplify our analysis, we consider just one sampled vertex
for each sampled edge. In real world networks it is more
difficult to randomly sampling edges than vertices. Edges are
not often associated to unique IDs that can be queried and
online social networks such as Facebook, Twitter, MySpace,
Livejournal, and Flickr, among others, do not provide an API
that allows randomly sampling of edges.

RW sampling: An alternative, and often resource wise
cheaper, way to sample a network is by means of a random
walk (RW). RW sampling is preferred to other types of graph
crawling, such as the breadth-first crawling used in [11], as
one can obtain asymptotically unbiased estimates of a num-
ber of graph characteristics such as fraction of vertices with
a given label [18], the degree distribution [18], and, more
recently, assortativity and global clustering coefficients [14].
A RW samples a graph by moving a particle (walker)
from a vertex to a neighboring vertex (over an edge). The
probability by which the walker selects the next neighboring
vertex determines the probability by which vertices and
edges are sampled. We denote standard RW or just RW a
random walk that sample neighbors uniformly. A Metropolis-
Hastings walker, as seen later, selects the next neighboring
vertex using a different rule. RWs are popular for sampling
networks [12], [18] in order to estimate their characteristics.
One of the reasons behind the popularity of RW sampling is
that it does not query invalid users as does RV sampling.

MHRW sampling: The Metropolis-Hastings Random
Walk (MHRW) is an accept-reject random walk-based sam-
pling process that samples vertices according to a target
distribution ~. In this work we are mostly interested in a
MHRW that samples vertices uniformly, which we denote
MHRWu. MHRWu has been used to uniformly sample
peers in peer-to-peer networks [17] and Web pages [7].
Unfortunately, MHRWu is empirically known to have large
estimation errors compared to RW estimates [5].

Contributions

This paper presents the following contributions:

1) In Section III we prove that the Mean Squared Error
(MSE) obtained by a stationary sequence of n RW



sampled vertices is upper bounded by the MSE of n
RE sampled vertices divided by (1 —a), where « is the
absolute value of the second most dominant eigenvalue
of the RW transition probability matrix.

2) RW estimates have been observed to be more accurate
than estimates obtained by MHRWu [5], [12]. We
study how the Metropolis-Hastings mechanism tends
to induce larger estimation errors than RW and RV
sampling.

Outline

The outline of this work is as follows. Section II presents
definitions used in this paper. Section III presents an upper
bound of the MSE of RW sampling as a function of the
MSE of RE sampling and «, the absolute value of the second
most dominant eigenvalue of the RW transition probability
matrix. In Section IV we study how the Metropolis-Hastings
mechanism tends to induce larger estimation errors than RW
or even RV sampling. Section VI present simulation results
that help corroborate our theoretical analysis. And finally
Section VIII presents our conclusions.

II. DEFINITIONS

Let G = (V, E) be an undirected connected non-bipartite
graph and let d,, v € V, be the degree of vertex v. We

A .
denote vol(V) = >, ¢y dy. We want to estimate

F=)Y" f) (1
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from a sequence of vertices sampled from G. Let
(Zy,...,Zy,) be a stationary sequence of n sampled vertices,
where P[Z; =v] =, >0,Yw e V,¢t=1,...,n. Then

; A

F(Zy,... Z%,Ziev,i_l,...,n. )

is an unbiased estimate of I
Let var(X) define the variance of X. The Mean Squared

Error (MSE) of F'(Zy,...,Zy,) is
E[(F(Zy,...,Zn) — F)Y) =var(F(Z1,..., Z,)), (3
as E[F(Z1,...,%2,)] = F.

III. A TIGHT UPPER BOUND OF THE
RW ESTIMATION ERROR

Let (X1,...,X,) be a sequence of vertices sampled by
a RW in steady state. Let 7 = (m, : v € V), denote the
steady state probability distribution of the RW. A RW on
an undirected non-bipartite graph edges are sampled by the
RW with equal probability, 1/|E|, and the probability that
a vertex v € V is the i-th sampled vertex is P[X; = v] =
my = dy/vol(V), i = 1,...,n. To use the estimator in (2)
we need d,, which the RW observes when it visits v, and
vol(V'), which unfortunately requires knowing the number
of edges in G. When the number of edges is unknown, it is

common practice to use the Horvitz-Thompson estimator to
obtain an asymptotically unbiased estimate of F’:

_ Yo f(Xy)/d(X5)
Z?:l 1/d(Xi) ’

where here d(v) denotes the degree of node v € V. While
the Horvitz-Thompson is only asymptotically unbiased, in
practice we observe that the error from not knowing vol(V)
is negligible, as seen in Section V. Thus, in what we study
the MSE of the estimator in (2) assuming vol(V') is known.

In what follows we present a tight upper bound of the
MSE of a stationary RW. Let (Y7,...,Y,) be a sequence
of RE sampled vertices. We show that the MSE, eq.(3), of
(X1,...,Xp) is upper bounded by a function of the MSE
of (Y1,...,Y,) and «, where 0 < « < 1 is the absolute
value of the second most dominant eigenvalue of the RW
transition probability matrix.

We now focus on the second most dominant eigenvalue
of the RW. Let A = [A;;],i = 1,...,|V], be the adjacency
matrix of G, A;; = 1 iff (i, j) € E, otherwise A;; = 0. Let

F'(Xy,...,X,) “)

dy - 0
D=|: .
0 - dy

be a diagonal matrix whose diagonal elements are the degrees
of the vertices in G. Let P = D~'A be the one-step

RW transition probability matrix. The probability that a RW
reaches vertex j from ¢ in ¢ steps is

pY = (P

The stationary distribution of the RW is @ = Pm. Let
A1 > A2 > -+ > Ay be the eigenvalues of P. It follows
from the fact that G is an undirected connected non-bipartite
graph (and P is a stochastic matrix) and the Frobenius-
Perron Theorem that 1 = Ay > Ap > -+ > Ny > —1 [10].
The absolute value of the second most dominant eigenvalue
is defined as

a2 max(Ag, —Ajv)). 5)

A RW is fast mixing when « is sufficiently small (we choose
to use a vague definition of fast mixing as there are numerous
different definitions of “fast mixing” in the literature).

In the following theorem (Theorem III.1) we show that
the estimation error of a RW can be upper bounded by the
estimation error of RE sampling and «.

Theorem IIL1. Let G = (V, E) be an undirected connected
non-bipartite graph. Let (X1,...,X,,) be a sequence of
vertices sampled by a stationary RW on G, n > 1. Let
(Y1,...,Y,,) be a sequence of RE sampled vertices. Let

. 1
F(vl,...,vn)éng(vt),UieV,izl,...,n

and let o be the absolute value of the second most dominant
eigenvalue of the RW transition probability matrix.
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var(F(Y7,. ..
X)) S S
Proof. Generally, the RW estimation error is in part due to
the dependence among sampled vertices (X1, ..., X,,). This
dependence can be characterized by the covariance function,
cov(g(Xy), 9(Xt)), u,t € {1,...,n}. Upper and lower
bounds of the covariance of ¢(X;) and g(X¢), t =2,...,n
can be obtained as follows.

Let 7 = Pr and S = 7'/2Px'/2. Matrix S is symmetric
with the same eigenvalues of P. The eigenvector of S
corresponding to eigenvalue A\; = 1 is w. The Courant-
Fischer theorem [8, Theorem 4.2.11] gives the second largest
eigenvalue of S and its eigenvector w:

> viev ZVjEV wiw;mi P

max 7

w: (w,m)=0 ZVuEV ’LU%TFU

and the smallest eigenvalue of S and its eigenvector w’':

min > viev 2viev Wi w; imiPi L ®

w’ : (w’,m)=0 ZVuEV ’U}U?ﬂ'u

Let function f V' — R be as defined in (1). Define g( ) =
f(v)/my, — F, v € V. Note that E[g(X;)] =0,i=1,.

We are interested in the variance of

Var(F(Xl, ... 6)

Ay =

Av =

N f(Xe)
F(Xq,... =1,...

( 1 7 Z X, , 2 ) y 1,
where Xy,...,X, are 1dentlcally distributed. Let
(Y1,...,Y,) be a sequence of RE sampled vertices.
Note that

%Var(g(Xl)) - %Var(ﬁ(yl)) —var(E(Vi, ..., Y)))

and that

ar <% Zg(Xi)> = var(F(X1,...,X,)).

The variance of the above sum can be broken into the
variance and covariances of its summands [15, pp. 265]

< Zg ) :—var( (X1))+
23" eov(y(X),
t=2

These variances and covariances can be written as

=2 >l

YveV YueV

(C))

9(Xy))-

1)

cov(g(X1 vavtu

for 1 <t <mn;and
var(g(X;)) = Z g)?m, ,i=1,...,n.
YueV
The variances and covariance of g(X;) and g(X3) can be
easily bounded by A2 and Ay of (7) and (8):

cov(g(X1), g(X2)) > Ay

M2 )

The covariance of ¢g(X1) and g(X;), ¢t > 2 can be bounded
as follows. Let v = max(Aq, —Ajv|) as defined in (5). Then
9(

cov(g(X1), 9(X2))
= T ae(Xh)

As \j and Afy,| are eigenvalues of P’ and var(g(X1)) > 0,
we have that

o' var(g(X1)) > cov(g(X1),

9(Xt)) .
Substituting (10) into (9) yields the following upper bound

var (% Zg(XJ) < var(g(X1)) <% + % nT_tat>

(10)

i=1 t=2
1 2a
< — _— =
<varlgx) (5 + o)
1+«
= Var(g(Xl))m
ar(g(X1))
~n(l-a)’
asal<a<l,
“n—t ¢ @ 202 — a® — !
Z T o 1—a)2
—~ n a n(l — «)

and 202 — a? — o™t > 0.
O

The upper bound in Theorem III.1 is tight as a =
0 yields cov(g(X1),9(X:)) = 0, t > 1, and thus
var(F(X1,...,X,)) = var(F(Y1,...,Y,)), which is what
we expect if the RW mixes instantly. Hence, for small enough
« the MSE of a RW can be approximated by the MSE of
RE.

In what follows we compare the standard RW with the
Metropolis-Hastings Random Walk (MHRW) that performs
uniform sampling of nodes.

A. Degree distribution: RW v.s. RV sampling

The NMSE is the Normalized Mean Square Error of an
estimate 0, of the fraction of nodes with degree d, 6,4, is
defined as

MSE(fy)
0

Let d denote the average degree. The NMSE of estimating
6,4 using n RE is

NMSE(d) =

NMSEre(d) = 1/(d/(db4) —1)/n, d > 0. (11)
Similarly, the NMSE(d) using RV sampling is
NMSEry(d) = v/(1/04—1)/n. (12)
Applying Theorem III.1 to (11) yields
NMSE;rw (d) < (d/(d0s) — 1) d>0. (13)

n(l—a) ’

From equations (13) and (12) we see that a fast mixing RW
more accurately estimates degrees larger than the average



(d > d) while RV sampling more accurately estimates
degrees smaller than the average (d < d). The above analysis
explains the empirical observation in [12] that the estimates
of the degree distribution tail obtained by a RW are more
accurate than the equivalent estimates obtained with RV.

IV. MHRWU v.s. RWs

The standard RW described in Section III is the most
common type of RW found in the literature [10]. However,
other types of random walks exist, refer to [15, Chapter 7]
for example. One example is the Metropolis-Hastings RW
that can be used to sample vertices uniformly at random
(MHRWau). Stutzbach et al. [17] presents an application of
the MHRWau to the study of peer-to-peer networks. MHRWu
is found to be less accurate than a RW in estimating some
graph characteristics such as the degree distribution [5].

A MHRWu is an accept-reject sampling process that
samples vertices uniformly. In this section we explore a
parallel between MHRWu and a RE resampling algorithm
(presented in Section ??). The MHRWu works as follows,
starting at vertex v we:

« select a neighbor v of v uniformly at random;

o the next sampled vertex (step) is w with probability

min(d, /d,, 1), otherwise v is the next (step) sampled
vertex.

A. MHRWu

In what follows we present MHRWu as a RW process
with “self loops”. Let 7 denote the steady state probability
of MHRWu. We know that 7 = (1/|V],...,1/|V]). Let pys
be the probability that MHRWu goes from u to v, u,v € V,
u # v. MHRWu is time reversible, thus m,pyu = TuPuv-
Let A = [4;;],i = 1,...,|V], be the adjacency matrix of
G, A;; = 1iff (i,j) € E, otherwise A;; = 0. Note that
for i # j, i,j € V, the probability the a MHRWu walker at
vertex ¢ goes to vertex j in one step is

1/dl X (1{dz > d/j} + dz/djl{dl < dj}) = 1/max(di,dj).

Thus, the transition probability matrix of the MHRWu
Markov chain is a |V| x |V transition probability matrix
P = [pi;], where

1/ max(d;, df{) ifi£j
Zmax(di,du) ne=J

ueV

Figure 1(a) illustrates some transition probabilities of this
Markov chain on a graph with two nodes and one edge. The
arrows in Figure 1(a) indicate the walker direction and the
probability that the direction is taken. Note that the self-loop
Puw adds an average of 1/p,, “extra” copies of u € V for
each sample of one of its neighbors. These extra copies allow
all vertices to be sampled in average at the same frequency.

An interesting characteristic of MHRWu can be seen in
Figure 1(b). The self-loop at u has probability 1 — 1/d,,
which means that on average d, — 1 extra copies of u are
made for each sample of v. This resampling can induce large
estimation errors as seen in the next section.

1 ® \v/ @ u
oe=JoY

1

(a) (b)

Fig. 1. (a) MHRWau transition probabilities and (b) star graph example.

B. A MHRWu NMSE approximation

In Section III-A we introduced the NMSE of RV and RE,
and an upper bound on the RW NMSE. In this section we
present an approximation of the MHRWu NMSE. Let { H, }7
be a sequence of vertices sampled by MHRWu in steady
state. An unbiased estimate of F' is

. 1 &
FY(Hy, ... Hy) 2 =3 f(H). (15)
t=1

We approximate F'{(Hy,... H,) as follows. Let be a set
of RE sampled vertices and let K;())) be the number of
vertices in ) with degree d. The sampled vertices in process
{H;}?} can be divided into two categories: (1) vertices that
are sampled due to a transition p;;, ¢ # j; and (2) vertices
that were resampled because of the p;;, ¢ € V, probability
in (14).

A rough model of {H;}7 can be obtained by modeling the
sampled nodes of { H;}7 as follows: (1) the samples due to a
transition p;;, ¢ # j, are a sequence of RE sampled vertices
Y = {Y;}7; and (2) the samples due to p;; are modeled by
making some random copies of the vertices in ). For each
RE sampled vertex Y;, ¢t € {1,...,n}, the number of copies
is Z; — 1, where Z; is a Geometric random variable with
parameter d(Y;)/vol(V'), where d(Y;) is the degree of Y;.
In what follows we show that, just like MHRWau, the above
rough model gives an unbiased estimate of F'

n

F=2 3 )2,

t=1
as shown in the following lemma.

Lemma IV.1. Let Y = {Y;}7 be a sequence of RE sampled
vertices. Let {Z:}7 be a sequence of iid Geometric random

variables with parameter d(Y;)/vol(V'), where d(Y;) is the
degree of Y;. Then

n

F=2 3 )2,

t=1

is an unbiased estimate of F.



Proof. For any t > 1:

E[f(Y))Zi] = E[E[f(Y1)Z:|Y1]]
= E[f(V)E[ZV]] = E[f(Y)1/7y,]
= Z f)my/my = Z f(w)
YveVv YveV
Thus,
P = S Bf(0Z]= Y 10)
t=1 YveV
which concludes our proof. o

Note that in the above model we have Z?:l Z; samples,
where Z; > 1, ¢t = 1,...,n, while in the original problem
there are only n samples. To correct for that we refine the
above model.

Let D4 denote the set of vertices with degree d in { H;}7-;.
Let K4 = |Dy| be the size of D4. K is a Binomial random
variable with parameters n and 04; P[Kq = k] = (})65(1—
64)"~*. One difficulty in obtaining closed form expressions
using Dy is that vertices in Dy are not independent, as Dy
contains the vertices and their copies. To simplify our model
we assume independence, i.e., that the number of its copies
in {H;}™_, of vertices with degree d is a sequence {Zt(d)}{{d
of iid Geometric random variables with parameter 1/d. Let
NMSE,,,;,(d) denote the NMSE for degree d of this improved
model of {H;}7.

Theorem IV.2. Let NMSE,,;(d) denote the NMSE for
degree d of the above model of {H:}?. Then

2(d—1)2/04 — 1

n

NMSE,,, (d) > \/

Proof. Let K  denote the number of vertices with degree d in
{H;}_,. K, is a Binomial random variable with parameters
n and 64 P[Kq = k] = (})0%(1 — 64)"*. The total
number of replications of vertices with degree d is a sequence
{Z, (@) }{( ¢ of iid Geometric random variables with parameter

1/d. We have
Lo (S5 @
avar <Z Z, )
t=1

As {Zt(d)}{( ¢ is an iid sequence of random variables that are
independent of K4, the variance of the sum Zfidl Zt(d) can

be decomposed as [16, pp. 349, Example 4n]

NMSEy(d) = o

= 9_101\/(1/"2) (E[Kd]var(Zl(d)) + E[Zfd)]Qvar(Kd))_

Sampling Method NMSE error
1/64 —1
Node Sampling /94
n
d/(dfg) — 1
Edge Sampling d/(dba) = 1 , d>0
n
Random Walk (d/(d8a) = 1) , d>0
n(l—a)
d—1)2/64—1
Metropolis-Hastings RW = = (d=1)*/6a =1 , d>0

n

TABLE I
SUMMARY OF RESULTS: DEGREE DISTRIBUTION ESTIMATION ERRORS
OF VARIOUS SAMPLING METHODS. 64 IS THE FRACTION OF NODES
WITH DEGREE d (QUANTITY THAT IS ESTIMATED), n IS THE NUMBER OF
SAMPLED NODES, AND & THE ABSOLUTE VALUE OF THE SECOND MOST
DOMINANT EIGENVALUE OF THE RW TRANSITION PROBABILITY
MATRIX

The expectation and variance of the above random variables
are known thus

1
-1/ @/n2) (ElKavar(2{") + B[2{" Par(Ky))
d
- n9d(d2 —d)+ d2n9d(1 — 9d)
N n262
@22 -6)—d
o n@d
2(d —1)2 -
S ECERY
n
finishing our proof. O

Although there are no guarantees that NMSE 1 (d) is
a good approximation to the true NMSE of MHRWu, our
simulations (representative results of our simulations are
presented in Section VI) indicate that NMSE, .1, (d) is indeed
close to the empirical value of NMSE for large values of d.
It is interesting to take a closer look at the equation

(d—1)2/04— 1

n

NMSE[, ; (d) >

to note that the MHRWu NMSE grows linearly with d.
Contrast the linear growth of NMSEmh(d) as a function of
d with the NMSE of a RW:

NMSErw(d) < \/(d/(d6a) ~ 1)/(n(1 ~ o).
which is inversely proportional to d. Also note that
NMSE[ 1 (d) > NMSEry(d) , Vd,

in fact, the error of MHRWau is almost d times larger than
the error of RV sampling. Table I summarizes our analytic
results.



V. CURRENT EFFORTS TO IMPROVE RW ACCURACY

Sampling a graph using a RW is not without drawbacks.
A random walker can get (temporarily) “trapped” inside
a subgraph whose characteristics differ from those of the
whole graph. Even if the random walker starts in steady
state (i.e., is stationary), a “trap” may increase the mean
squared error of the estimates. Ideally, the random walker
needs to mitigate the effect of these traps on the estimates.
Note that in a graph with such “traps”, o« ~ 1 and, as
seen in Section III, the RW MSE is upper bounded by
1/(1 — a). A simple naive solution to the RW “trapping”
problem is to sample the graph using multiple independent
random walkers [4]. This naive solution, however, can have
the opposite effect and exacerbate the problem [14]. The
literature, however, provides some promising approaches to
cope with this problem if the graph admits a limited (small)
amount of RV sampling.

RV sampling has been used to significantly reduce « [1]
by allowing the random walks to “jump” to an RV sampled
node. The algorithm in [1] differs from the PageRank [3] RW
+ RV “jumps” in that it obtains unbiased estimates of eq.(1).
In [1] it is also shown that, unless the underlying graph
is known, the PageRank algorithm must necessarily obtain
biased estimates of eq.(1). Another promising approach to
improving the RW accuracy is starting m dependent walkers
at m RV sampled nodes. This approach, called Frontier
Sampling (FS) [14] given in Algorithm 1, introduces a simple
dependence among all m walkers in a way that starting the
m walkers at m RV sampled nodes is arbitrarily close to
starting FS in steady state, provided m is large enough. In
our simulations we observe that the FS NMSE for m = 1000
is close to the NMSE of a RW with negligible mixing time.

Algorithm 1: Frontier Sampling (FS).

1: n < 0 {n is the number of steps}
2: Initialize L = (v, ..., Vs, ) with m randomly chosen
vertices (uniformly)

3: repeat
Select u € L with probability d./ > v, ¢, do

5. Select an outgoing edge of u, (u,v), uniformly at
random

6:  Replace u by v in L and add (u,v) to sequence of
sampled edges

7. n<n+l

g: until n > n — mec

VI. SIMULATION RESULTS

In what follows we present the results of our simulations
of the sampling methods discussed in this paper. The graphs
used in our experiments are real-world graphs detailed in
Table II. But due to space constraints we restrict our results to
the two largest graphs in our datasets: LiveJournal and Flickr.
Note that our simulations are performed on disconnected
graphs, which can increase the MSE of methods such as

RW and MHRWu (FS is designed to mitigate the large
MSEs caused by disconnected graphs). Results using the
other datasets are similar to LiveJournal and Flickr results.
All sampling methods have a budget of n vertices to sample.
Each newly sampled vertex deducts one from the budget
while resampling a vertex does not count against the budget
(i.e., has cost zero). The empirical MSE of our simulations
is obtained over 10, 000 runs.

In some of our simulations we use a slightly different
MSE metric than the NMSE: the normalized root mean
square error of the Complementary Cumulative Distribution
Function (CCDF) v = {v4}4>1, where 74 = Zzozdﬂ 0%,

> 2
oNMsE(d) = YEOe =)
Yd
where ~y is the estimate of 7. The CNMSE is just
the NMSE of 74 and thus CNMSE,,(d), CNMSEyv(d),
CNMSErw (d), and CNMSEre(d) have the same expression
as their respective NMSE formulation with 6, replaced by
ya (or TIy = dfy/d replaced by dryy/d).

Note that the graphs in Table II are directed and thus
we estimate in-degree and out-degree distributions. These
directed graphs, unlike other directed graphs such as the Web
graph, are amenable to sampling with RWs as both incoming
and outgoing edges are visible to the crawler (random
walker). Thus, any degree distribution estimator can be used
to also estimate in-degree and out-degree distributions. There
are a number of directed graphs that can be crawled as if
they were undirected, Twitter and Livejournal are two good
examples. For more details on sampling directed graphs with
random walks please refer to [14].

(16)

Goodness of theoretical approximations

RE <
FS (rm = 1000) +
RV

[}
]
average degree

NMSE

&
0.1 —H

0.02 — &
1072 —

10-? T T T T T
[¢) 10 102 10* 10°
vertex degree

Fig. 2. (Flickr) The log-log plot shows the NMSE of the degree distribution
estimation with budget n = |V/|/100 = 18612 (NMSE over 10, 000 runs).

1) FS v.s. RE: This first set of simulations differ from
the remaining simulations in this paper in that we make all
directed graph undirected and resampling a vertex reduces
the sampling budget by one. In our results we compare the
NMSE of FS and RE. Figure 2 shows the log-log plot of the
degree NMSE of FS against RE sampling. We observe that
the FS NMSE is close to the RE NMSE for all degrees d > 0
(note that from Theorem III.1 the RE NMSE is equivalent



Graph Flickr LiveJournal YouTube Internet RLT
Description Social Net. Social Net.  Social Net.  Internet tracert.
Type of graph Directed Directed Directed Directed
# of Vertices 1,715,255 5,204,176 1,138,499 192,244
Size of LCC 1,624,992 5,189,809 1,134,890 190,914
# of Edges 22,613,981 77,402,652 9,890,764 609, 066
Average Degree 12.2 14.6 8.7 3.2
Wmax 2232 1029 3305 335
% of Original Graph 26.9% 95.4% NA NA
TABLE II

SUMMARY OF THE GRAPH DATASETS USED IN OUR SIMULATIONS. “SIZE OF LCC” REFERS TO THE SIZE OF THE LARGEST CONNECTED COMPONENT
AND wwmax IS THE VALUE OF THE LARGEST VERTEX DEGREE DIVIDED BY THE AVERAGE DEGREE.

to the MSE of a RW with negligible mixing time (o < 1)).
The same is true in all tested datasets.

2) RE v.s. RV sampling: Figure 2 shows the log-log
plot of the in-degree NMSE of RE and RV sampling. As
theoretically predicted by our analysis in Section III-A, the
NMSE of RV is smaller than the NMSE of RE when d is
smaller than the average degree; conversely, the NMSE of
RV is larger than the NMSE of RE when d is larger than the
average degree as also predicted by our analysis.
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MHRWu
CNMSE/, (d

RV (100% hit ratio)
RE
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1000 —

100 —

CNMSE

0 10 102 104 10°
vertex out-degree

Fig. 3. (Flickr) The log-log plot of the CNMSE of the out-degree
distribution estimates with budget n = |V'|/100. RV with hit ratio 100%.

3) FS v.s. MHRWu : In this simulation on Flickr we
compare FS and MHRWu. We simulate FS and MHRWu
on the Flickr graph with n = |V|/100 samples. Figure 3
plots the the out-degree CNMSE of FS and MHRWu. The
estimates of MHRWau are clearly much less accurate than the
estimates of FS (for large degrees the MHRWau error is more
than 1,000 times that of FS). RW also clearly outperforms
MHRWu but less so than FS. Also note that CNMSEre(d)
approximates well the CNMSE of FS, i.e., FS behaves like
a RW with spectral gap ~ 1.

4) MHRWu v.s. NMSE,, ;,(d): Figure 3 also assesses the
goodness of the theoretical approximation of NMSE;nh(d)
derived in Section IV-B. Note that the approximation of
CNMSE| ; (d) is accurate when d > 10%. Note that the
CNMSE of MHRWu for large degrees is larger than the
scale of the plot, hitting values as large as 10, 000. Clearly

MHRWau is unable to accurately sample the tail of the degree
distribution.

5) MHRWu v.s. RV sampling: In Figure 3 we also
observe that the CNMSE of MHRWau is much larger than the
CNMSE of RV and therefore, as expected, RV is preferable
to MHRWau for all degrees.

6) Remaining results: Figure 4 plots the in-degree CN-
MSE of RW, FS, MHRWu, and RV (with 10% hit ratio) on
the LiveJournal graph for budget of n = |V/|/1000. These
results confirms the previous findings on Flickr. “RV with
(with 10% hit ratio)” represents random vertex sampling
when only 1 in 10 queries are valid, i.e., in average only
n/10 samples are used in the estimator. RV is still the
most accurate sampling method for degree d = 1 despite
the hefty penalty imposed of discarding 9 in 10 samples.
For degrees d > 1 FS is the most accurate method. FS is
slightly more accurate than RW for degrees between 10 and
5 x 103. MHRWau is again the least accurate method (where
CNMSE(d) > 1000 when d > 2 x 10%). Figure 5 also shows
the error of estimating the in-degree distribution of Flickr.
These results are similar to the out-degree distribution results
reported in Figure 3.
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Fig. 4. (LiveJournal) The log-log plot of the CNMSE of the in-degree

distribution estimates with budget n = |V'|/1000.
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Fig. 5. (Flickr) The log-log plot of the CNMSE of the in-degree distribution
estimates with budget n = |V[/100.

VII. RELATED WORK

A number of works use and contrast standard RW,
MHRWu, and RV sampling[2], [5], [6], [11], [17], [12],
[18], though their strength is in their empirical findings. In
this work we present a principled theoretic comparison of
RV, standard RW, RE, and MHRWu sampling methods. We
present the first analysis that show that RW sampling MSE is
inversely proportional to the spectral gap of the RW transition
probability matrix. The first rough approximation to MHRWu
sampling using RE sampling is shown in the appendix of
Gjoka et al. [5]. The work of Gjoka et al. [5] inspired the
refined approximation presented in Section IV-B, where we
compute the exact probability of a self-loop, obtaining a
better estimate of the average number of resamples of the
same node. We use this improved approximation to provide
an expression for the MHRWu MSE.

VIII. CONCLUSIONS

This paper provides an upper bound for the MSE of a
stationary RW as a function of the MSE of RE and the
absolute value of the second most dominant eigenvalue of
the RW transition probability matrix. We observed that RW
and RV sampling are optimal in respect to different weighted
MSE optimizations and analyzed when RW is preferable to
RV sampling. We also presented an approximation to the
MHRWu MSE. Finally, we introduce a novel RW sampling
algorithm, Frontier Sampling (FS). Our simulation experi-
ments on large real world graphs showed that FS achieves
the MSE of a RW with negligible mixing time.
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