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Abstract—Despite recent efforts to characterize complex net-
works such as citation graphs or online social networks (OSNs),
little attention has been given to developing tools that can be
used to characterize directed graphs in the wild, where no pre-
processed data is available. The presence of hidden incoming
edges but observable outgoing edges poses a challenge to char-
acterize large directed graphs through crawling. Unless we can
crawl the entire graph or the directed graph edges are highly
symmetrical, hidden incoming edges induce unknown biases in
the sampled nodes. In this work we propose a random walk
sampling algorithm that is less prone these biases. The driving
principle behind our random walk is to construct, in real-time,
an undirected graph from the directed graph in a way that
is consistent with the sample path followed by the algorithm
walking on either graph. We also study outdegree and indegree
distribution estimation. Out-degrees are visible to the walker
while indegrees are hidden (latent). This makes for strikingly
different estimation accuracies of in- and outdegree distributions.
Our algorithm accurately estimates outdegree distributions of a
variety of real world graphs while we show that, in the same sce-
narios, no algorithm can accurately estimate unbiased indegree
distributions unless the directed graph is highly symmetrical.

I. INTRODUCTION

Despite recent efforts to characterize complex networks

such as citation graphs or online social networks (OSNs), little

attention has been given to developing tools that can be used

to characterize directed graphs in the wild, where no pre-

processed data is available. A network is said to be directed

when the relationships between its agents (users or profiles)

may not be reciprocated. For instance, a Wikipedia [19] entry

about Columbia Records cites Thomas Edison but Thomas

Edison’s entry makes no reference to Columbia Records.

The presence of hidden incoming edges but observable

outgoing edges makes characterizing large directed graphs

through crawling a challenge. An edge b → a is a hidden

incoming edge of node a if b → a can only be observed from

node b. For instance, in our earlier Wikipedia example about

Columbia Records and Thomas Edison we cannot observe the

edge “Columbia Records” → “Thomas Edison” from Thomas

Edison’s wiki entry (but this edge is observable if we access

Columbia Records’s wiki entry).

Unless we can crawl the entire graph, hidden incoming

edges induce unknown biases in the sampled nodes. Moreover,

there may not even be a directed path from a given node to all

other nodes. Graphs with hidden outgoing edges but observ-

able incoming edges exhibit essentially the same problem.

In this work we propose a random walk sampling algorithm

that does not suffer from unknown sampling biases when

partially crawling directed graphs with hidden incoming edges.

More importantly, we present a method to unbias the samples.

Our random walk algorithm resorts to two main principles to

achieve unbiased samples:

• In real-time we construct an undirected graph using the

directed nodes that are sampled by the random walker

on the directed graph. The undirected graph role is to

guarantee that at the end of the sampling process we

can approximate the probability of sampling a node, even

though incoming edges are not observed. The random

walk proceeds in a way that the sample path of walking

on the directed graph is consistent with the sample path

followed by the algorithm when walking on the constructed

undirected graph. Knowing the sampling probability of a

node allows us to unbias the samples.

• A very limited amount of uniformly sampled nodes (less

than 0.01 of all sampled nodes) to guarantee that different

parts of the directed graph are explored.

Contributions

Our work makes two main contributions:

• Directed Unbiased Random Walk (DURW): Our random

walk algorithm accurately estimates characteristics of large

directed graphs through sampling.

• In-degree Distribution Estimation: We show that no unbi-

ased estimator can accurately obtain the indegree distribu-

tion (recall indegrees are latent variables in the directed

graph) of the datasets used in this work from sampled

edges unless a large fraction of the graph is sampled or the

graph is highly symmetric. This result is surprising as the

average indegree and average outdegree are identical and

the outdegree distribution can be accurately characterized.

Outline

The rest of the paper is organized as follows. Section II

presents the graph model and some definitions used throughout

this work. Section III presents our DURW algorithm and

estimators. Section IV our outdegree distribution estimation

simulation results on real world graphs. Section V presents an

application of DURW on the Wikipedia network. Section VI

shows that indegree distribution estimation is inaccurate unless



most of the graph is sampled (even with side information).

Section VII reviews the related work. Finally, Section VIII

presents our conclusions and future work.

II. DEFINITIONS AND PROBLEM FORMULATION

Let Gd = (V,Ed) be a directed graph, where V is the set of

nodes and Ed is the set of edges. Let o(v) denote the number

of edges out of node v ∈ V (outdegree) and i(v) denote the

number of edges into node v ∈ V (indegree). We seek to

obtain both the outdegree distribution φ = (φ0, φ1, ..., φR)
and the indegree distribution θ = (θ0, θ1, ..., θW ), where φl is

the fraction of nodes with outdegree l, θj is the fraction of

nodes with indegree j, R is the largest outdegree, and W is

the largest indegree.

The degree distribution of a large undirected graph can be

estimated using random walks (RW) [8], [12], [14]. But these

RW methods cannot be readily applied to directed graphs with

hidden incoming edges, which is the case of a number of

interesting directed networks, e.g., the WWW, Wikipedia, and

Flickr.

To address these problems, we build a random walk with

jumps under the assumption that nodes can be sampled uni-

formly at random from Gd (something not feasible for the

WWW graph but possible for Wikipedia and Flickr). But why

perform a random walk if we can sample nodes uniformly?

There are two reasons for that: (1) Random walk is more

efficient in networks where uniform node sampling is costly

(e.g., Flickr). We denote the cost of random node sampling

c. In networks were users have numeric IDs, the cost of

uniformly sampling comes from the fact that the ID space

is sparsely populated [5], [6], [13] and a number of uniformly

generated ID values are invalid. In these networks c is the

average number of IDs queried until one valid ID is obtained.

For instance, in the case of MySpace and Flickr, we estimate

these costs to be c = 10 [13] and c = 77 (refer to our technical

report [15]), respectively. (2) A random walk can better

characterize highly connected nodes than uniform sampling as

random walks are biased to sample highly connected nodes.

This bias can be later corrected, giving us smaller estimation

errors for the characteristics of highly connected nodes.

III. SAMPLING DIRECTED GRAPHS WITH DURWS

Estimating characteristics of undirected graphs with random

walks (RWs) is the subject of a number of recent works [12],

[14], [16]. RW estimation methods presented in the literature

require that ∀u, v ∈ V , the probability of eventually reaching

u given that the walker is in v be non-zero. However, over

a directed graph with hidden incoming edges this may not

be true. For instance, consider a node v ∈ V that has one

outgoing edge but no incoming edges. If the random walker

does not start at v then v is not visited by the walker (as the

outgoing edge of v is a hidden incoming edge if some other

node). On the other hand, a node u ∈ V with no outgoing

edges becomes a sink to the random walker.

A natural way to deal with the unreachability of nodes is

to perform random jumps within the random walk, just like

the PageRank algorithm [4]. The PageRank walker at node v
jumps to a uniformly chosen node in the graph with probability

α; and with probability (1−α) the walker performs a RW step

(i.e., follows an edge chosen uniformly at random from the

set of outgoing edges of v). Unfortunately, next we see that

PageRank is not well suited to characterize directed graphs.

A. The case against PageRank sampling

Unfortunately, PageRank does not allow us to accurately

estimate graph characteristics, such as the outdegree distribu-

tion, from a sampled subset of the graph. Estimating these

characteristics requires obtaining the steady state distribution

of the RW without exploring the entire graph [14].
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Figure 1: PageRank dependence on graph structure: Without

sampling s7 one cannot tell the PageRank sampling probability

of node s1.

In the example of Figure 1 we see that the steady state

distribution of PageRank requires knowing the graph structure.

Consider the two directed graphs, G1 and G2, with 7 nodes

each, as shown in Figure 1. Incoming edges are hidden. Let s1
be the starting node of PageRank. Let π(v) denote the steady

state probability that PageRank visits node v, ∀v ∈ V . For

graph G1 π(s1) = 1/7 and for graph G2 π(s1) = α/(7α+6).
Thus, the sampling probability of s1 depends on the edges

of the unsampled node s7. The above example shows why

PageRank is not suited to sample large graphs.

B. Directed Unbiased Random Walk (DURW)

Our Directed Unbiased Random Walk (DURW) algorithm

has two parts:

• Backward edge traversals (detailed in Section III-C): We

allow the random walker to traverse known outgoing edges

backwards under certain conditions. For instance, if at the

i-th step the RW is at node si, we allow the random walker

to traverse the edge si−1 → si backwards. However, in

order to avoid large transients the algorithm places some

restriction on which edges can be made undirected.

• Degree-proportional jumps (detailed in Section III-D):

The algorithm performs a jump from node v to an uni-

formly chosen node, ∀v ∈ V , with probability w/(w +
deg(v)), where deg(v) is the degree of v in the undirected

graph Gu. Our jumping algorithm is subtle but fundamen-

tally different than other random jump algorithms such as

PageRank.

C. Backward edge traversals

We allow the walker to traverse some outgoing edges

backwards. In general, if we apply this “backward walking”

principle to all outgoing edges in Gd, we can construct an

undirected version of Gd. The undirected version of Gd

allows us to apply the techniques described in Ribeiro and
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Towsley [14] to estimate the characteristics of Gd such as the

outdegree distribution. However, the degree of a node v in the

final undirected version of Gd is only known after exploring

all edges of Gd. Thus, the above sampling algorithm is not

practical as unbiasing the sampled would require access to the

complete underlying graph (as the probability is a function of

v’s degree [14]).

To avoid this problem our RW interactively builds an

undirected graph Gu. This building process is such that once

a node is visited at the i-th step no additional edges are

added to that node in subsequent steps. Such a restriction fixes

the degree of the nodes visited by the random walker, thus

ensuring that nodes will not keep changing their degrees as

we walk the graph. This is an important feature to reduce the

unknown bias of the random walk transient and thus reducing

estimation errors. Note that the final undirected graph Gu

depends on the sample path taken by the random walker.

Further details of the algorithm can be found in Section III-E.

The above solution addresses the problem of knowing the

degree of a node as soon as the node is sampled. However,

we still do not know the steady state distribution of the RW

when we add random jumps. In what follows we present

an algorithm that allows us to obtain a simple closed-form

solution to the steady state distribution.

D. Degree-proportional jumps

Let Gu = (V,Eu) be an undirected graph. In DURW, the

probability of randomly jumping out of a node v, ∀v ∈ V ,

is w/(w + deg(v)), w > 0 . This modification is based on

a simple observation: let G′ be a weighted undirected graph

formed by adding a node σ to Gu such that σ is connected

to all nodes in V with edges having weight w. All remaining

edges have unitary weight. In a random walk in a weighted

graph walks over an edge with probability proportional to

the edge weight. The steady state probability of visiting a

node v on G′ is (w + deg(v))/(vol(V ) + w|V |), where

vol(V ) =
∑

∀u∈V deg(u). Thus, except for the unknown

constant normalization term (vol(V )+w|V |), the steady state

distribution of v is known as we know the degree of v and the

value of parameter w when v is visited by the random walker.

By combining backward edge traversal (Section III-C)

and degree-proportional jumps (Section III-D) we obtain the

DURW algorithm.

E. The DURW algorithm

DURW is a random walk over a weighted undirected

connected graph Gu = (V,Eu), which is built on-the-fly.

The algorithm works as follows. We build an undirected

graph using the underlying directed graph Gd and the ability

to perform random jumps. Let G(i) = (V (i), E(i)) be the

constructed undirected “graph” at DURW step i, where V (i)

is the node set and E(i) is the edge set. We call G(i) a “graph”

because we allow E(i) to have edges of nodes that are not in

V (i). Denote Gu ≡ limi→∞ G(i). In what follows we describe

the construction of G(i).

Let v ∈ V be the initial node in the random walk. Let N (v)
denote the outgoing edges of v in Gd and let node σ denote

a virtual node that represents a random jump. We initialize

G(1) = ({s1}, E(1)), where E(1) = N (s1) ∪ {(u, σ) : ∀u ∈
V }, where {(u, σ) : ∀u ∈ V } is the set of all undirected

virtual edges to virtual node σ (this construct of adding edges

to σ is introduced to simplify our exposition, in practice we

do not need to add virtual edges to σ). Note that we allow

self loops created when σ = s1. The random walker proceeds

as follows.

We start with i = 1; at step i the random walker is at node

si. Let

W (u, v) =

{

w if u = σ or v = σ

1 otherwise

denote the weight of edge (u, v), ∀(u, v) ∈ E(i), i = 1, 2, . . . .
The next node, si+1, is selected from E(i) with probability

W (si, si+1)/
∑

∀(si,v)∈E(i) W (si, v). Upon selecting si+1 we

update G(i+1) = (V (i) ∪ {si+1}, E(i+1)), where

E(i+1) = E(i) ∪ N ′(si+1) , (1)

and

N ′(si+1) = {(si+1, v) : ∀(si+1, v) ∈ N (si+1) s.t. v 6∈ V (i)}
is the set of all nodes (u, v) in N (si+1) where node v is not

already in V (i). Note that N ′(si+1) ⊆ N (si+1). By using

N ′(si+1) instead of N (si+1) in equation (1) we guarantee

that no nodes in V (i) change their degrees, i.e., ∀v ∈ V (i) the

degree of v in G(i) is also the degree of v in Gu. Thus, we

comply with the requirement presented in Section III-C that

once a node v, ∀v ∈ V , is visited by the RW no edges can be

added to the graph with v as an endpoint.

The edges in G(i), i = 1, 2, . . . , that connect all nodes to

the virtual node σ can be easily emulated with uniform node

sampling.

Space complexity: The space required to store G(i) is

O(|E|), where |E| is the number of edges in the graph.

F. Out-degree Distribution Estimator

In this section we use the nodes visited (sampled) by our

DURW algorithm to estimate the outdegree distribution. The

estimator presented in this section can be easily extended

to obtain the distribution of node labels, as detailed in Sec-

tion III-G.

Let si denote the i-th edge visited by DURW, i = 1, . . . , n,
n ≥ B. Let φj be the fraction of nodes with outdegree j in

Gd. Let π(v) be the steady state probability of sampling node

v in Gu, ∀v ∈ V . The outdegree distribution can be estimated

as

φ̂j =
1

B

B
∑

i=1

hj(si)

π̂(si)
, j = 0, 1, . . . (2)

where hj(v) is the indicator function

hj(v) =

{

1 if the outdegree of v in Gd is j ,

0 otherwise

and π̂(si) is an estimate of π(si): π̂(si) = (w + deg(si))S .
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Here deg(v) is the degree of v in G(∞) and

S =
1

B

B
∑

i=1

1

w + deg(si)
.

The following theorem shows that π̂(si) is asymptotically

unbiased.

Theorem 3.1: π̂(si) is an asymptotically unbiased estimator

of π(si).

Proof: To show that π̂(si) an asymptotically unbiased we

invoke Theorem 4.1 of Ribeiro and Towsley [14], yielding

limB→∞ S = |V |/(|E(∞)| + |V |w) almost surely. Thus,

limB→∞ π̂(si) = π(si) almost surely. Taking the expectation

of Equation (2) in the limit B → ∞ yields E[limB→∞ φ̂j ] =
φj , which concludes our proof.

G. Estimating other metrics

In a more general setting we seek to estimate the distribution

obtained by the function

hj(v) =

{

1 node v is labeled j,
0 otherwise.

(3)

where labels can indicate any characteristics of the nodes.

In order to estimate the fraction of nodes with label j,
we plug the values hj(si), si = 1, . . . , n, n ≥ B into

equation (2). Here π̂ is computed in the same way as before

and E[limB→∞ φ̂j ] = φj , still holds.

Now that we have an asymptotically unbiased estimators it

is left to test the accuracy of DURW in a variety of real world

graphs.

IV. EXPERIMENTAL RESULTS

This section compares the outdegree distribution estimates

obtained by our algorithm (DURW) against the estimates

obtained by the random walk algorithm of Bar-Yossef et al. [3]

(presented in Section VII) and independent uniform node

sampling (UNI). Our experiments are performed on a variety

of real world graph datasets. The statistics of these datasets

are summarized in Table I.

We now describe each dataset. Flickr, LiverJournal, and

YouTube are popular photosharing, blog, and video sharing

websites, respectively. In these websites a user (node) can

subscribe to other user (nodes) updates forming a directed

edge. Wikipedia is a free encyclopedia written collaboratively

by volunteers. Each registered user has a talk page, that she

and other users can edit in order to communicate and discuss

updates to various articles on Wikipedia. Nodes in the Wiki-

Talk dataset represent Wikipedia users and a directed edge

from node u to node v represents that user u edited a talk

page of user v at least once. The Web-Google dataset was

released in 2002 by Google as a part of Google Programming

Contest, where nodes represent web pages and directed edges

represent hyperlinks between them [1]. Further details of the

Flickr, LiverJournal, and YouTube datasets can be found in

Mislove et al. [11].

Table I: Overview of directed graph datasets used in our

simulations.

Graph # nodes # edges E[out-deg] symmetry Type

Flickr [11] 1,715,255 22,613,981 18.1 0.38 OSN

YouTube [11] 1,138,499 4,945,382. 5.3 0.21 OSN

LiveJournal [11] 5,204,176 77,402,652 18.7 0.27 OSN

Wiki-Talk [2] 2,394,385 5,021,410 3.9 0.86 usr talk

Web-Google [1] 875,713 5,105,039 9.87 0.69 Web

Error Metric

Before we proceed with our results we need to introduce the

error metric used to compare the different sampling methods

we want to test. Our primary metric of interest is the outdegree

distribution. We chose this metric because the outdegree

distribution is a metric that is present in all of our datasets.

Let

NMSE(φ̂j) =

√

E[(φ̂j − φj)2]

φj

, j = 1, 2, . . . ,

be a metric that measures the relative error of the estimate φ̂j

with respect to its true value φj . Note that our metric uses

the relative error. Thus, when φj is small, we consider

values as large as NMSE(φ̂j) = 1 to be acceptable. Let c
denote the cost of UNI which is also the cost of a random

jump (the average number of IDs queried until one valid ID

is obtained). For instance, Flickr has a random node sampling

cost of c = 77 (as observed in the experiments presented

in [15]). Let B denote the sampling budget (when c = 1, B is

the number of distinct sampled nodes). Because we create an

undirected graph on the side, multiple visits to the same node

counts as just one unit of the sampling budget. Also, before

proceeding to our results, it is important to note that in DURW

the probability of performing a random jump increases with w
(such that in the limit w → ∞ DURW is equivalent to UNI).

Results

The first simulation results are presented in Figures 2

to 4d. Figure 2 shows three sample paths with estimates of

φ1000 (y-axis) using DURW (using random jump weights

w ∈ {0.1, 1, 10}) and UNI. The x-axis shows the number of

samples (in log scale). These results were obtained using the

Youtube dataset with independent sampling cost c = 1. The
choice of φ1000 is arbitrary; later we investigate estimation er-

rors of all degrees. Note that none of the three runs of UNI can

find a single node with outdegree 1000 until almost 200, 000
nodes have been sampled. On the other hand, our DURW

algorithm quickly finds at least one node with outdegree 1000.
Moreover, DURW has consistently smaller estimation errors

than UNI throughout most of the sample paths.

Figures 3 to 4d show estimates of the NMSE in log scale

(over 1000 runs) of DURW for all outdegrees in the graph

over different datasets. In these simulations we compare the

NMSE of DURW with the NMSE of the Metropolis-Hastings

algorithm of Bar-Yossef et al. [3] and the NMSE of uniform

random sampling (UNI). In all first five scenarios we sample

10% of the graph. The DURW random jump weight and cost
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are w = 10 and c = 10, respectively. Figures 3, 4a, 4b, 4c, 4d
show the NMSE for the Youtube, Wiki-Talk, Flickr, Livejour-

nal, and Web-Google datasets, respectively.

We find that DURW obtains accurate estimates over all

datasets, recalling that we consider NMSE(φ̂j) ≤ 1 to be

an accurate estimator if φj is small, as the NMSE measures

the relative error of φ̂j when compared to the true value

φj . DURW outperforms all other methods w.r.t. the accuracy

when estimating the fraction of nodes with large outdegrees,

often by a factor of one order of magnitude.Moreover, DURW

is significantly more accurate than Bar-Yossef et al. [3] over

almost all outdegrees values. In the Youtube, Wiki-Talk, Flickr,

and Livejournal datasets the value of φ̂j obtained with DURW

for large outdegrees is up to two orders of magnitude more

accurate than Bar-Yossef et al. [3]. DURW is also consistently

more accurate over most outdegrees than UNI for the Youtube,

Wiki-Talk and Flickr datasets. DURW is also more accurate

than UNI in the Livejournal and Web-Google datasets for

large outdegrees (outdegrees larger than 50 in Livejournal and

outdegrees larger than 30 in Web-Google).

In Figures 3 to 4d we note that UNI is sometimes slightly

better than DURW for low degrees, but not by much. This

is because DURW is biased towards sampling nodes with

high outdegrees and indegrees (these nodes tend to have high

degrees in our constructed undirected graph). Thus, DURW

tends to sample nodes with few outgoing edges less frequently

than UNI, sometimes causing larger estimation errors for these

small outdegree nodes. As we see later, increasing the DURW

jump weight parameter w reduces the estimation error for

small outdegrees at the cost of increasing the error of larger

outdegrees.

1,000 10,000 100,000 0.5|V|
0

1

2

3

4

5

6
x 10

−6

number of distinct vertices sampled

 

 

DURW, w=0.01

DURW, w=1

DURW, w=10

UNI

φ̂
1
0
0
0

Figure 2: (YouTube) True value of φ1000 = 1.8×10−6 shown

in the black solid line. Y-axis: Estimated φ1000 (DURW with

w ∈ 0.1, 1, 10 and UNI). X-axis: Number of samples in log-

scale. DURW is consistently better than UNI.

A. Varying DURW Parameters

In what follows we study the impact of the DURW parame-

ters on the accuracy of the estimates. Figure 5 shows the results

of varying the random jump weight, w, while keeping the

random jump cost c = 10 and the sampling budgetB = 0.1|V |
fixed. The DURW parameter w controls the trade-off between

the error for estimating small and large outdegrees. As w
increases, the estimation error for large outdegrees increases

while the error of small outdegrees decreases. Conversely,

as w decreases the opposite happens, the estimation error of
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Figure 3: (YouTube) NMSE of DURW with B0.1|V |, w = 10,
and c = 10 compared with UNI.
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(b) Flickr
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(c) LiveJournal
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(d) Web-Google

Figure 4: NMSE of DURW with B = 0.1|V |, w = 10, and
c = 10 compared with UNI.

large outdegrees decreases while the error for small degrees

increase. This is expected, as when w increases the DURW

algorithm performs random jumps often and, thus, mimics

uniform sampling (UNI), sampling small outdegrees nodes

more often.

In the next set of simulations we look at the im-

pact of the sampling budget, B, on the NMSE. Figure 6

presents the NMSE of Youtube for sampling budgets B ∈
{0.01|V |, 0.1|V |, 0.2|V |} with c = 10 and w = 10. We

observe that the error of sampling B nodes is roughly pro-

portional to 1/
√
B. For instance, in Figure 6 we see that a

one order of magnitude increase in B roughly decreases the

error by 1/
√
10.

As DURW can perform random jumps, we also study

the impact of the cost of these jumps over the accuracy

of the estimates. The cost of a jump is measured by the
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amount of “sampling budget” (queries) required to perform

the jump. On some social networks, such as MySpace and

Flickr, a number of queries is needed to sample a node

uniformly at random. For instance, on Flickr random jumps

are performed by querying randomly generating user IDs. The

average number of random IDs queried until one valid ID is

obtained is 77 to 1 (see our technical report [15]). The cost of

jumps effectively reduces the number of total nodes that can be

sampled, and, thus, increases the NMSE. Figure 7a shows the

NMSE of Youtube with c ∈ {1, 10, 77} and constant values

B = 0.1|V | and w = 10. Unsurprisingly, we observe that

the estimation error of the outdegree distribution tail increases

with c. As decreasing w decreases the frequency of jumps,

which reduces the impact of parameter c the NMSE error.

To better understand this relationship, we repeat the above

experiment (Figure 7a) with less frequent jumps w = 1. In
Figure 7b we plot the NMSE of the DURW algorithm with

different values of c ∈ {1, 10, 77} and keeping w = 1 constant.
Comparing Figures 7a and 7b we see that a smaller w can

significantly lessen the negative impact of higher jump costs

on the accuracy of the estimator.
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Figure 5: (Youtube) NMSE of DURW with w ∈
{0.01, 1, 10, 1000} against the NMSE of UNI, c = 10 and

B = 0.1|V |.
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Figure 6: (Youtube) NMSE of DURW with B ∈
{0.01|V |, 0.1|V |, 0.2|V |}, c = 10 and w = 10.

V. APPLICATIONS

In this section we describe some experiments performed to

estimate other metrics evaluated at the Wikipedia network. As

opposed to the results presented in the previous section, which

are based on datasets, we now use a DURW to crawl the graph

in an online fashion.

These metrics are interesting if measured online: (1) the

time between two consecutive article (node) revisions and (2)
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Figure 7: (Youtube) NMSE of DURW with c ∈ {1, 10, 77},
B = 0.1|V | and w = {1, 10}.

the distribution of the number of revisions in the last 7 days,

classified by the outdegree of the node (article). But why do

we want to sample Wikipedia revisions using DURW? Articles

that point to several other articles are likely to suffer more

revisions than nodes with almost no references. As DURW

can accurately estimate metrics of nodes with high outdegrees

(see Section IV), DURW is well equipped to estimate revision-

related metrics.

Wikipedia provides a query API that can be used to obtain

information from an node such as the categories to which it be-

longs, its revision timestamps (timestamps marking when the

node was changed) and the content itself, which includes the

text describing the node and links to other Wikipedia nodes.

We implemented a crawler that uses this query API to perform

a DURW random walk on the Wikipedia graph. Our DURW

crawler collected 60,000 Wikipedia nodes (approximately 2%
of the entire Wikipedia database) over the course of two days

(from 07/27/2011 5pm until 07/29/2011 5pm).

Wikipedia API can also retrieve a randomly sampled page

from its collection of nodes (two queries are needed to obtain

one page). We set the DURW jump weight to w = 0.1,
allowing the walker to perform some random jumps while

preserving most of the random walk characteristic of sampling

high degree nodes. We are interested in sampling high degree

nodes well because these nodes, although rare, are likely to

be the ones that are edited more frequently.

When an node is visited, the crawler also gathers measures

of interest such as the outdegree and the times of the 500 most

recent revisions. For conciseness, we omit the results regarding

the outdegree (see Section III-G for a description of how to

estimate the outdegree distribution). In particular, the metrics

we obtain for a node v in our DURW include:

• X(v): number of revisions of v created in date d ∈ [R(v)−
7 days, R(v)], and

• Y (v): time (in days) that has passed between the last

revision of v and R(v),

where R(v) is the time when the node v was first retrieved.

Following the estimator presented in Section III-G, we adapt

equation (3) to estimate the distribution of the number of

revisions in the last 7 days (denoted recent revision) since the

node was first accessed binned by node outdegree. We group
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the node outdegrees in bins such that the fraction of nodes (in

the entire Wikipedia) is roughly the same in each bin. Note

that we use the estimated outdegree distribution to specify the

bins. Hence, we have

h(b,j)(v) =

{

1 node v in bin b has j recent revisions,
0 otherwise.

Our bins are chosen such that each bin has approximately

10, 000 sampled nodes (articles). Figure 8 plots the average

value of R per bin. Observe that the nodes with the highest

outdegrees are also those which are update more often. High

outdegree nodes are clearly important in Wikipedia.
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Figure 8: (Wikipedia) Average number of revisions in the last

7 days binned by node outdegree.

Figure 9 depicts the estimated CCDF of Y as a solid red

line. Note that the majority of the nodes were updated in the

last 100 days. Now suppose that we want to obtain an estimate

of the time between revisions at the instant we are sampling

Wikipedia. The difference between the average time between

revisions in a long period of time and the instantaneous time

between revisions is parallel to the difference between average

speed of a car over, say, 100 miles and its instantaneous

velocity.
Note that Y is not the time between revisions due to the

inspection paradox, described as follows. Let Z be the time

between revisions (in days) at the time we sample Wikipedia.

Let ζz = P [Z = z] and ζ≥z = P [Z ≥ z]. Assume that

we arrive to sample an node uniformly between two revisions

(a reasonable assumption). The probability of landing on an

inter-revision time of size Z = z is (zζz) / (
∑∞

k=1 kζz) . Now
we can relate Y (the residual time) to Z

P [Y = y] =
∞
∑

z=y

1

z

ζ≥z

E[Z]

The maximum log-likelihood estimator of ζz is

argmax
{ζ̂z}∀z

∑

∀y

f(y)
1−∑y−1

z=1 ζ̂z
∑∞

k=1 kζ̂k
,

where f(y) is the number of samples of Y with value y. We

also need to enforce the constraints 0 ≤ ζ̂z ≤ 1, z = 1, 2, . . .
and

∑

∀z ζ̂z = 1. Figure 9 shows the estimated distribution ζ̂z .
Observe that more than 10% of the nodes have time between

revisions greater than 100 days.
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Figure 9: (Wikipedia) Estimated distribution of time between re-
visions. The red solid curve shows the raw results obtained by the
DURW algorithm and the green dashed curve shows the results with
their inspection paradox bias removed.

VI. ESTIMATING LATENT IN-DEGREE DISTRIBUTIONS

The approach used above to estimate the outdegree distri-

bution can also be used to estimate the indegree distribution if

indegrees are visible to the random walker. However, in this

section we consider a much harder problem: estimating the

indegree (outdegree) distribution when indegrees (outdegrees)

are hidden. Unfortunately, our results are negative. We show

that in the presence of hidden incoming edges one needs to

sample most of the edges of the graph in order to obtain

an accurate indegree distribution estimate. Here the indegree

distribution is an example of a latent graph characteristic.

A latent graph characteristic is one that cannot be directly

observed but is rather inferred (through a mathematical model)

from other observable variables.

A random walk on the undirected graph Gu samples its

edges uniformly at random. In what follows we simplify our

analysis by assuming edges sampled by our DURW algorithm

are sampled independently. In reality we can achieve near

independence using large random jump weights, w. But even
without large w, independent edge sampling has been success-

fully used before to model random walk-based sampling [14]

and inspired our independence assumption.

First let’s build a maximum likelihood indegree distribution

estimator from sampled edges. An edge incident to u, v → u,
can be observed by sampling node v. After sampling a fraction

p of the graph, an average fraction of p of the edges incident

to u are sampled. Using the partially reconstructed indegree

of u (and later the estimated outdegree distribution) we can

reconstruct the original indegree distribution. Making this

statement more formal: Let i be the indegree of a given

node u and let X be a random variable that denotes the

number of sampled incoming edges of u if edges are sampled

independently and with probability p.
The above model is a simplification of our original model.

Independent edge sampling is different than sampling a frac-

tion p of the nodes and then getting their outgoing edges. In

the former a node can have multiple outgoing edges, making

edge samples dependent. Nevertheless, having worked with

both models in the past, we notice little practical difference

in large networks. This is because we seek an error lower

bound on the estimation error and, in practice, a model with
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greater independence also provides a lower bound for the

model with greater dependence when the dependence in the

data is unknown. It is easy to see that

P [X = j] = b(j, i) =

(

i

j

)

pj(1− p)i−j , j = 1, 2, . . . (4)

where b(j, i) = 0, ∀j > i.

Now we can estimate the indegree distribution. Let W be

the maximum indegree in Gd. Let Y denote the number of

incoming edges to a node and

cji = P (X = j |X > 0, Y = i) =

(

i
j

)

pjqi−j

1− qi
(5)

be the conditional probability of sampling j (j = 1, . . . W )

incoming edges in a node with indegree i (i ≥ j) given that

at least one edge is sampled (i.e., j ≥ 1). Denote dj the

probability that a observed node has exactly j sampled edges

dj = P (X = j |X > 0) =

W
∑

i=j

cjiθi. (6)

Or, in matrix notation,

d = Cθ,

where d = (d1, . . . , dW )T and C = [cji], j, i = 1, . . . ,W .

Here cji = 0 whenever j > i. A way to estimate θ from d
uses the likelihood function

f(j, θ) = dj . (7)

By maximizing equation (7) using the derivative of the log

likelihood, ∂ ln f(j | θ)/∂θi = bji/di, we have a Maximum

Likelihood Estimator (MLE) of θ.

To make our experiment more concrete, we estimate the

indegree distribution of Flickr network. We limit our estimator

to a maximum indegree of 50 (i.e., we remove vertices with

more than 50 incoming edges from the graph) to simplify

the estimation procedure. Figure 10 shows the true indegree

distribution (black line with asterisk) and the indegree dis-

tribution estimates for different sampling probabilities p ∈
{0.1, 0.5, 0.9}. Note that while the estimates with an average

of 90% of the edges sampled (p = 0.9) are reasonable for

small indegrees (but still not accurate for higher degrees), the

estimates with sampling probabilities p = 0.1 and p = 0.5 are

unstable.

The experiment in Figure 10 is a good indication that

indegree distribution estimates are inaccurate. We show this

more formally using the Fisher information. The Fisher in-

formation can be thought of as the amount of information

that a set of observable samples, the outgoing edges, carry

about hidden parameters the indegree distribution. Through

the reciprocal of Fisher information we obtain the Cramér-

Rao lower bound [17], a lower bound on the mean squared

error (MSE lower bound) of any unbiased indegree distribution

estimator.

The Fisher information matrix from one node is a W ×W
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Figure 10: (Flickr) MLE indegree distribution estimates for

p = 0.1, 0.5, and 0.9.

matrix J = [Jik], i, k = 1, . . . ,W , where

Jik ,
∑

∀j

∂ ln f(j | θ)
∂θi

∂ ln f(j | θ)
∂θk

dj .

In matrix form,

J = CTDC , (8)

where D is a W × W diagonal matrix whose element (j, j)
is Djj = 1/dj, 1 ≤ j ≤ W . The inverse of (8) is J−1 = [J∗

ji]
(i, j = 1, 2, . . . ,W ), where

J∗
ji =

W
∑

k=max(i,j)

(

k
j

)(

k
i

)

(−q)2k−i−j(1− qi)(1− qj)dk

p2k
. (9)

A simple proof of eq. (9) can be found in Wang et al. [18].

Note that in the above equations we do not include the

constraints
∑

∀i

θi = 1 (10)

and

0 < θi < 1, ∀i (11)

in our Fisher information calculations. In theory any constraint

in the possible values of θ provides statistical information

about the distribution. The constraints in eqs. (10) and (11)

have been previously observed to provide little improve in the

Cramér-Rao inequality, please refer to Wang et al. [18] for

further details.

First Numeric Experiment: We now perform a numeric

experiment using eq. (9) over the Flickr dataset (summarized

in Table I). In Figure 11 the curve “without symmetric

information” shows the square root of the Cramér-Rao lower

bound (square root of eq. (9)) divided by the true value of

θ (NMSELB) of Flickr, assuming Flickr has a maximum

indegree W = 30 (larger values of W are harder to compute

due to machine precision limits). We note that there the error

is larger for indegrees near half of the maximum indegree,

W/2. Our experiments also show that a small increase in the

maximum indegreeW can make the estimation errors increase

dramatically, as seen in Figures 12a and 12b. The above result

is not surprising, in Wang et al. [18] it is shown that subset
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Figure 11: (Flickr) Square root of the Cramér-Rao lower bound
normalized by the true value of θ. The curves show the error lower
bound with and without symmetric edge information. Edge symmetry
at α = 62%. Lower is better.

size distribution estimation is impractical for large values of

W when sampling probabilities are less than (d−1)/(2d−1),
where d is the average indegree.

The above experiment shows that we cannot accurately esti-

mate the indegree distribution of Flickr. The same experiment

with the remaining datasets of Table I achieves similar results.

There is hope, however. There are additional side information

available when estimating the indegree distribution that can

help reduce estimation errors. In what follows we consider

two side informations: average degree and edge symmetry,

where an edge u → v has a corresponding edge v → u
with probability p; some authors prefer to use the term edge

reciprocity.
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Figure 12: (Flickr) The curves represent the error lower bound

when the maximum indegree W varies from 5 to 30, for

sampling rates p = 0.5 and p = 0.8, respectively.

Improving the Estimates with Side Information

There are additional side information available when esti-

mating the indegree distribution. For example, we know that

the average indegree is equal to the average outdegree. We

also know that some edges are symmetric (i.e., an incoming

edge has a corresponding outgoing edge).

A. Side information: Known average indegree

We have seen that DURW can provide good estimates

for the outdegree distribution and therefore for the average

outdegree. For the sake of argument, let’s even assume that

the average indegree µ is known. Knowing the indegree is

equivalent to adding the equality constraint

W
∑

i=1

iθi = µ (12)

in the estimation problem. The statistical information given

by equation (12) can be added into the Fisher information as

follows. Let G = ∇θg(θ) be a column vector with the gradient

of g(θ) =
∑W

i=1 iθi−µ in respect to θ1, . . . , θW . We now use

a result from Gorman and Hero [7] to include an equality

constraint in the Fisher information matrix and the Cramér-

Rao bound. The new Cramér-Rao bound accounting for the

increase in the Fisher information coming from the known the

average indegree is

J−1 − J−1GT(GJ−1GT)−1GJ−1, (13)

which is the old bound J−1 minus a term

J−1GT(GJ−1GT)−1GJ−1. Unfortunately, numerically,

eq. (13) is not significantly different from the original

Cramér-Rao bound, J−1. Thus, we rule out the average

indegree as relevant information to estimate the indegree

distribution.

A more promising property of many directed graphs is the

presence of symmetric edges. For example, in the Web-Google

dataset 69% of the edges are symmetric (the symmetry of

other datasets is in Table I). In a graph where all edges are

symmetric (i.e., every edge (u, v) ∈ Ed has a corresponding

edge (v, u) ∈ Ed) the indegree and the outdegree distributions

are the same. In what follows we consider a model that

adds such symmetric edge information to the estimation and

show that while moderate edge symmetry increases estimation

accuracy, it is still insufficient to obtain accurate estimates.

B. Side Information: Edge Symmetry

Consider a directed graph Gd = (V,Ed). Let s denote

the fraction of symmetric edges in Ed, where s = 1 when

all edges in Gd are symmetric. Edge symmetry can convey

information about the indegree distribution. For instance, if

s = 1 the indegree distribution is equivalent to the outdegree

distribution. To assess the increase in estimation accuracy that

comes from the presence of symmetric edges, consider the

following model.

Let v be a sampled vertex. Consider the following random

variables of v:

• Z: indegree of v.

• Zs: number of symmetric incoming edges.

• Za: number of incoming asymmetric edges.

• Y : observed outdegree.

• Xs observed number of symmetric incoming edges.

• Xa observed number of asymmetric incoming edges.

Also, let ρ(y, z) = P [Y = y, Z = z] be the joint indegree and
outdegree distribution of v, p be the sampling rate, and α be

the fraction of symmetric edges. We assume that the number of

outgoing edges of v that are symmetric is a Binomial random
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variable with parameter α and has distribution

P [Zs = zs|Y = y, Z = z] =
{

(

min(y,z)
zs

)

αzs(1 − α)min(y,z)−zs if zs ≤ min(y, z),

0 otherwise.

(14)

We seek to find a likelihood function of the observed random

variables Y , Xs, and Xa with respect to ρ, P [Y = y,Xs =
xs, Xa = xa|ρ]. Note that

P [Y = y,Xs = xs, Xa = xa|ρ]
=

∑

∀z

P [Xs = xs, Xa = xa|Y = y, Z = z]ρy,z

=
∑

∀z

ρy,z

z
∑

zs=0

P [Xs = xs, Xa = xa|Zs = zs, Y = y, Z = z]

× P [Zs = zs|Y = y, Z = z],

where

P [Xs = xs, Xa = xa|Zs = zs, Y = y, Z = z]

= P [Xs = xs, Xa = xa|Zs = zs, Y = y, Za = z − zs]

=

(

zs
xs

)

pxs(1− p)zs−xs

(

z − zs
xa

)

pxa(1− p)z−zs−xa

=

(

zs
xs

)(

z − zs
xa

)

pxs+xa(1 − p)z−xs−xa

with P [Zs = zs|Y = y, Z = z] as defined in equation (14).

The indegree distribution Fisher information associated with

the symmetric edge information can be computed from the

Fisher information of P [Y = y,Xs = xs, Xa = xa|ρ] with
respect to ρ by noting that θ, the indegree distribution, can be

defined as θz =
∑

∀y ρ(y, z) , ∀z, or in matrix form θ = HρT,
where ρ = (ρ(1, 1), ρ(2, 1), . . . ) and

H =





1 . . . 1
. . .

1 . . . 1



 .

Let Jρ denote the Fisher information with respect to the joint

distribution ρ. Computing Jρ from P [Y = y,Xs = xs, Xa =
xa|ρ] is trivial. Let Jθ denote the Fisher information with

respect to the indegree distribution θ. Then [17, pages 83–84]

Jθ = HJρH
T.

Matrix Jθ encodes the information obtained from the observed

incoming edges plus the information that the graph is symmet-

ric. To obtain the Cramér-Rao bound we need to invert Jθ . We

do this inversion numerically in Section VI-C and observe that

adding symmetric information does not significantly improve

the estimation error unless most edges in the graph are

symmetric.

C. Numerical Results

In the following experiment we include symmetry informa-

tion in the Cramér-Rao lower bound computed by inverting Jθ
(which is a bound on the mean squared error of any unbiased

estimator of θ). Figure 11 shows the square root of the Cramér-

Rao lower bound divided by the true value of θ (NMSELB)

of Flickr for maximum indegree W = 30, with and without

Flickr’s symmetric information. In Flickr the fraction of edges

that are symmetric is α = 0.62. Observe that while symmetry

reduces the Cramér-Rao lower bound, it is not enough to

significantly increases the estimation accuracy to acceptable

levels. Moreover, other experiments (not shown here) indicate

that increasing W significantly increases the estimation error

(to the point that even estimating θ1 can be made inaccurate).

VII. RELATED WORK

Estimating observable characteristics by sampling a directed

graph (in this case, the Web graph) has been the subject of

Bar-Yossef et al. [3] and Henzinger et al. [9], which transform

the directed graph of web-links into an undirected graph by

adding reverse links, and then use a Metropolis-Hastings RW

to sample webpages uniformly. Our “backward edge traversal”

is an adaptation of the method of Bar-Yossef et al. [3] to work

with a pure random walk and random jumps. Both of these

Metropolis-Hastings RWs are designed to sample directed

graph that do not allow random jumps. However, in the pres-

ence of random jumps (even if jumps are rare), the Metropolis-

Hastings RW algorithm is not as efficient and as accurate as

our DURW algorithm. Random walks with PageRank-style

jumps are used in Leskovec and Faloutsos [10] to sample large

graphs. In Leskovec and Faloutsos [10], however, there is no

technique to remove the large biases induced by the random

walk and the random jumps, which makes this method unfit

to estimate graph characteristics. In contrast, our distribution

estimates are asymptotically unbiased.

VIII. CONCLUSIONS & FUTURE WORK

In this work we provide the first random walk method to

accurately estimate characteristics of directed graphs that allow

random jumps. Also, to the best of our knowledge our work is

the first to study and provide a sound theoretical analysis of the

problem of estimating latent indegree distributions. Our future

work includes reducing the transient of our DURW algorithm.

REFERENCES

[1] Google Programming Contest. http://www.google.com/
programming-contest/, 2002.

[2] Predicting Positive and Negative Links in Online Social Networks, 2010.
[3] Ziv Bar-Yossef and Maxim Gurevich. Random sampling from a search

engine’s index. J. ACM, 55(5):1–74, 2008.
[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web

search engine. In Proc. of the WWW, 1998.
[5] Facebook. http://www.facebook.com, 2010.
[6] Flickr. http://www.flickr.com, July 2010.
[7] John D. Gorman and Alfred O. Hero. Lower bounds for parametric

estimation with constraints. IEEE Transactions on Information Theory,
36(6):1285–1301, Nov 1990.

[8] Douglas D. Heckathorn. Respondent-driven sampling: A new approach
to the study of hidden populations. Social Problems, 1997.

[9] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc
Najork. On near-uniform url sampling. In Proceedings of the WWW,
pages 295–308, 2000.

[10] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In
Proc. of the KDD, pages 631–636, 2006.

[11] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and Analysis of Online
Social Networks. In Proc. of the IMC, October 2007.

[12] Amir H. Rasti, Mojtaba Torkjazi, Reza Rejaie, Nick Duffield, Walter
Willinger, and Daniel Stutzbach. Respondent-driven sampling for
characterizing unstructured overlays. In Proc. of the IEEE Infocom,
pages 2701–2705, April 2009.

[13] Bruno Ribeiro, William Gauvin, Benyuan Liu, and Don Towsley. On
MySpace account spans and double Pareto-like distribution of friends.
In Proceedings of the IEEE Infocom NetSciCom Workshop, 2010.

10



[14] Bruno Ribeiro and Don Towsley. Estimating and sampling graphs with
multidimensional random walks. In Proc. of the IMC, 2010.

[15] Bruno Ribeiro, Pinghui Wang, Fabricio Murai, and Don Towsley.
Sampling directed graphs with random walks. Technical Report UM-
CS-2011-031, UMass Amherst, 2011.

[16] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On
unbiased sampling for unstructured peer-to-peer networks. IEEE/ACM

Trans. Netw., 17(2):377–390, 2009.
[17] Hary L. van Trees. Estimation and Modulation Theory, Part 1. Wiley,

New York, 2001.
[18] P. Wang, B. Ribeiro, and D. Towsley. On the cramer-rao bound of subset

size distribution estimation. Technical Report UM-CS-2011-029, UMass
Amherst Computer Science, 2011.

[19] Wikipedia website. http://www.wikipedia.org, 2010.

11


