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Abstract—In this work we study the activity span of MySpace
accounts and its connection to the distribution of the number of
friends. The activity span is the time elapsed since the creation
of the account until the user’s last login time. We observe
exponentially distributed activity spans. We also observe that
the distribution of the number of friends over accounts with the
same activity span is well approximated by a lognormal with a
fairly light tail. These two findings shed light into the puzzling
(yet unexplained) inflection point (knee) in the distribution of
friends in MySpace when plotted in log-log scale. We argue
that the inflection point resembles the inflection point of Reed’s
(Double Pareto) Geometric Brownian Motion with Exponential
Stopping Times model. We also present evidence against the
Dunbar number hypothesis of online social networks, which
argues, without proof, that the inflection point is due to the
Dunbar number (a theoretical limit on the number of people that
a human brain can sustain active social contact with). While we
answer many questions, we leave many others open.

I. I NTRODUCTION

MySpace is one of the largest on-line social networks to
date with approximately 200 million accounts (users) geo-
graphically distributed around the globe. In this work we
collect 400,000 randomly sampled MySpace accounts. An
unbiased estimate of the distribution of the number of friends
of MySpace users can be seen in log-log scale in Figure 1.
The shape of the distribution seen in Figure 1 agrees with
previous unbiased estimates [2]. Our findings in this work
shed light into the puzzling (yet unexplained) shape of the
distribution of friends seen in Figure 1: two “straight” lines
joined by an inflection point (knee). The choice of MySpace
for our study comes from two valuable records available in
most of MySpace accounts: the date in which the account
was created and the user’s last login date. By randomly
sampling MySpace accounts we observe that: (1) using this
data we find activity spans to be exponentially distributed.
This phenomenon may explain much of the shape of the
friends distribution shown in Figure 1. The activity span is
the time elapsed since the creation of the account until the
user’s last login time. (2) Inspired by previous works on the
Double Pareto distribution [5], [6] we also observe that the
distribution of the number of friends among accounts with
roughly the same activity span can be well described by a
lognormal distribution whose average number of friends grows
according to the square root of the account’s span. Our findings

provide a sound alternative hypothesis for the emergence
of a “knee” in the distribution of friends in on-line social
networks: the mixture of multiple lognormal distributionswith
exponentially distributed averages. By noting that no such
“knee” exists in the distribution of friend over accounts with
roughly the same activity span, we challenge an alternate
hypothesis (formulated in [1] for the CyWorld on-line social
network) in which the “knee” is seen as a consequence of the
Dunbar’s number, a theoretical cognitive limit of the number
of people (about147.8) with whom one can maintain stable
social relationships [3]. Our work is exploratory in nature. We
answer a number of questions, but also leave a number of
other interesting questions open.
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Fig. 1. Empirical Complementary cumulative distribution of the
number of friends in MySpace.

This work is organized as follows. In Section II we review
the data collected from MySpace. In Section III we analyze the
data collected from MySpace. Section IV connects the Double
Pareto distribution with the analysis provided in Section III,
showing possible connections between the number of friends
in a MySpace account and Geometric Brownian Motion.
Finally, Section VI presents our conclusions and future work.

II. M EASUREMENT METHODOLOGY

Unfortunately, studying such a large and active social net-
work has its drawbacks. The massive number of user accounts
combined with MySpace’s stringent rules on crawling its
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network forces researchers to rely on statistics from incom-
plete datasets. We collect data from MySpace by sampling
account profiles uniformly at random. An entry in our dataset
is comprised of user ID, IDs of all user friends, the date in
which the account was created, and the user’s last login date.
Our data was collected in two phases: During the first phase,
denoted “fast probing”, we obtained a (time) snapshot of the
MySpace graph. In 4 days we randomly sampled 1 million IDs
where 70,000+ arevalid public accounts. During the second
phase, denoted “slow probing”, we obtained 312,713valid
public accounts over a period of 7 months.

The data collected during the “fast probing” phase is used
for our snapshot-sensitive analysis, e.g. the activity span
distribution. As we are not too interested in the tail of these
distributions, we believe that 70,000+ samples suffice to obtain
a good estimate. The data collected during the “slow probing”
phase is used to obtain the distribution of friends of accounts
with the same activity span. The results obtained from the fast
probing phase is also used to double check the results obtained
in the slow probing phase. In this work we hypothesize that
private profiles (profiles from which we cannot obtain friends
information) do not affect our results. We leave as future work
the task to collect data that can verify this hypothesis.

One of the challenges of this work is to perform statistical
analysis using relatively few samples. The quality of our
conclusions depends directly on the quality of our estimates. In
our experiments we sample nearly0.25% of all valid accounts.
In what follows we describe the statistics obtained using this
data.

III. D ATA ANALYSIS

In this section we focus on the impact of activity spans on
the distribution of friends. In what follows we look at account
activity span and friends distribution. While the distribution
of friends in social networks has been extensively studied in
the literature, including a MySpace study [2] (that, like our
work, presents an unbiased estimate of the distribution of the
number of friends), we show crucial statistical propertiesthat
have escaped the attention of previous works.

A. Activity span distribution

In this section we analyze three statistics collected in our
experiment:

• Activity span: time between the creation of an account
and the last time the user logged in.

• Age: time between the creation of an account and when
it is probed(recorded in our trace). Age is also studied in [10].

• Inter-login time: time between two consecutive logins
into the same account.

Figure 2 shows the complementary cumulative distribution
function (CCDF) of MySpace activity spans where they-axis
is shown in log scale. We see that the30% of the accounts in
MySpace are active for 6 or less months. The CCDF of activity
spans divide into two parts. The first part with activity spans
<26.5 months follow an exponential distribution (straight line
in log-scale). This first part accounts for more than80% of the

accounts. The second part with activity spans≥ 26.5 months
follow a parabola (exp(− activity span2)) in log-scale. The
fast tail decay is, in part, a consequence of the truncation of
the distribution, as MySpace was launched in August 2003 and
the data was collected in March 2009 (65 months later). The
vertical dotted line in Figure 2 divides the fitted distributions.
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Fig. 2. Empirical complementary cumulative histogram of account
activity activity spans. The red points represent the activity span
distribution observed in our data and the lines correspond to the
curves shown in the equations below the curve. More than80% of
the probability mass follows an exponential law (the remaining20%

decays faster than an exponential).

Figure 2 may leave the false impression that exponential
activity spans are a possible consequence of an exponential
growth in the number of accounts, i.e., activity spans are ex-
ponentially distributed because account ages are exponentially
distributed. This is not the case for MySpace. Figure 3 shows
the distribution of account ages (here measured in months).
Unlike activity spans, the distribution of account ages is not
exponentially distributed. We see that less than20% of the
total number of accounts (accounts older than 37 months,
created during MySpace’s early years) were created when
MySpace experienced exponential growth. The remaining80%
of MySpace accounts (accounts newer than 37 months) shows
that the recent growth of MySpace has been (at best) linear (the
migration of users out of MySpace has been studied in [10]).
These two modes of growth in the age of MySpace accounts
may be the reason behind the two distinctive modes in the
account activity span distribution.

We believe that account activity spans are one of the most
important statistics that one can obtain from an OSN such
as MySpace. We also argue that account ages are not as
relevant. This is because friends are not automatically added
into MySpace accounts. Users must log into their accounts in
order to add or accept friends. Therefore, an account created
and later abandoned cannot play a significant role in the friends
distribution after it is abandoned. Also note that MySpace does
not delete accounts due to inactivity.
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Fig. 3. Fraction of MySpace accounts with age = (<Time of
scan> - <Member Since>). After an exponential growth from 2003
(MySpace’s launch) to 2005, the number of new accounts transitions
to linear growth.

The activity span distribution raises another question: How
frequently do users log into their accounts? Note that one could
generate the same activity span statistics if users logged in just
once. In order to answer this question we need to estimate the
time between two consecutive logins into the same account
(inter-login time). Assuming that our probes arrive at points in
time that are distributed uniformly at random, we can estimate
the inter-login time distribution using the account’s lastlogin
time and the time of the probing. It is clear that we are more
likely to probe long inter-login times than short ones. This
sampling phenomenon is known as theinspection paradox [7].
Appendix A presents a maximum likelihood estimator that
is used to obtain the CCDF of inter-login times (Figure 4).
In order to speedup calculation of our estimates we assume
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Fig. 4. CCDF of estimated inter-login times. Note that a heavy tail is
expected as many users abandon their MySpace accounts. The sharp
drop at the end of the tail is due to an artificial constraint that there
are no inter-login times greater than 3 years.

that there are no inter-login times greater than 3 years. We
believe this assumption to be reasonable as MySpace had
existed for only 6 years at the time of our measurements and

we observed that fewer than20% of MySpace accounts in
our trace were created more than 3 years prior to the time
of our measurements. Unfortunately, we can only rely on
our estimates as we do not have access to the ground truth.
However, the results shown in Figure 4 seem to agree with our
intuition. First, we observe that most accounts are logged in
quite frequently. This is a sign that users log in quite often
during the account activity span. Also, most accounts that
are not active during the span of one year are not likely
to be active in less than three years. This is expected as
accounts inactive for more than one year are likely to have
been abandoned. Figure 4 also shows the distribution obtained
from the difference between the time of the probing and the
account’s last login time, which is the input data used in our
estimator.
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Fig. 5. Log-log plot of the CCDF of friends for accounts with activity
spans of{<1, 1, 2, 10, 20, 30} months.

B. Conditional friends distribution

Here we present an important statistic missing from the
literature: the distribution of MySpace friends from accounts
with the same activity span (in months). Figure 5 shows
the log-log plot of the CCDF of friends for accounts with
activity spans of{< 1, 1, 2, 10, 20, 30} months. Note that as
the activity span increases the CCDF approaches a lognormal
shape (as observed later), the CCDF for activity spans of10,
20, and30 months have a shape similar to a lognormal (other
months between3 and 65 have a similar lognormal shape).
The CCDF of months{1, 2} seem to have an intermediate
shape between the shape of< 1 (which is not power-law
due to the jump from3 friends (0.75) to 4 friends (0.16))
and the lognormal shapes of activity spans from3 to 65
months. The CCDF of activity span< 1 shows an outlier
with close to 1 million friends (with less than a month of
activity!). A likely cause are bots (programs that automatically
send friend requests to other MySpace users from bogus
accounts). MySpace closely monitors user accounts. If an user
behaves suspiciously, MySpace blocks the account until the
user proves to be legitimate. Thus, one can expect to find
user accounts with short activity spans and large numbers of
friends. Unfortunately, due to privacy reasons, we were unable
to confirm if the outlier was a bot. It is interesting to note that
while the unconditional CCDF (Figure 1) has an inflection
point near100 friends, the conditional CCDF (Figure 5) has
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Fig. 6. QQ-plots of the distributions of friends within accounts with
the same number of months of activity span. These graphs plot 63
curves that correspond to the distributions of 3 months of activity
until up to 65. The theoretical quantiles are given by the t-Student
distribution (tests if the samples come from a standard Normal).
Figure (b) shows the heatmap of Figure (a) where colors (from blue
to yellow) indicate the density of overlapping points (from low to
high, respectively).

no such inflection point. This sheds light into the Dunbar
number hypothesis applied to on-line social networks, first
presented in [1] for the CyWorld network, which argues that a
drastic drop in the CCDF near the Dunbar number147.8 (such
as the one in Figure 1) is a consequence of the theoretical
cognitive limit of the number of people (about147.8) with
whom one can maintain stable social relationships [3]. As the
Dunbar number should be valid for all “human” users, the
hypothesis should clearly apply to the conditional CCDF as
well. However, the conditional CCDFs (Figure 5) show no
such point of inflection.

In order to test if the CCDF of the number of friends
of accounts with activity spans from3 to 65 months follow
lognormal distribution we use QQ-plots. The QQ-plots com-
pare the empirical quantiles of the data against the theoretical
quantiles of the lognormal distribution. If the empirical dis-
tribution is similar to a lognormal distribution then the points
in the QQ-plot will approximately lie on the liney = x [11].
In order to superimpose QQ-plots of lognormal distributions
with different parameters in a single graph, we apply a simple
transformation observing that the log of a lognormal random
variable is Normally distributed: Apply the log to the data,
subtract the result from their sample average, and divide it
by the sample standard deviation. Thus, if the original datais
lognormal, the new transformed (“normalized”) data must be
distributed according to a t-Student distribution whose degrees
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Fig. 7. QQ-plots of the distributions of friends within accounts with
activity spans 5, 25, 35, and 50 months.

of freedom is the number of data points. Figure 6(a) shows all
63 QQ-plot curves from3 months to65 months. The straight
line represents a perfect match to a lognormal distribution.
Both axes in Figure 6 are not the number of friends as seen
in a regular QQ-plot. Because many curves in Figure 6(a)
intersect, we opt to also show, in Figure 6(b), the heatmap
of Figure 6(a). In Figure 7 we isolate the QQ-plots of four
empirical distribution of friends (with activity spans 5, 25,
35, and 50 months). From these graphs we see that all these
distributions can be well described by a lognormal distribution.

Estimates of the lognormal parameters(µ, σ) for each
activity span value (in months) are plotted in Figure 8. Note
that for activity spans greater than 4, the average number of
friendsµ seems to grow according to

√
T while the standard

deviationσ remains constant. In what follows we contrast the
above empirical observations with a model that generates a
Double Pareto distribution.

IV. D OUBLE PARETO AND THE DISTRIBUTION OF FRIENDS

First proposed by Huberman and Adamic [4] to explain the
degree distribution of the WWW graph, later formalized by
Reed [6] in the context of income distributions, and further
extended to explain file size distributions [5], the model behind
the Double Pareto distribution is a powerful tool that is able
to connect power law distributions with Geometric Brownian
Motion (GBM) processes. Reed [6] shows that lognormally
distributed random variables with parameters(µT, σ2T ) given
a activity spanT , whereT itself is a exponentially distributed
random variable, results in a distribution that is characterized
by its graph log-log CCDF plot: two straight line segments
that meet at a transition point, known as the Double Pareto
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Fig. 8. The average number of friends as a function of the account
activity spanT grows according to

√
T while the standard deviation

remains constant.

distribution [6]. While the distribution of MySpace friends
shown in Figure 1 does not perfectly match the description
of a Double Pareto distribution, there are puzzling similarities
with Reed’s model. For instance, in Section III we have seen
that the distribution of MySpace friends shown in Figure 1 is
a mixture of:

1) Exponential activity spans (Figure 2) (where active users
log into their accounts quite frequently, as seen in
Figure 4) with

2) the lognormal distribution of friends given a fixed
activity span (Figure 6) with parameters(µ

√
T , σ2)

(Figure 8).
The parameters of the lognormals are the main difference
between the statistics presented in Section III and Reed’s
model [6] (another difference is the activity span distribution
which is exponential only for accounts with less than 26.5
months of activity). In Reed’s model the lognormal parameters
are (µT, σ2T ) whereas in MySpace they are just(µ

√
T , σ2).

While this is not a trivial difference, in our case the end result
is surprisingly similar, which deserves future study.

The following is a thought experiment based on the Mitzen-
macher [5] model. In this model both the average and the vari-
ance of the number of friends grow linearly with the account
activity span, which seems to contradict the empirical data
(shown in Figure 8). We leave as future work understanding
the odd behavior of the lognormal parameters in MySpace. Let
Xd be a random variable that denotes the number of friends
of a randomly chosen account with activity span ofd days.
Let

Xd = FdXd−1 (1)

whereFi, i = 1, 2, . . . are independent random variables with
finite mean and variance andX0 = 1 (MySpace accounts start
with “Tom” (MySpace’s creator) as their friend). Applying the
log to both sides of equation (1) we have

log(Xd) =

d−1
∑

i=1

log(Fi). (2)

The Central Limit Theorem (CLT) states that an infinite sum
of independent random variables, where no random variable

dominates the sum1 in equation (2), converges to the Normal
distribution. A direct consequence of the CLT is that the
Normal distribution is stable, i.e., the sum of two Normal
distributions is also Normal. The assumption that no random
variable dominates the sum is actually more important than
the assumption of an infinite sum [9]. Thus, it is reasonable
to expect that if no sample of thelog(Fi)’s dominates the
sum, even finite sums can be well approximated by a Normal
distribution. This simple model provides a plausible explana-
tion behind the lognormals seen in the conditional distributions
of friends in Section III-B, although it does not explain the
lognormal parameters seen in Figure 8.It is important to note
that this model makes no assumption on how friends connect
to each other.

V. RELATED WORK

Closely related to the above observation is the observation
of Huberman and Adamic [4], in 1999, that the exponential
growth of the World Wide Web (WWW) graph could explain
its power law degree distribution. A webpage, like a MySpace
user, adds and removes links (“friends”). But note that the
model in Huberman and Adamic [4] implicitly assumes that
most webpages undergo sustained changes (addition and dele-
tion of links) from the moment they were created until when
the page is sampled. This is equivalent to assuming that
webpages are never abandoned. While this is a fair assumption
about the WWW in 1999, this assumption does not apply to
MySpace, as many MySpace users create accounts and quickly
abandon them. In MySpace, Huberman and Adamic’s assump-
tion of exponential growth is replaced by the assumption of
exponential activity spans (during which MySpace users are
able to include and remove friends). Mitzenmacher [5] has
proposed a mechanism similar to Reed’s to describe Web file
sizes. Seshadri et al. [8] has proposed a similar mechanism
to describe the duration of cell phone calls which makes
assumptions about the wealth of the callers. The migration
of MySpace users has been studied in [10] where the authors
looked at the last login times. Our work, on the other hand,
uses another metric (the activity span) to understand the
distribution of the number of friends.

VI. CONCLUSIONS& FUTURE WORK

In this work we studied the activity span of MySpace
accounts and its connection to the distribution of the number of
friends. We observed exponentially distributed activity spans
and that the distribution of friends over accounts with the same
activity spans can be well approximated by a lognormal with a
fairly light tail. These two findings shed light into the puzzling
(yet unexplained) inflection point (knee) in the distribution
of friends in MySpace when plotted in log-log scale. We
argued that the inflection point shares some characteristics
with the inflection point of Reed’s (Double Pareto) Geometric
Brownian Motion with Exponential Stopping Times model,

1It is easy to see that as the number of elements in sum goes to infinity the
assumption that “no random variable dominates the sum” can be replaced by
the assumption that eachFi has finite mean and variance.
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which contradicts the Dunbar number hypothesis of online
social networks presented in [1]. While our work answers
many question, we leave many others open, such as reason
behind the puzzling constant standard deviation of the friends
distribution conditioned on an activity span. Another related
open question is if Reed’s Geometric Brownian Motion with
exponential stopping times model can be changed to accom-
modate lognormal distributions with parameters(µ

√
T , σ2).
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APPENDIX

APPENDIX A
USER INTER-LOGIN TIME DISTRIBUTION

Let Y be the time (in days) between when an account is
probed and the last time it was logged in. If the difference in
time is less than 24 hours thenY = 1, if the difference in
time is between 24 and 48 hours thenY = 2, and so forth.
Assume that, collectively, users login an infinite number of
times. LetX be the time (in days) between two consecutive
logins of an user. In what follows we assume that accounts do
not go stale (in reality many users abandon their accounts).In
order to speedup calculation of our estimates we assume that
there are no inter-login times greater than 3 years. We believe
this assumption to be reasonable as MySpace had existed for
only 6 years at the time of our measurements and we observed
that fewer than20% of MySpace accounts in our trace were
created more than 3 years from the time of our measurements.

If we assume that the time we sample the account is
distributed uniform at random, the probability of landing on
an interarrival time of sizex is

P [Y = i|X = j] =

{

0 if j < i
1/j otherwise

. (3)

The probability that we will sample an intervalX of sizej is

jP [X = j]
∑∞

k=1 kP [X = k]
. (4)

Putting equations (3) and (4) together we have

P [Y = i] =
∞
∑

j=i

1

j

jP [X = j]
∑∞

k=1 kP [X = k]
=

P [X ≥ i]

E[X]

Thus we can recursively calculateP [X ≥ i] from:

E[X] =
1

P [Y = 1]
andP [X ≥ i] = E[X]P [Y = i].

As we only have an estimate ofP [Y = i] and not its true
value, the above estimate is subject to sampling noise. Indeed,
using the above estimator in our dataset we obtain a number of
negativeP [X = j] values. In order to obtain better estimates,
we use the maximum log-likelihood estimator

argmax
{P [X=j]}

∑

∀i

yi

1 − ∑i−1
j=1 P [X = j]

∑∞
k=1 kP [X = k]

,

whereyi is the number of samples ofY with valuei. We also
enforce the constraints0 ≤ P [X = j] ≤ 1, j = 1, 2, . . . and
∑

∀j P [X = j] = 1.
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