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Abstract—In this work we study the activity span of MySpace provide a sound alternative hypothesis for the emergence
accounts and its connection to the distribution of the number of of g “knee” in the distribution of friends in on-line social
friends. The activity span is the time elapsed since the creation networks: the mixture of multiple lognormal distributiowith
of the account until the user’s last login time. We observe . L .
exponentially distributed activity spans. We also observe that exponentlglly .dlstrlbuFed. avlerages..By noting that no S,UCh
the distribution of the number of friends over accounts with the “knee” exists in the distribution of friend over accountstiwi
same activity span is well approximated by a lognormal with a roughly the same activity span, we challenge an alternate
fairly light tail. These two findings shed light into the puzzling hypothesis (formulated in [1] for the CyWorld on-line sdcia
(yet unexplained) inflection point (knee) in the distribution of network) in which the “knee” is seen as a consequence of the

friends in MySpace when plotted in log-log scale. We argue . . .. S
that the inflection point resembles the inflection point of Reed’s Dunbar's number, a theoretical cognitive limit of the numbe

(Double Pareto) Geometric Brownian Motion with Exponential Of people (about47.8) with whom one can maintain stable
Stopping Times model. We also present evidence against thesocial relationships [3]. Our work is exploratory in natuveée

Dunbar number hypothesis of online social networks, which answer a number of questions, but also leave a number of
argues, without proof, that the inflection point is due to the other interesting questions open.

Dunbar number (a theoretical limit on the number of people that
a human brain can sustain active social contact with). While we
answer many questions, we leave many others open. 1 e,

I. INTRODUCTION

MySpace is one of the largest on-line social networks to
date with approximately 200 million accounts (users) geo- 102 |
graphically distributed around the globe. In this work we
collect 400,000 randomly sampled MySpace accounts. An ~ 103® |
unbiased estimate of the distribution of the number of figen
of MySpace users can be seen in log-log scale in Figure 1. 10* ¢ £
The shape of the distribution seen in Figure 1 agrees with
previous unbiased estimates [2]. Our findings in this work 10° : ) ) )

. . . . 1 10 10 10 10
shed light into the puzzling (yet unexplained) shape of the Number of friends
QI§trlbutlon Of, f“e”‘?'s seen in Figure 1. two "‘Stralght" dis Fig. 1. Empirical Complementary cumulative distribution of the
joined by an inflection point (knee). The choice of MySpacg mber of friends in MySpace.
for our study comes from two valuable records available in

most of MySpace accounts: the date in which the accountryis york is organized as follows. In Section Il we review

was created and the users last login date. By randompys gata collected from MySpace. In Section Il we analyze th
sampling MySpace accounts we observe that: (1) using W5, collected from MySpace. Section IV connects the Double
data we find activity spans to be exponentially distributegh;etq gistribution with the analysis provided in Sectidn |
This phenomenon may explain much of the shape of g ing possible connections between the number of friends
friends distribution shown in Figure 1. The activity span ig, 4 MySpace account and Geometric Brownian Motion.

the time elapsed since the creation of the account until tg, a1 Section VI presents our conclusions and futurekwor
user’s last login time. (2) Inspired by previous works on the

Double Pareto distribution [5], [6] we also observe that the 0
distribution of the number of friends among accounts with

roughly the same activity span can be well described by aUnfortunately, studying such a large and active social net-
lognormal distribution whose average number of friendswgro work has its drawbacks. The massive number of user accounts
according to the square root of the account’s span. Our fysdincombined with MySpace’s stringent rules on crawling its

CCDF

. MEASUREMENT METHODOLOGY



network forces researchers to rely on statistics from incoraccounts. The second part with activity span26.5 months
plete datasets. We collect data from MySpace by samplifgjlow a parabola ¢xp(— activity spari)) in log-scale. The
account profiles uniformly at random. An entry in our datasést tail decay is, in part, a consequence of the truncatfon o
is comprised of user ID, IDs of all user friends, the date ithe distribution, as MySpace was launched in August 2003 and
which the account was created, and the user’s last login ddtee data was collected in March 2009 (65 months later). The
Our data was collected in two phases: During the first phasertical dotted line in Figure 2 divides the fitted distriiomis.
denoted “fast probing”, we obtained a (time) snapshot of the
MySpace graph. In 4 days we randomly sampled 1 million IDs
where 70,000+ argalid public accounts. During the second
phase, denoted “slow probing”, we obtained 312,%/H8d
public accounts over a period of 7 months.

The data collected during the “fast probing” phase is used
for our snapshot-sensitive analysis, e.g. the activitynspa
distribution. As we are not too interested in the tail of thes L
distributions, we believe that 70,000+ samples suffice taiob © 0.01
a good estimate. The data collected during the “slow prdbing
phase is used to obtain the distribution of friends of act®un
with the same activity span. The results obtained from tke fa
probing phase is also used to double check the results ebtain
in the slow probing phase. In this work we hypothesize that
private profiles (profiles from which we cannot obtain friend 0.0001 l l l
information) do not affect our results. We leave as futurekwo 10 26.5 40 50
the task to collect data that can verify this hypothesis. x= Activity span (in months)

One of the challenges of this work is to perform statistical . o

7g. 2. Empirical complementary cumulative histogram of account

analysis using relatively few samples. The quality of OlJaztctivity activity spans. The red points represent the activity span

conclusions depends directly on the quality of our estisidfe gistipution observed in our data and the lines correspond to the
our experiments we sample neadl25% of all valid accounts. curves shown in the equations below the curve. More $G of

In what follows we describe the statistics obtained usirig ththe probability mass follows an exponential law (the remairdag
data. decays faster than an exponential).

0.1
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1. DATA ANALYSIS Figure 2 may leave the false impression that exponential

In this section we focus on the impact of activity spans ogctivity spans are a possible consequence of an exponential
the distribution of friends. In what follows we look at acedu growth in the number of accounts, i.e., activity spans are ex
activity span and friends distribution. While the distrilout ponentially distributed because account ages are exgatgnt
of friends in social networks has been extensively studied distributed. This is not the case for MySpace. Figure 3 shows
the literature, including a MySpace study [2] (that, liker outhe distribution of account ages (here measured in months).
work, presents an unbiased estimate of the distributiomef tunlike activity spans, the distribution of account ages @ n
number of friends), we show crucial statistical propertiest exponentially distributed. We see that less ti¥% of the
have escaped the attention of previous works. total number of accounts (accounts older than 37 months,
created during MySpace’s early years) were created when
, , o . MySpace experienced exponential growth. The remaigi¥g
In this section we analyze three statistics collected in oyf MySpace accounts (accounts newer than 37 months) shows

A. Activity span distribution

experim.e.nt: _ _ that the recent growth of MySpace has been (at best) linear (t
« Activity span: time between the creation of an accountigration of users out of MySpace has been studied in [10]).
and the last time the user logged in. These two modes of growth in the age of MySpace accounts

« Age: time between the creation of an account and wheRay be the reason behind the two distinctive modes in the
it is probed(recorded in our trace). Age is also studied in [10]Jaccount activity span distribution.
« Inter-login time: time between two consecutive logins \We believe that account activity spans are one of the most
into the same account. important statistics that one can obtain from an OSN such
Figure 2 shows the complementary cumulative distributiceis MySpace. We also argue that account ages are not as
function (CCDF) of MySpace activity spans where tjxaxis relevant. This is because friends are not automaticallyeddd
is shown in log scale. We see that &% of the accounts in into MySpace accounts. Users must log into their accounts in
MySpace are active for 6 or less months. The CCDF of activityrder to add or accept friends. Therefore, an account ateate
spans divide into two parts. The first part with activity spanand later abandoned cannot play a significant role in thadge
< 26.5 months follow an exponential distribution (straight linedistribution after it is abandoned. Also note that MySpacedd
in log-scale). This first part accounts for more tt#¥ of the not delete accounts due to inactivity.



we observed that fewer tha20% of MySpace accounts in
our trace were created more than 3 years prior to the time
of our measurements. Unfortunately, we can only rely on
N TN our estimates as we do not have access to the ground truth.
i TUTHT Al However, the results shown in Figure 4 seem to agree with our
AT I intuition. First, we observe that most accounts are logged i
quite frequently. This is a sign that users log in quite often
during the account activity span. Also, most accounts that
7 are not active during the span of one year are not likely
i to be active in less than three years. This is expected as
Wﬂmﬂm accounts inactive for more than one year are likely to have
[[sre been abandoned. Figure 4 also shows the distribution aatain
0 4 8 13 19 25 31 87 43 49 55 61 67 from the difference between the time of the probing and the
Age (in months) account’s last login time, which is the input data used in our
estimator.

Fraction of accounts
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|

Fig. 3. Fraction of MySpace accounts with age =T{me of
scan- - <Member Since). After an exponential growth from 2003 '
(MySpace’s launch) to 2005, the number of new accounts transitions
to linear growth.
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The activity span distribution raises another questiomwHo
frequently do users log into their accounts? Note that onddco
generate the same activity span statistics if users logypdt
once. In order to answer this question we need to estimate the o}
time between two consecutive logins into the same account on
(inter-login time). Assuming that our probes arrive at points in e m 0o om0 o000
tlme. that are. dlsmbUt.ecj .unlf.ormly .at random, we can esmmaFig. 5. Log-log plot of the CCDF of friends for accounts with activity
the inter-login time distribution using the account’s l&&in  spans of{< 1,1, 2, 10, 20, 30} months.
time and the time of the probing. It is clear that we are more
likely to probe long inter-login times than short ones. Thig conditional friends distribution
sampllng phenomenon is k”OW” as tr_lspe_sctlon para_dox [71 Here we present an important statistic missing from the
Appendix A presents a maximum likelihood estimator tht

0.0001 |

CCDF (conditioned on the activity span)

Less than 1 month of activity
1 mot y

is used to obtain the CCDF of inter-login times (Figure 4 fterature: the distrik_Ju_tion of My_Space friends_from acotu
In order to speedup calculation of our estimates we assu 'éh the same activity span (in months). Figure 5 shows
rtﬂe log-log plot of the CCDF of friends for accounts with
activity spans of{< 1,1, 2,10, 20,30} months. Note that as
the activity span increases the CCDF approaches a lognormal
=70 shape (as observed later), the CCDF for activity spans)pf
- L Ermra eSS pling times 20, and30 months have a shape similar to a lognormal (other
‘ months betweer3 and 65 have a similar lognormal shape).
The CCDF of months{1,2} seem to have an intermediate
shape between the shape af 1 (which is not power-law
due to the jump from3 friends (.75) to 4 friends (.16))
and the lognormal shapes of activity spans fr@nto 65
months. The CCDF of activity spar 1 shows an outlier
s with close to 1 million friends (with less than a month of
° s o e 20 25 30 activity!). A likely cause are bots (programs that autowedty
frme et send friend requests to other MySpace users from bogus

Fig. 4. CCDF of estimated inter-login times. Note that a heavy tail igccounts). MV_SPace closely monitors user accounts. If ar! us
expected as many users abandon their MySpace accounts. The sRgfaves suspiciously, MySpace blocks the account until the
drop at the end of the tail is due to an artificial constraint that thetsser proves to be legitimate. Thus, one can expect to find
are no inter-login times greater than 3 years. user accounts with short activity spans and large numbers of
friends. Unfortunately, due to privacy reasons, we werélea
that there are no inter-login times greater than 3 years. \WWeconfirm if the outlier was a bot. It is interesting to notatth
believe this assumption to be reasonable as MySpace haule the unconditional CCDF (Figure 1) has an inflection
existed for only 6 years at the time of our measurements apdint near100 friends, the conditional CCDF (Figure 5) has
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(a) "Normalized" sample quantiles

(b) "Normalized" sample quantiles

Theoretical quantiles

"Normalized" sample quantiles

"Normalized" sample quantiles

activity span: 5 months

Theoretical quantiles

activity span: 35 months

Theoretical quantiles

"Normalized" sample quantiles

"Normalized" sample quantiles

activity span: 25 months

Theoretical quantiles

activity span: 50 months

Theoretical quantiles

Fig. 6. QQ-plots of the distributions of friends within accounts withFig. 7. QQ-plots of the distributions of friends within accounts with
the same number of months of activity span. These graphs plot &&ivity spans 5, 25, 35, and 50 months.
curves that correspond to the distributions of 3 months of activity

until up to 65. The theoretical quantiles are given by the t-Studen . . .
distribution (tests if the samples come from a standard Norma %freedom is the number of data points. Figure 6(a) shows all

Figure (b) shows the heatmap of Figure (a) where colors (from bifié QQ-plot curves fron8 months to65 months. The straight
to yellow) indicate the density of overlapping points (from low tdine represents a perfect match to a lognormal distribution
high, respectively). Both axes in Figure 6 are not the number of friends as seen
in a regular QQ-plot. Because many curves in Figure 6(a)
no such inflection point. This sheds light into the DunbdPt€rsect, we opt to also show, in Figure 6(b), the heatmap
number hypothesis applied to on-line social networks, firef Figure 6(a). In Figure 7 we isolate the QQ-plots of four
presented in [1] for the CyWorld network, which argues that@Mpirical distribution of friends (with activity spans 55,2
drastic drop in the CCDF near the Dunbar numb&f.8 (such 39 @and 50 months). From these graphs we see that all these
as the one in Figure 1) is a consequence of the theoretigjiributions can be well described by a lognormal distidu
cognitive limit of the number of people (abouti7.8) with ~ Estimates of the lognormal parametefs,s) for each
whom one can maintain stable social relationships [3]. A&s tictivity span value (in months) are plotted in Figure 8. Note
Dunbar number should be valid for all “human” users, thihat for activity spans greater than 4, the average number of
hypothesis should clearly apply to the conditional CCDF dgendsu seems to grow according t¢7 while the standard

well. However, the conditional CCDFs (Figure 5) show ngeéviationo remains constant. In what follows we contrast the
such point of inflection. above empirical observations with a model that generates a

In order to test if the CCDF of the number of friendé)OUble Pareto distribution.
of accounts with activity spans froi to 65 months follow IV. DOUBLE PARETO AND THE DISTRIBUTION OF FRIENDS
lognormal distribution we use QQ-plots. The QQ-plots com-""
pare the empirical quantiles of the data against the thieatet First proposed by Huberman and Adamic [4] to explain the
guantiles of the lognormal distribution. If the empiricabd degree distribution of the WWW graph, later formalized by
tribution is similar to a lognormal distribution then theipis Reed [6] in the context of income distributions, and further
in the QQ-plot will approximately lie on the ling = x [11]. extended to explain file size distributions [5], the moddibd
In order to superimpose QQ-plots of lognormal distribusionthe Double Pareto distribution is a powerful tool that iseabl
with different parameters in a single graph, we apply a semplo connect power law distributions with Geometric Brownian
transformation observing that the log of a lognormal randoMotion (GBM) processes. Reed [6] shows that lognormally
variable is Normally distributed: Apply the log to the dataglistributed random variables with parametgig’, 027" given
subtract the result from their sample average, and divideaitactivity sparl’, whereT itself is a exponentially distributed
by the sample standard deviation. Thus, if the original datarandom variable, results in a distribution that is chandotel
lognormal, the new transformed (“normalized”) data must bey its graph log-log CCDF plot: two straight line segments
distributed according to a t-Student distribution whosgrdes that meet at a transition point, known as the Double Pareto
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dominates the sutnin equation (2), converges to the Normal

12 ﬁAje}é(g?e N distribution. A direct consequence of the CLT is that the
Standard deviation Normal distribution is stable, i.e., the sum of two Normal

10 |~
distributions is also Normal. The assumption that no random

variable dominates the sum is actually more important than
the assumption of an infinite sum [9]. Thus, it is reasonable
to expect that if no sample of thleg(F;)'s dominates the

» sum, even finite sums can be well approximated by a Normal
¥ distribution. This simple model provides a plausible erpla
(<1) 10 20 30 40 50 tion behind the lognormals seen in the conditional distiins

= Activity span (in months) of friends in Section I1I-B, although it does not explain the

Fig. 8. The average number of friends as a function of the accoulgnormal parameters seen in Figurd@s important to note

activity spanT’ grows according ta,/7" while the standard deviation that this model makes no assumption on how friends connect
remains constant. to each other.
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I

Number of friends within accounts with span
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V. RELATED WORK

distribution [6]. While the distribution of MySpace friends cClosely related to the above observation is the observation
shown in Figure 1 does not perfectly match the descripti} Huberman and Adamic [4], in 1999, that the exponential
of a Double Pareto distribution, there are puzzling sintikes growth of the World Wide Web (WWW) graph could explain
with Reed’s model. For instance, in Section Ill we have seg® power law degree distribution. A webpage, like a MySpace
that the distribution of MySpace friends shown in Figure 1 igser, adds and removes links (“friends”). But note that the
a mixture of: model in Huberman and Adamic [4] implicitly assumes that
1) Exponential activity spans (Figure 2) (where active sisemost webpages undergo sustained changes (addition and dele
log into their accounts quite frequently, as seen ition of links) from the moment they were created until when
Figure 4) with the page is sampled. This is equivalent to assuming that
2) the lognormal distribution of friends given a fixedvebpages are never abandoned. While this is a fair assumption
activity span (Figure 6) with parametefg:v/T,c?) about the WWW in 1999, this assumption does not apply to
(Figure 8). MySpace, as many MySpace users create accounts and quickly
The parameters of the lognormals are the main differenagandon them. In MySpace, Huberman and Adamic’s assump-
between the statistics presented in Section Ill and Reetign of exponential growth is replaced by the assumption of
model [6] (another difference is the activity span disttibn  exponential activity spans (during which MySpace users are
which is exponential only for accounts with less than 26@ble to include and remove friends). Mitzenmacher [5] has
months of activity). In Reed’s model the lognormal paramsteproposed a mechanism similar to Reed's to describe Web file
are (uT, o2T) whereas in MySpace they are jugty/T,02). Sizes. Seshadri et al. [8] has proposed a similar mechanism
While this is not a trivial difference, in our case the end tesuo describe the duration of cell phone calls which makes
is surprisingly similar, which deserves future study. assumptions about the wealth of the callers. The migration
The following is a thought experiment based on the Mitze®f MySpace users has been studied in [10] where the authors
macher [5] model. In this model both the average and the val@oked at the last login times. Our work, on the other hand,
ance of the number of friends grow linearly with the accountses another metric (the activity span) to understand the
activity span, which seems to contradict the empirical daghstribution of the number of friends.
(shown in Figure 8). We leave as future work understanding
the odd behavior of the lognormal parameters in MySpace. Let

X, be a random variable that denotes the number of friendsln this work we studied the activity span of MySpace
of a randomly chosen account with activity spandofiays. accounts and its connection to the distribution of the nurobe

Let friends. We observed exponentially distributed activipass
X, = FyX4 1 (1) and that the distribution of friends over accounts with thee
activity spans can be well approximated by a lognormal with a
whereF;, i = 1,2,... are independent random variables withajrly Jight tail. These two findings shed light into the pling
finite mean and variance ant, = 1 (MySpace accounts start(yet unexplained) inflection point (knee) in the distrilouti
with “Tom” (MySpace’s creator) as their friend). Applyinge  of friends in MySpace when plotted in log-log scale. We

V1. CONCLUSIONS& FUTURE WORK

log to both sides of equation (1) we have argued that the inflection point shares some characteistic
d—1 with the inflection point of Reed’s (Double Pareto) Geonuetri
log(Xy) = Zlog(Fi). (2) Brownian Motion with Exponential Stopping Times model,
=1

- s 1it is easy to see that as the number of elements in sum goes tiyitifia
The Central Limit Theorem (CLT) states that an infinite SURsumption that “no random variable dominates the sum” cangdaces by

of independent random variables, where no random varialkie assumption that eadh, has finite mean and variance.



which contradicts the Dunbar number hypothesis of onlirfeutting equations (3) and (4) together we have
social networks presented in [1]. While our work answers oo _ . _
many question, we leave many others open, such as reason P[y =] = Zl JPIX = = P[X > 4]
. [SS)

behind the puzzling constant standard deviation of thexdise =) 2k RPIX = K] E[X]
distribution conditioned on an activity span. Another teth Thus we can recursively calculafé{ X > 4] from:
open question is if Reed’s Geometric Brownian Motion with 1
exponential stopping times model can be changed to accomE[X] = ———— andP[X >i| = E[X]|P[Y =1].
modate lognormal distributions with parametérs,/T, o). Ply =1]
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