
Analyzing Privacy in Enterprise Packet Trace Anonymization∗

Bruno Ribeiro∗, Weifeng Chen+, Gerome Miklau∗ and Don Towsley∗

∗Computer Science Department +Computer Science Department
University of Massachusetts John Jay College of Criminal Justice

Amherst, MA, 01003 New York, NY, 10019
{ribeiro, miklau, towsley}@cs.umass.edu wechen@jjay.cuny.edu

UMass CMPSCI Technical Report 48-07
September 2007

Abstract

Accurate network measurement through trace collection is critical for advancing network design and for main-
taining secure, reliable networks. Unfortunately, the release of network traces to analysts is highly constrained
by privacy concerns. Several anonymization schemes have been proposed to address this issue. Preservation of
prefix relationships among anonymized addresses is an important aspect of trace utility, but also causes a number
of vulnerabilities in trace anonymization. In this work we present a novel, systematic attack on prefix-preserving
anonymization which can be efficiently executed by an adversary in possession of a modest amount of public in-
formation about the network. The attack is general (encompassing a range of fingerprinting attacks proposed by
others) and flexible (it can be adapted to emerging variants of prefix-preserving anonymization). Perhaps most
importantly, we develop analysis tools that allow data publishers to quantify the worst-case vulnerability of their
trace given assumptions about the adversary’s external information. Using this analysis we quantify the trade-off
between privacy and utility of alternatives to full prefix-preserving anonymization.

1 Introduction

Accurate network measurement through trace collection is critical for advancing network design and for maintaining
secure, reliable networks. While the technological means exist to collect and analyze traces, the release of these traces
to analysts is highly constrained by privacy concerns. Network trace data can include information about individuals
(their personal data, communication habits, evidence of location), about an enterprise (its structure, organization,
business practices), as well as about the underlying system (network topology, active services, security practices,
etc.).

Because trace data is so sensitive, its publication and analysis is typically allowed only if the data is protected
by an anonymizing transformation. Packet content is virtually always removed since its inclusion for unencrypted
communication would constitute a severe privacy violation. The next step is to obscure source and destination IP
addresses. This can be done with any one-to-one mapping, however theutility of trace data to researchers often
requires that prefix relationships be maintained. For example, peer-to-peer systems measurement [1], worm outbreak
analysis [2], the study of router forwarding caches, and prefix-based clustering on traces all depend on address locality
and require the preservation of prefix relationships. Prefix-preserving anonymization was first implemented as a
feature of the Unix tooltcpdpriv [3]. A number of other techniques have since been developed for efficient prefix-
preserving packet trace anonymization [4–6].

∗This research has been supported in part by the NSF under grant awards CNS-0627642, ANI-0325868, and by CAPES (Brazil). Any
opinions, findings, and conclusions or recommendations expressed inthis material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
1
1

1
0
0
0

1
0
1
1

1
1
1
1

0
0
1
0

0
1
0
1

1
0
0
0

1
0
1
1

1
1
1
0

1
0
0
1

1
0
1
0

0
1
1
1

A A A B A A B B ABB A B A A A

Real addresses Anonymized addresses

(a)

Anonymized Possible de-anonymizations,α−1(y)
addressy structure alone structure and labels

0010 {1111} {1111}
0101 {1000,1011} {1011}
0111 {1000,1011} {1000}
1000 {0000,0001,0010,0011} {0010}
1001 {0000,0001,0010,0011} {0011}
1010 {0000,0001,0010,0011} {0000,0001}
1011 {0000,0001,0010,0011} {0000,0001}
1110 {0111} {0111}

(b)

Figure 1: (a) A four-bit address space: (left) an address tree representing active hosts; (right) an anonymized address
tree with prefixes preserved.(b) Anonymized addresses along with the set of possible de-anonymizations which can
be inferred using structure alone (column 2) and using structure and attribute labels (column 3).

In this work we focus on enterprise IP traces; that is, traces collected near the perimeter of the Internet, at a
gateway owned by an enterprise or institution. This is currently the most commontype of trace available (because
ISPs rarely release traces of backbone traffic). Numerous enterprise IP traces have been released in anonymized
form [7–13].

Our work presents a novel, systematic attack on prefix preserving anonymization which can be efficiently executed
by an adversary in possession of a modest amount of public information about the network. The attack has a number
of advantages over others recently proposed. In particular, we provide an analysis tool that allows data publishers to
quantify the worst-case vulnerability of their trace given assumptions about the adversary’s external information. We
demonstrate the effectiveness of the attack and analysis tools on a real enterprise trace.
Background and Related Work

Active addresses in an enterprise network with2k total IP addresses can be represented as leaves in a binary tree of
heightk, which we call anaddress tree. Figure 1(a) (left) shows an example of an address tree in a 4-bit address
space. An anonymization functionα is a bijective function taking an IP addressx to its anonymized counterpartα(x)
anywhere in the IPv4 address space. An anonymization functionpreserves prefixeswhen two addressesx andz agree
on the firsti bits if and only ifα(x) andα(z) also agree on their firsti bits. Figure 1(a)(right) shows one possible
prefix-preserving anonymization of the original address tree.

Attack overview Our attack focuses on the central threat in trace publication:host de-anonymization, in which an
adversary is able to associate the actual IP address,x, with the obscured IP address,α(x), present in a published trace.
The attack is based on the observation that if the adversary can gather information about the existence of addresses in
the real network, a set of structural constraints emerge that lead to serious disclosures. This attack is most effective
when applied to the internal addresses of an enterprise trace, which areeasily distinguishable from external addresses,
and whose true identity are often the most sensitive to the enterprise.

For example, assume the adversary is able to discover all active addresses in the real network, as illustrated in
Figure 1(a)(left). Using structural relationships alone, the adversarycan de-anonymize some of the addresses shown
in the anonymized tree. For each anonymized address, its possible de-anonymizations are shown in Figure 1(b).
Two anonymized addresses (0010 and 1110) are uniquely de-anonymized based on the structure of the network alone.
Intuitively, address 1110 is distinguishable because it is alone in its 2 bit subtree, but it is adjacent to a complete subtree
of 4 nodes. For other addresses, unique de-anonymization is not possible and a set of possible candidates remain, as
shown in Figure 1(b). For each anonymized addressy in the{1000, 1001, 1010, 1011}, its de-anonymizationα−1(y)
must be one of{0000, 0001, 0010, 0011}. These addresses remain hidden in a crowd.

Continuing the example, if the adversary has additional information about properties of real addresses, the possible
de-anonymizations are further constrained. For example, the adversary may know that host 0011 has port 22 open
and witnesses frequent traffic on this port. Traffic on port 22 can be observed in the trace for some hosts but not
others. The host properties (known about real hosts, observed for trace hosts) can be represented as labels on the leaf

nodes (in Figure 1(a) the labels are simplyA andB). Assuming only addresses with common labels should match1

the possible de-anonymizations are further limited, as shown in the final columnof Figure 1(b). Address 1001 and its
sibling 1000, previously hidden in a crowd of size 4, are now uniquely de-anonymized.

The effectiveness of this attack depends, first, on the completeness andaccuracy of an adversary’s external infor-
mation about hosts in the real network (whether they are active, properties of the traffic, etc.) and second, on properties
of the network itself (the allocation of addresses, the uniformity of host properties). As suggested by this example,
the adversary’s inference process involves matching the leaves of the address trees in a way that respects constraints
imposed by the tree structure as well as the host labels. In practice, an adversary’s information will be incorrect for
some hosts. As a result, the attack algorithm we describe is based on cost-based approximate tree matching [14,15].

Related Work Vulnerabilities in IP trace anonymization are by now widely recognized. Slagellet al. [16] provide
a thorough categorization includinginjection attacks(in which a recognizable pattern of traffic is introduced to the
trace by the attacker),fingerprinting attacks(in which properties of real addresses are matched to addresses exhibiting
those properties in the trace), andstructure recognition(in which, for example, the de-anonymization of one address
is used to narrow the possible de-anonymizations of other addresses when prefix structure is preserved).

Xu et al. [5] evaluated the impact of structure recognition attacks from smallsets of de-anonymized hosts by
calculating the overall average number of discovered bits in the anonymization. Koukiset. al. [17] proposed two
attacks on anonymized traces (although they do not capitalize on prefix preservation). The first is a fingerprinting
attack that matches profiles of web site content with traffic present in the trace in order to identify well-known web-
sites. (The hosts in the trace visiting these sites remain protected.) The secondassumes the attacker can identify
existing patterns of linear port-scanning activity. Brekne et al. [18] describe both fingerprinting and injection attacks
on prefix-preservation for powerful adversaries assumed capableof forging trace traffic and granted knowledge of the
traffic distribution.

Despite these vulnerabilities, there are few techniques designed to resist them. One notable exception is the
work of Pang et al. [19], in which scans are removed from traces to mitigateinjection attacks, and prefixes are not
preserved for addresses internal to the enterprise. The choice to forgo full prefix-preservation for internal addresses
sacrifices the utility of the trace in order to resist attacks like the one presented in this work and others mentioned
above. Instead of pure prefix preservation, the subnet and host portions of each address are anonymized separately,
but subnet relationships are preserved. We refer to this as an example of partial prefix preservation.

Recently, Coullet. al. discussed attacks on this presumably safer anonymization. They describea fingerprinting
attack which creates a behavioral profile for hosts using public informationsources (e.g., DNS or web search engine
queries), the perceived popularity of the target host, and its possible locations within the network topology. Some
parts of the network topology hidden by the anonymization are recovered and some distinguished public servers are
identified.

Contributions The existing attacks on prefix-preserving anonymization suffer from twoshortcomings which our
techniques address. First, most fingerprinting attacks attempt re-identification on each host independently, without
reasoning collectively over the entire trace. Second, the effectiveness of the attacks is highly dependent on adversary
knowledge which is nearly impossible for trace publishers to estimate. We make the following main contributions to
address these issues:

• We describe our attack (Section 2), which systematically combines fingerprinting and structure recognition
attacks. It can easily accommodate any form of external information (by representing it as labels on address
nodes) including information acquired through injection attacks. It can be applied to both full or partial prefix
preservation, and the attack is efficient: it takes a few minutes on common hardware to execute the attack on a
class B network.

• In Section 3 we perform a thorough experimental evaluation of the attack ona trace collected at a large univer-
sity. We show that an adversary, using probes of9 distinct TCP port numbers, canuniquelyre-identify17% of
the active hosts in the trace, while about50% of the hosts have candidate sets of size less than8.

1This assumption does not always hold. We consider consider this issue fully in Section 3.

• We analyze our attack formally in Section 4 by proving that the worst case rate of de-anonymization (for a given
set of observable host properties) is achieved by an adversary whose external information is perfectly accurate.

• In Section 5 we evaluate the impact of the partial prefix preservation recommended in [19]. Our techniques
allow us to quantify the improvement in privacy gained through this technique,but we also show that one
aspect of it (randomization of subnets) sacrifices trace utility without increasing privacy.

The worst-case analysis of our generic fingerprinting attack has important practical consequences. It can form the
basis for an efficient tool that data publishers can use to conservatively assess the risk of publishing traces for their
particular network, to identify the most vulnerable hosts, or even to guide address allocation within their network.

2 De-anonymization attack

In this section we describe our attack on prefix-preserving anonymizationand its connection with approximate tree
matching algorithms. We assume in this section that the attack is applied to full prefixpreservation and return to
partial prefix preservation in Section 5. The attack consists of three major steps:

Step I The adversary derives traffic fingerprints for each host in the anonymized trace.

Step II The adversary collects information from external public sources to construct fingerprints for network hosts.

Step III The adversary uses the fingerprints obtained in steps I and II above to recover the anonymization function,
α, in partially or in full.

2.1 Attack description

Step I: Deriving trace fingerprints.There are many types of traffic information that can be recovered from an
anonymized packet trace. For instance, an addressy is “active” when the trace contains at least one packet with source
addressy. Adversaries can also gather information about which TCP services addressy provides by examining the
trace for packets with source addressy from well known service port numbers. Information on host operating system
types can also be obtained [20]. Other types of information include flow sizes, packet sizes, and packet inter-departure
times. Appendix A includes more details on such attributes. We refer to the collection of traffic information about an
anonymized addressy as thetrace fingerprintof y.

Step II: Mining external fingerprints.In this second step, the adversary gathers external information about the real
network of hosts believed to be present in the trace. The host propertiescollected are similar to the those presented in
Step I. The adversary may gather information from reverse DNS queries, URL analysis, Web-crawling, active probing,
or other public sources. Network service port status, such as active/inactive Web and E-mail TCP ports, are among
the easiest types of external information to gather from a network. Such information can be obtained by probing the
network with TCP SYN packets sent to ports such as25 (E-mail) or80 (Web). The adversary infers that IP addressx

runs a network service at the Web server port whenx replies with a TCP SYN ACK when probed on port80.

In what follows we provide a formal definition for the above fingerprints.Let Γi be an alphabet of symbols (or
labels). LetYi(y) ∈ Γi be a variable that refers to a traffic characteristic of anonymized address y. For instance,
Γi = {A, I } andYi(y) = A wheny is “active” orYi(y) = I wheny is “inactive”. LetFt(y), thetrace fingerprintof
y, be a vector withk of these variables:Ft(y) = (Y1(y), . . . , Yk(y)). Let A be the set of all anonymized addresses
andFt = {(y, Ft(y)) : ∀y ∈ A} be the set of all fingerprints of a trace. Letx be an un-anonymized address of the
network. External fingerprintsFe(x) = (X1(x), . . . , Xk(x)) are constructed in the same way asFt(y). Throughout
this work we assume thatXi andYi refer to the same network characteristic such as “active address” or “TCP Web
service”.

Inaccuracy of external fingerprints.In real world scenarios, adversaries are unlikely to collect perfectly accurate
external fingerprints. We say that an adversary is able to obtainperfect external fingerprintswhen for allx, Fe(x) =
Ft(α(x)); otherwise, fingerprints areimperfect. Firewalls and changes to the network are among the most common
reasons for these mismatches. Firewalls can prevent adversaries fromcollecting reliable address attributes using active
probing. Because we do not assume adversary probing is synchronized with trace collection, changes to the network

AAABANNN

A AA N ANNB

AA AB ANNN

AAAB ANNN

T(Fe) Label A
Label B

e1

e2 e3

e5e4 e6 e7

e8 e9 e10 e11 e12 e13 e15e14

No label

(a)

AAABANNN

A AB A NNNA

AA AB ANNN

AAAB ANNN

T(Ft)
Label A
Label B

t1

t2 t3

t5t4 t6 t7

t8 t9 t10 t11 t12 t13 t15t14

No label

(b)

Figure 2: (a) External fingerprint treeT (Fe) obtained from Figure 1(a)(left) example;(b) Trace fingerprint tree
T (Ft) obtained from Figure 1(a)(right) example. SymbolsA andB represent the labels of Figure 1(a) and symbolN
represents an address with no label.

can occur. Appendix B presents a compilation of fingerprint inconsistencies, each of them with a possible counter-
measure that can be taken by an adversary. The compilation in Appendix B isfar from complete but gives an idea of
the challenges that an adversary faces.

Further, imperfect external fingerprints require that we perform an approximate matching between trace and ex-
ternal fingerprints. As a consequence, it is necessary to define a cost function which is applied to pairs of fingerprint
attributes and acts as a measure of the adversary’s certainty about the association between a trace and an external
fingerprint.

Definition 2.1 (Cost function). Let c(Fe(x), Ft(y)) ≥ 0 be a cost function that is zero whenFe(x) = Ft(y).

Step III: Recovering the anonymization function.The basic idea behind our attack is to find a set of de-anonymization
functions that are “good approximations” to the correct de-anonymizationfunctionα−1. In what follows we formally
define the above as the adversary’s objective.

Definition 2.2 (Adversary’s objective). Let A be the set of all valid de-anonymization functions. Let

γ(τ, Fe, Ft, c) =
∑

∀y∈A

c(Fe(τ(y)), Ft(y)) (1)

be the cost of matching fingerprintFt(y) to its de-anonymized counterpartFe(τ(y)) using the de-anonymization
functionτ ∈ A. The objective of the adversary is to find the set of all de-anonymization functionsBFe,Ft,c ⊆ A

that have the smallest costγ for fingerprintsFe andFt; or

BFe,Ft,c = argmin
τ∈A

γ(τ, Fe, Ft, c). (2)

Note that the success of the adversary (in finding a good approximation toα−1) depends on both the fingerprints
obtained from Steps I and II (Ft andFe respectively), andc (Definition 2.1). We can measure the adversary’s success
in attacking an anonymized addressy using fingerprintsFe, Ft and functionc using

β(y, Fe, Ft, c) = {τ(y) : ∀τ ∈ BFe,Ft,c}, (3)

which is the set of good matches ofy (or thematch setof y). In what follows we show an algorithm that computes
BFe,Ft,c (equation (2)). Note thatBFe,Ft,c ⊆ A and thereforeBFe,Ft,c contains only valid de-anonymization functions.
Thus, Step III must enforce matchings to be consistent with the (full or partial) prefix-preserving order. For this we
introduce the use offingerprint trees.

Definition 2.3 (Fingerprint tree). Let F be a set of fingerprints. A fingerprint treeT (F) of a set of fingerprintsF is
an address-space tree in which each node is assigned a label. The labelof the leaf corresponding to addressy is a
string of symbolsf(y) = Y1(y) . . . Yk(y). Inner vertex labels are defined by the following recursion: Lety andz be
two sibling vertices in the fingerprint tree anda be their parent. Vertexa is labeled

f(a) =

{

f(y) · f(z) if f(y) <LEX f(z),
f(z) · f(y) otherwise,

where “·” represents a string concatenation anda <LEX b if a is less thanb in lexicographical order. We call inner
vertexa “white” if f(y) = f(z), otherwise it is called “black”.

There are two types of fingerprint trees:trace fingerprint trees, T (Ft), andexternal fingerprint trees, T (Fe).
We exemplify these two fingerprint trees by constructing them from the labelsgiven in Figure 1(a). Figure 2(a)
shows the subtree ofT (Fe) that encompasses addresses0000 to 0111 of Figure 1(a)(left). Figure 2(b) shows their
corresponding trace fingerprints. Inner vertices of these fingerprint trees are painted white and black according to the
vertex denomination given in Definition 2.3.

2.2 Attack algorithm

Let T (Ft) andT (Fe) denote trace and external fingerprint trees created using fingerprintsFt andFe respectively.
T (Ft), T (Fe), and a cost functionc are given as inputs to Step III, which outputsβ(y, Fe, Ft, c) for all anonymized
addresses in the trace. The attack is quite straightforward. The above problem can be formulated as a trivial extension
of a constrained tree edit distance problem for unordered trees, described as follows. Consider relabeling treeT (Fe)
such as to make the complete binary treesT (Ft) andT (Fe) isomorphic. Now consider that each leaf relabeling
operation has a non-negative cost associated with it and relabeling of inner vertices have cost zero. Tree edit distance
algorithms find all sets of relabeling operations overT (Fe) with minimum total cost as to makeT (Ft) andT (Fe)
isomorphic. Using the above formulation, our problem is an instance of the tree alignment distance problem [15].
Our problem also has more specific constraints that can be used to optimize theminimum cost search. These other
constraints are:T (Ft) andT (Fe) are complete binary trees and edit operations are restricted to relabeling operations
(no insertion or removal of vertices). Using these restrictions we providea fairly efficient algorithm for instances of
the problem that the adversary is likely to encounter. Appendix C carries an example of how our algorithm works and
Appendix D explains it in more details. The Java source code of our implementation of the above algorithm is also
available for download2.

A remark on the choice of cost function A cost function that works well despite the level of external fingerprint
imperfectness is likely to require knowledge ofα beforehand, which is exactly what our attack is looking for. How-
ever, it is possible to learn better editing costs during the search for the editdistance matches [21]. The algorithm
presented in [21] is exponential on the size of the network and thus unfit for our purposes. Further research is need
to determine whether learning editing costs can be made practical for our setting. However, we present experimental
evidence suggesting that the choice of cost function is not too critical foran effective attack.

In the following section we apply our attack against real anonymized tracesof a large university network. The
following results were obtained for a network with 65536 addresses. In our experiments the algorithm typically
finishes within a couple of minutes on a 1.83GHz Intel Centrino Duo processor.

3 Experimental results

The attack presented in Section 2 has three parameters:Ft, the trace fingerprints,Fe, the external fingerprints, and
c, the cost function. This section explores the effectiveness of our attack and the importance of these parameters for
real prefix-preserved anonymized traces. The following experiments are performed over full prefix-preserved traces
collected at an university Internet gateway. The observed network has 65536 addresses. The external fingerprints,Fe,
are gathered through network probing from an external host. Note thatour fingerprint attack is not an injection attack.
Our attack is passive, i.e., we do not assume that the anonymized trace contains any information about our probes.
Throughout this section we focus solely on the de-anonymization of addresses that are internal to the network.

Trace fingerprints Our traces were collected at an Internet gateway of a class B universitynetwork. The university
has two other gateways connected to the Internet that were not monitored.We attack five 24 hour traces collected
between June 18th to June 22nd, 2007 from 12:00AM to 11:59PM each. Inthis section we present the representative

2http://www-net.cs.umass.edu/ ˜ ribeiro/deanonymization/

results of the June 18th trace, named hereTrace-0618. This trace has 573,037,780 packets, 9097 active internal
network addresses, and was anonymized using prefix-preserving anonymization before its release.

Following Step I of our attack, we derive the following fingerprint attributes for each address in the trace. The
“Active” attribute is set “true” for an addressy if the trace has at least one packet with source addressy. Nine more
attributes are derived from the existence of at least one TCP SYN ACK packet for addressy on ports corresponding to
common services: FTP, SSH, Telnet, E-mail, Time, DNS, Web, POP3, and SOCKS. A final attribute (TTL) is derived
from the time-to-live IP field of traffic for addressy. Popular host operating systems have distinct initial TTL values,
and we distinguish between four main TTL initial values: Windows, Linux, MacOS, and “Other”. Any inconclusive
labels are assigned “undefined”. Thus we consider 11 fingerprint attributes in total. Others are of course possible.

External fingerprints FollowingStep II of our attack, we actively probe all addresses in network from an external
host (in Brazil). We do not assume the adversary knows when traces are being taken, so in general there will be a
temporal mismatch between the time of trace collection and the time of adversary probing. In order to test the impact
of time in the accuracy of the de-anonymization, we collect fingerprints on June 14th (External-0614), June 15th
(External-0615), June 18th (External-0618), July 19th (External-0719), and August 27th (External-0827) of 2007.
We were careful to remove the probes ofExternal-0618from the traceTrace-0618in order to avoid introducing a
bias to our measure. External fingerprint attributes correspond directlyto trace fingerprint attributes and represent the
network characteristics “Active”, FTP, SSH, Telnet, E-mail, Time, DNS, Web, POP3, SOCKS, and initial TTL value.
The attribute “Active” represents the absence or presence of any response to the probes from a particular address.

Cost function Unless stated otherwise, we use a cost function where the cost of editingYi(y) to matchXi(τ(y)) is
not independent of the value ofYi(y). We define this type of cost function as anasymmetric costfunction. Our cost
function reflects the natural belief that, for example, it is more likely to find an open port 80 when probingα−1(y)
without recorded traffic on port 80 in the trace, than finding attribute traffic on port 80 in the trace but port 80 is closed
during the probing. The value of each editing operation is 1, except in the case where traffic is observed in the trace
and the corresponding TCP port was not open. In this case the editing cost is zero. The cost of editing an “undefined”
label is also zero. Our experiments did not indicate significant sensitivity to symmetric or asymmetric cost functions.
For lack of space we omit the experiments demonstrating stability under these variations of the cost function.

3.1 Result analysis

To assess the overall quality of the de-anonymization we use two metrics. Thefirst metric is the setM(K, Fe, Ft, c),
which measures which addressesy have match sets (β(y, Fe, Ft, c)) of size no greater thanK. More formally letAa

be the set of anonymized addresses in the trace that are active and

M(K, Fe, Ft, c) = {y : ∀y ∈ Aa; and|β(y, Fe, Ft, c)| ≤ K}.

As Fe can have imperfect information, some of the addresses inM can have match sets that do not contain the correct
de-anonymized address, i.e.,α−1(y) 6∈ β(y, Fe, Ft, c). Thus, we would also like to know which addresses inM have
match sets that contain the correct de-anonymized address. For this we introduce a second metric

V (K, Fe, Ft, c) = {y : ∀y ∈ M(K, Fe, Ft, c); andα−1(y) ∈ β(y, Fe, Ft, c)}. (4)

We also refer toV (K, Fe, Ft, c) as the set ofK-vulnerable anonymized addresses with respect to parametersFe,
Ft, andc. An anonymized addressy is K-vulnerable with respect toFe, Ft, andc if |β(y, Fe, Ft, c)| ≤ K and
α−1(y) ∈ β(y, Fe, Ft, c). Note that|M(K) − V (K)| shows the number of “errors” our attack makes. Also note that
M andV are cumulative, i.e.,V (K) ⊆ V (K + 1). Ideally we would like to haveV (K) large withM(K) − V (K)
small for any value ofK. In what follows we omit the dependency ofV andM onFt, Fe, andc. The choices ofFt,
Fe, andc should be clear from the context.

Following Step III , our first experiment uses external fingerprints obtained fromExternal-0618and trace fin-
gerprints obtained fromTrace-0618. Figure 3(a) shows the values of|M(K)| and |V (K)| of this experiment. We
observed thatV (1) = 1620, i.e., 1620 active anonymized addresses,17% of the number of active addresses in the

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints
Fe from June 18th external fingerprints

| M(K) |
| V(K) |

(a)

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r

(f
ra

ct
io

n)
 o

f a
ct

iv
e

ho
st

s
in

 th
e

tr
ac

e

K

Ft from June 18th trace fingerprints
Fe from June 18th external fingerprints

|M(K)|, All attr.
|V(K)|, All attr.

|M(K)|, Act+SSH
|V(K)|, Act+SSH

|V(K)|,Fe=Ft (All attr.)

(b)

Figure 3: (a) Thex-axis of our graph showsK, the size of the match sets. The lighter area shows|V (K)| and the
darker area shows|M(K)|. |M(K) − V (K)| is the number of de-anonymization errors;(b) This figure shows five
curves. The two solid areas show the curves of Figure 3(a). The curve “|V (k)|, Fe = Ft(All attr.)” considers the
case where external fingerprints are perfect. The remaining curves consider fingerprints with attributes “active” and
“SSH”.

trace, had their real addresses disclosed. The number of errors is|M(1) − V (1)| = 264 from which we conclude
that our attack is fairly accurate. In this experiment, all active addresseshad match sets of size at most1024. A little
more than50% of the active addresses had matches of size no greater than4. Among these matches,85% of them are
correct, i.e.,α−1(y) ∈ β(y, Fe, Ft, c).

Note that although the percentage of hosts uniquely identified is a small portionof the total trace nodes, this
represents a very significant vulnerability. Trace anonymization is intended to conceal the true identity of all nodes
present in the trace. Instead, a significant portion of them are uniquely identified, and it is possible for the adversary
to identify a small set of candidate matches for a much larger percentage of nodes. If an attacker wishes to re-identify
a specific trace host, reducing the set of feasible candidates to 8 or even16 may be more than sufficient. The attacker
could then acquire more specific information to refine their fingerprints and also eliminate any false re-identifications
that may be present. Overall, these results show that prefix-preservinganonymization is not safe against this type of
attack. In the next two subsections we analyze the relative impact of different fingerprint attributes and the impact of
collecting external fingerprints before or after trace collection.

3.2 Importance of distinct fingerprint attributes

In what follows we look at the sensitivity of our attack against a number of external fingerprint attributes from
External-0618. We extract some traffic attributes fromTrace-0618and External-0618and present the attack re-
sults using these attributes as fingerprints at Figure 3(b). Figure 3(b) shows five curves. The two solid areas show the
curves of Figure 3(a). The curve “|M(K)| Act+SSH” shows results of the same attack now only using fingerprints
attributes Active and SSH. Note that removing all other attributes from the fingerprints tend to increase the size of
the matches. However, from|V (K)| we see that the fraction of matches that are correct is much higher in this sce-
nario (95% of the matches ofM(1) are correct, against85% obtained with all attributes). Further analysis of our
data reveals that adding the TTL type attribute to the fingerprint significantly increasesM(K) but also increases the
fraction of errors for small values ofK. All other attributes cause minor impacts onM andV . From our analysis
we conclude that removing the TTL attribute improves the overall accuracy of our attack. Here we also compare our
results to the case where external fingerprints are perfect, i.e.,Fe = Ft, using attributes “Active+SSH”. The curve
“ |V (k)|, Fe = Ft(A+SSH)” shows the case where external fingerprints are perfect. We study this case in detail
in Section 4. Note that in this caseM(K) = V (K). We can see that the noise introduced by imperfect external
fingerprints significantly reduces the accuracy of our attack.

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints (no TTL attr.)
Fe from June 15th, June 18th, or July 19th external fingerprints (no TTL attr.)

| M(K) |, Fe=06/18 (day 0)
| V(K) |, Fe=06/18 (day 0)

| M(K) |, Fe=07/19 (day 29)
| V(K) |, Fe=07/19 (day 29)
| M(K) |, Fe=06/15 (day -3)
| V(K) |, Fe=06/15 (day -3)

(a)

(10%) 1000

(21%) 2000

(32%) 3000

(43%) 4000

(54%) 5000

(65%) 6000

(76%) 7000

(87%) 8000

(100%) 9097

 1 2 4 8 16 32 64 128 256 512 1024

N
um

be
r (

fra
ct

io
n)

 o
f a

ct
iv

e
ho

st
s

in
 th

e
tra

ce

K

Ft from June 18th trace fingerprints (no TTL attr.)
Fe from June 18th, July 19th, or August 27th external fingerprints (no TTL attr.)

| M(K) |, Fe=06/18 (day 0)
| V(K) |, Fe=06/18 (day 0)

| M(K) |, Fe=07/19 (day 29)
| V(K) |, Fe=07/19 (day 29)
| M(K) |, Fe=08/27 (day 71)
| V(K) |, Fe=08/27 (day 71)

(b)

Figure 4:(a) These six curves show the values of|M(K)| and|V (K)| for all attributes except “TTL”. The two solid
areas represent external fingerprints collected at the day of the tracecollection (“day 0”). External fingerprints of the
remaining two pairs of curves were collected three days before the trace collection (“day -3”) and 29 days after the
trace collection (“day 29”) respectively;(b) This figure complements Figure 4 (a) with external fingerprints collected
71 days after (“day 71”) the trace collection.

3.3 Attack sensitivity to late or early probing

Because the adversary does not know the date and time of trace collection,their fingerprint gathering will not nec-
essarily occur near that time. The passage of time can affect accuracy because of changes to hosts, services running
on hosts, or to address allocation policies. We find in our experiments that probing for external fingerprints as long
as a month after trace collection leads to reasonable results but that accuracy does noticeably decline after about two
months.

In the following experiments we use external fingerprints (all fingerprintsexcept the initial TTL attribute) from
External-0615, External-0618, External-0719, andExternal-0827. We drop the “TTL” attribute and use only the most
perfect external attributes in order to study the impact of the passage of timeon our results. Figures 4(a) and 4(b)
plot |V (K)| againstK for the external fingerprints obtained at these dates. We start comparingthe matching results
from External-0618(day 0) andExternal-0615(day -3). Probing 3 days before the trace was collected increases the
number of matching errors (match sets without the correct de-anonymized address) but does not reduce the number
of correct matches. However, considering only small match sets (e.g.K = 1), the absolute number of matching
errors is still small. Thus the attack is still fairly accurate. Comparing the matching results fromExternal-0618(day
0) andExternal-0719(day 29) we see that probing 29 days after the trace is collected significantly increases the
number of matching errors. It also slightly reduces the number of correctmatches. Once again the absolute number
of matching errors is still fairly small for small values ofK and|M(K)| is still high. Again, the attack is still fairly
efficient. ComparingExternal-0618andExternal-0827(Figure 4(b)) shows that matching errors are four or more
times greater when external fingerprints are probed 71 days after the trace is collected. The absolute number of small
match sizes also reduces. The fraction of matches that are incorrect withK = 1 is still small, a little less than20%,
and |M(1)| = 917 is still large. These results suggest that the adversary has a fairly largetime window to collect
useful external fingerprints.

4 Worst case analysis of host de-anonymization

The experimental results presented in the previous section show that the effectiveness of the attack depends on the
accuracy of the external fingerprints collected by the adversary. Forhosts that remain hidden, it is not clear whether
their anonymity is due to the trace transformation techniques, or due to the weakness on the part of the adversary. In
this section we analyze our attack under the simple but important assumption thatthe adversary’s external fingerprints
areperfect, that is, they match precisely the properties of the trace nodes. For any fixed set of fingerprint attributes
under consideration, we show formally that no adversary could bemore successfulin host de-anonymization (inde-
pendent of the choice of cost function). This allows data publishers to efficiently calculate, prior to publication, the
worst-case disclosure for a given trace and to pinpoint vulnerable nodes.

We apply this analysis to the experimental trace from the last section showing the unique de-anonymizations jump
from 17% to 44% of trace nodes. In addition, we apply the worst-case analysis to partial prefix preservation, with
some surprising consequences.

4.1 Calculating worst-case de-anonymization

To formalize the worst case de-anonymization, we wish to find the largest set of all anonymized addresses that are
K-vulnerable when attacked using trace fingerprintsFt. We refer to this set asV ⋆(K), and note that any set of
K-vulnerable addresses obtainable by any de-anonymization technique using trace fingerprintsFt, (including the one
presented by Coull et al. [22]) is a subset ofV ⋆(K). We present a very efficient algorithm that computesV ⋆(K)
givenFt.

Recall thatV (K, Fe, Ft, c) consists of the match sets for each anonymized host with size less thanK and which
contain the correct de-anonymization. For a fixed trace fingerprintFt, letC(K) be the collection of allV (K, Fe, Ft, c)
obtained by varyingFe andc. One can interpretC(K) as the collection of all attacking results using any combination
of external fingerprints and cost functions.

Let elements inC(K) be partially ordered by the containment relation, i.e.,V ≤ V ′ impliesV ⊆ V ′. We can
show that for any value ofK there exists an upper bound inC(K), i.e.,∃V ⋆ ∈ C(K) such thatV ⊆ V ⋆, ∀V ∈ C(K).
The following theorem states thatV ⋆(K) exists and is related to the set of perfect external fingerprintsF ⋆

e = Ft. For
our theorem we need the following cost function

c⋆(Fe(x), Ft(y)) =

{

0 if Fe(x) = Ft(y),
ǫ for ǫ > 0, otherwise.

(5)

The theorem states thatC(K) is upper bounded byV ⋆(K) = V (K, F ⋆
e , Ft, c

⋆). The proof of the following theorem
can be found in Appendix E.

Theorem 4.1. For an arbitrary set of trace and external fingerprintsFt, Fe, any cost functionc, and any value ofK:
V (K, Fe, Ft, c) ⊆ V (K, F ⋆

e , Ft, c
⋆), i.e.,V ⋆(K) = V (K, F ⋆

e , Ft, c
⋆) is an upper bound inC(K).

The calculation3 of V ⋆(K), and thus the evaluation of worst-case de-anonymization, is even more efficient than
the execution of the attack described in Section 2. Because fingerprints are assumed perfect, cost based tree-matching
is not needed. In fact, the entire computation can be performed on the tracefingerprint tree so that it is possible to
computeV ⋆(K) in linear time (O(|A|)).

More specifically, Appendix F shows that the worst-case match sets for a host are determined by the number of
“white” nodes in the fingerprint tree: the size of the match set for hosty is 2W (y) whereW (y) is the number of white
nodes on the path from leafy to the root ofT (Ft). As an example, Figure 5(a) shows trace fingerprint treeT1 with
two marked leavesa andb and trace fingerprint treeT2 with two marked leavesc andd (a, b, c, andd are the leaves
pointed by an arrow). Leafa has one “white” vertex on its path to the root and thus|β(a, Ft, F

⋆
e , c⋆)| = 21. Leaf b

has no “white” vertex on its path to the root and thus|β(b, Ft, F
⋆
e , c⋆)| = 20. Leaf c has two “white” vertices on its

path to the root and thus|β(c, Ft, F
⋆
e , c⋆)| = 22.

4.2 Worst-caseK-vulnerability under full prefix preservation

We can now apply the worst-case analysis to the trace studied experimentally inSection 3. Figure 5(b) shows the
worst-case K-vulnerable hosts,|V ⋆(K)|, for K = 1, 2, 4, 8 applied toTrace-0618. The bars labeled “All attr.”
represent all attributes seen in Section 3. This graph shows that a well informed adversary can do significantly more
damage to the anonymization function:44% of the addresses are1-vulnerable (uniquelly identifiable), compared with
17% using external fingerprints obtained by probing the network.

Figure 5(b) also shows the worst case for other sets of attributes: “All attr. - TTL”, which includes all attributes
except TTL, and “Active + SSH”, which includes only host activity and SSH traffic. It is clear from the graph that the
TTL attribute only significantly increases the number of1-vulnerable addresses. The “Active + SSH” bars show that

3A Java source code of an algorithm that computesV
⋆(K) is available for download at

http://www-net.cs.umass.edu/ ˜ ribeiro/deanonymization/

A I I I A A A I A I A I I A I A

T1 T2

AI

AIII

AAAIAIII

II AA AI AI AI AI AI

AIAI

AIAIAIAI

AIAIAAAI

c dba
(a)

(10%) 1000

(32%) 3000

(54%) 5000

(76%) 7000

(100%) 9097

1 2 4 8

|
V

*
(K

)
|

K

All attr.
All attr.-TTL
Active+SSH

(b)

Figure 5: (a) Example of two fingerprint trees,T1 andT2, for two distinct prefix-preserved anonymized traces;(b)
K-vulnerability of traceTrace-0618in respect to Section 3 fingerprint attributes.

...

... ...
...

Root

Subnet1 ...

...

Anon. Root
Anonymization

Subnet2 Subnet N Subnet1

a1 a2 a3

Original addresses Anonymized addresses

...

Subnet M

a3
a2

a1

...

...

Subnet N

(a)

(1%) 100

(2%) 200

(3%) 300

(4%) 400

(5%) 500

(6%) 600

1 2 4 8

|
V

*
(K

)
|

K

All attr.
All attr.-TTL

(b)

Figure 6:(a) Example of partial prefix preservation. The network administrator definesN subnets. Addresses sharing
the same subnet in the original address space also shares the same subnet after the anonymization;(b) K-vulnerability
of traceTrace-0618using partial prefix preservation in respect to Section 3 fingerprint attributes.

other TCP port attributes besides “SSH” can significantly increase the precision of the de-anonymization. Figure 3(b)
compares the “All attr.” upper bound with the results obtained with external fingerprints fromExternal-0618. We can
see that the perfect fingerprints perform at least two times better than the probed external fingerprints.

5 Analysis of partial prefix preservation

Given the vulnerability of traces to fingerprinting attacks like ours and others noted in the literature, it is natural to con-
sider sacrificing the utility of the trace to increase privacy. We refer to such techniques aspartial prefix preservation,
because some prefix relationships are not preserved, replaced instead by unconstrained randomization of addresses or
parts of addresses.

Pang et al. proposed a version of partial prefix preservation for internal addresses in their enterprise trace ano-
nymization scheme [19]. There the subnet and host portions of an address are treated independently. Each subnet is
comprised of a group of addresses that share the same32 − b most significant bits.4 If two addresses share the first
32− b significant bits in the original trace then they also share the same first32− b significant bits in the anonymized
trace. Within subnets sufixes are not preserved; instead addresses are randomized within the subnet. Figure 6(a)
illustrates this method. In this figure we label three hostsa1, a2, anda3. Note thata1, a2, anda3 are just host labels,
not the anonymized or unanonymized addresses of the hosts. Figure 6(a) shows both the original and the anonymized
partial address-space trees. Note thata1, a2, anda3 are consecutive addresses at the original address space. However,
after the anonymization, the only address relation preserved is thata1, a2, anda3 still belong to the same subnet. The
subnet changed its address from “Subnet 1” to “Subnet M”.

Worst-case analysis of partial prefix preservation While this technique seems sensible, Pang et al. do not pro-
vide an analysis justifying this choice of partial prefix preservation. Attacks against this technique have since been
demonstrated [22]. We now apply our analysis tools to evaluate the impact of partial prefix preservation on our sample
trace.

The calculation ofV ⋆ under partial prefix preservation requires a modest variation of the technique described
in the last section (details can be found in Appendix G). The results of the analysis appear in Figure 6(b) which

4In [19] the value ofb is not necessarily constant among subnets; for the sake of simplicity we consider a constant value ofb for all subnets.

plots |V ⋆(K)| againstK = 1, 2, 4, 8 for a subnet size ofb = 8 bits. Once the change in the y-axis has been noted,
Figure 6(b) and Figure 5(b) (full prefix preservation) can be compared. We see that partial prefix preservation is much
safer than full prefix preservation, reducing the unique de-anonymizations from about 4000 (44%) to 345 hosts (just
under 4%). Partial prefix preservation also achieves much smaller valuesof |V ⋆(K)| for K = 2, 4, 8.

Another interesting result comes from removing some attributes from the fingerprints. Figure 6(b) also plots
the value of|V ⋆(K)| for attributes “All attr.-TTL”. Note that unlike full prefix preservation, theTTL attribute also
significantly increases the number of2 and 4-vulnerable addresses. Fingerprint attributes “Active+SSH” are not
shown in Figure 6(b) as|V ⋆(1)| = |V ⋆(2)| = 0 and|V ⋆(4)| = |V ⋆(8)| = 7. It is interesting to note that a fingerprint
(“Active+SSH”) which is highly efficient for full prefix preservation ishighly inefficient for partial prefix preservation.
There is a simple explanation for the bad performance of fingerprint “Active+SSH” in partial prefix preservation: in
our trace we found that most addresses with SSH traffic were clustered within a small number of subnets.

We also found that the size of the subnet, defined byb, can be varied with somewhat predictable results. When
b = 4 bits, |V ⋆(1)| = 1039, or 11% of hosts. Whenb is increased to11 bits, few prefixes are preserved and
|V ⋆(1)| = 106, or just1%. Largerb improves host anonymity at the cost of host prefix information.

Trading-off privacy and utility

Overall, for our trace, we find that partial prefix preservation as described by Pang et al. has a significant positive
impact on trace anonymity. At the same time,345 uniquely disclosed hosts may still be a concern to some publishers.
In addition, these unique de-anonymizations confirm and help to explain the attack result found by Coull et al [22] in
which a small number of distinctive servers are re-identified despite partialprefix preservation.

Interestingly, we found that it was possible to identify randomized subnets with very high likelihood. The concept
of K-vulnerability can be applied not only to anonymized addresses but also to anonymized subnets. Consider the
example in Figure 6(a). An adversary may be able to uniquely map anonymized“Subnet M” into its unanonymized
counterpart “Subnet 1”. Note that this does not mean that an addresses inside anonymized “Subnet M” is also uniquely
matched to an address inside unanonymized “Subnet 1”. In the following experiment we useb = 8 bits and finger-
prints “All attr.-TTL” obtained fromTrace-0618. We choose fingerprint attributes “All attr.-TTL” instead of “All attr.”
following Pang et al. [19] which removes TTL values from the trace. This experiment shows that96% of all subnets,
that have more than one active host, are1-vulnerable and the remaining4% are2-vulnerable. Whenb = 4 bits we
find 17% of the subnets to be2-vulnerable (of which13% are1-vulnerable). And whenb = 11 bits all subnets are
1-vulnerable. These results suggest that as subnets get larger their corresponding fingerprint are more likely to be
unique.

In the light of these results we propose that for large enough values ofb (such that most subnets1-identifiable),
one can increase trace utility (keeping the same upper bound anonymity level)by applying full prefix preservation
from the subnet level up to the root.

Note finally that our upper bound also allows data publishers to reduce trace utility (e.g. removal of TCP port
information for a given address) when it is absolutely necessary to ensure anonymity against a set of fingerprint
attributes. This can be seen as an improvement over a previous recommendation [22] which advocates for the removal
of TCP port numbers from all records in the trace. Our results also showthat an attacker is able to achieve significantly
more damage when address fingerprints contain TTL attributes. This resultcorroborates the notion in [19] that TTL
attributes should not be published in the trace.

6 Conclusion and Future work

We have analyzed a novel attack on prefix-preserving trace anonymization that encompasses other proposed attacks,
and can be adapted to partial prefix preservation and to alternative information sources. We demonstrated the effec-
tiveness of this attack on a real trace, and measured experimentally the impact of the accuracy of information on the
adversary’s success. Past works describing attacks on trace anonymization have left trace publishers without meth-
ods to evaluate the risks of publication for their traces and with few mitigation techniques. Our analysis techniques
allow trace publishers to compute an upper bound for the risk of host de-anonymization in the context of adversaries
assumed capable of collecting a given class of external information. In thefuture we hope to use these techniques to

formally evaluate partial prefix preservation alternatives which can maximizeutility relative to a desired level of trace
privacy. We would also like to consider the application of this kind of attack to the external hosts in the trace. The
challenges are that for external addresses structural information is less informative, and that probing must be limited
to some known set of popular destinations since exhaustive probing of internet addresses would be infeasible.

References

[1] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, “Location-aware topology matching in P2P systems,”Proceding
of the IEEE INFOCOM 2004, vol. 4, pp. 2220–2230, 2004.

[2] M. Rajab, F. Monrose, and A. Terzis, “Fast and Evasive Attacks: Highlighting the challenges ahead,” inPro-
ceedings of the 9th International Symposium on Recent Advances in Intrusion Detection (RAID), Hamburg,
Germany, Sept. 2006.

[3] “Tcpdpriv,” http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html .

[4] R. Pang and V. Paxson, “A High-Level Programming Environment for Packet Trace Anonymization and Trans-
formation,” inProceedings of the ACM SIGCOMM Conference, August 2003.

[5] J. Xu, J. Fan, M. Ammar, and S. Moon, “Prefix-preserving IP address anonymization: Measurement-based
security evaluation and a new cryptography-based scheme,” inProceedings of the 10th IEEE International Con-
ference on Network Protocols (ICNP’02), Paris, France, November 2002.

[6] R. Ramaswamy and T. Wolf, “High-speed prefix-preserving IP address anonymization for passive measurement
systems,”IEEE/ACM Transactions on Networking, vol. 15, no. 1, January 2007.

[7] “Gateway link measurements at umass amherst,”http://www-net.cs.umass.edu/dag/ .

[8] “Enterprise tracing project,” http://www.icir.org/enterprise-tracing/.

[9] “The passive measurement and analysis project,” http://pma.nlanr.net/.

[10] “The skitter project,” http://www.caida.org/tools/measurement/skitter/.

[11] “The internet traffic archive,”http://ita.ee.lbl.gov/ , Apr. 2000.

[12] “Network tools and traffic traces at university of napoli federicoii,”
http://www.grid.unina.it/Traffic/ .

[13] T. McGregor, H. Braun, and J. Brown, “The NLANR network analysis infrastructure,”IEEE Communications
Magazine, vol. 38, no. 5, pp. 122–128, May 2000.

[14] K. Tai, “The tree-to-tree correction problem,”Journal of the Association for Computing Machinery (JACM),
vol. 26, no. 3, pp. 422–433, 1979.

[15] P. Bille, “A survey on tree edit distance and related problems,”Theor. Comput. Sci., vol. 337, no. 1-3, pp. 217–
239, 2005.

[16] A. Slagell and W. Yurcik, “Sharing Computer Network Logs for Security and Privacy: A Motivation for New
Methodologies of Anonymization.” inProceedings of SECOVAL: The Workshop on the Value of Security through
Collaboration, September 2005.

[17] D. Koukis, S. Antonatos, and K. Anagnostakis, “On The PrivacyRisks of Publishing Anonymized IP Network
Traces,” inProceedings of the 10th IFIP Open Conference on Communications and Multimedia Security, Octo-
ber 2006.

[18] T. Brekne, A.Årnes, and A. Øslebø, “Anonymization of IP Traffic Monitoring Data: Attacks on Two Prefix-
preserving Anonymization Schemes and Some Proposed Remedies,” inProceedings of the Workshop on Privacy
Enhancing Technologies (PET 05), May 2005.

[19] R. Pang, M. Allman, V. Paxson, and J. Lee, “The devil and packet trace anonymization,”SIGCOMM Comput.
Commun. Rev., vol. 36, no. 1, pp. 29–38, 2006.

[20] M. Z. et al., “http://lcamtuf.coredump.cx/p0f.shtml .”

[21] M. Neuhaus and H. Bunke, “Automatic learning of cost functions for graph edit distance.”Information Sciences,
vol. 177, no. 1, pp. 239–247, 2007.

[22] S. Coull, C. Wright, F. Monrose, M. Collins, and M. Reiter, “Playing devil’s advocate: Inferring sensitive
information from anonymized network traces,” inProceedings of the Network and Distributed System Security
Symposium, 2007.

[23] S. M. Bellovin, “A technique for counting NATed hosts,” inIMW ’02: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, 2002, pp. 267–272.

APPENDIX

A Obtaining external information address fingerprints

In what follows we compile a small list of possible external fingerprint attributes.

• TCP port attribute (Web, FTP, ...).(Active probing) To test whether a address could have TCP activity on a
given port one can simply try to use TCP to connect to that port.

• Traffic volume.Traffic volume can be divided into levels. For instance, all main network servers (main web
servers, main e-mail servers and so on) may be inferred as the busiest ones for that type of service. The number
of levels depends on the adversary’s knowledge of network serverstraffic loads.

• Flow sizes.Many file transfers over the Internet have very specific flow size signatures.

• Packet timing.Internet activities (such as browsing the Web) can have easily identifiablepacket inter-departure
signatures.

• Network changes.Networks normally evolve with time. Such evolution can be available to the adversary.
Abnormal traffic patterns or scheduled changes to the network that are known to the adversary creates the
possibility of a new fingerprint attribute. Here even a harmless 4pm weekly department-wide coffee-break can
result in a fingerprint attribute.

B Sources of fingerprint attribute mismatches and their counter-measures

The following list is a short but representative compilation of the troubles that adversaries face:

• Change in address fingerprints.It is possible that some hosts/services are active (inactive) during the time of
trace collection and inactive (active) when the adversary obtains address fingerprints. Under such circumstances
it is likely that some address fingerprints appearing in the trace are distinct from their corresponding external
information fingerprints. A good representative of this class are IP addresses allocated using the DHCP protocol
(dynamic allocation).

• Host or host service is active but had no traffic recorded.Some hosts or host services may be active at the
time of the trace collection but have no traffic recorded in the trace. This creates a fingerprint mismatch as the
adversary sees a potential source of traffic that is not present in the trace.

• Firewalls, IDS.Firewalls and Intrusion Detection Systems (IDS) may limit the adversary’s abilityto determine
address fingerprints or even masquerade them.

• NAT boxes.Many distinct hosts can share an unique IP address which may induce contradictory fingerprints
attributes at the same IP address.

Attenuating fingerprint attribute mismatches.Each item of the aforementioned list can be attenuated if the adversary
takes the following precautions:

• Dynamic IP address allocation.An adversary that has access to a trace that spans over a long time frame may
use it to obtain which portions of the address space may have temporal fingerprint changes. Information on
which portions of the address space are more “dynamic” can actually help the adversary if the adversary has
this type of external information (e.g., which portions of the network use DHCP). Another way to use such
fingerprint is to mark the main e-mail server of a network as “stationary” andthe rest of the e-mail servers as
potentially “dynamic”.

• Host or host service is active but had no traffic recorded.A service or a host that sees has almost no recorded
traffic in the trace is likely to .

• Firewalls, IDS.This is the hardest mismatch to cope with. Here the adversary cannot trust some fingerprint
attributes and must resort to other types of external information, such as personal web-traffic preferences. For
instance, Google.com flow sizes vary according to user language settings.

• NAT boxes.Might be detected in the trace [23]. If the adversary knows the true address of some NAT boxes, it
can be used in the adversary’s advantage as a new “true, false or undefined” fingerprint attribute: “is it a NAT
box?”.

C Sample attack

Let T (Ft) andT (Fe) denote the trace and external fingerprint trees depicted in Figures 2(b)and 2(a), respectively. In
this example we use the edit cost functionc⋆ (equation (5)). Let’s follow the disclosure of addresst15 of Figure 2(b).
The algorithm works on the fingerprint trees in a deep-first-search-similar order, starting from the root ofT (Fe). It
first decides which vertex ofT (Ft), t2 or t3, is the best match for vertexe2 of T (Fe). Here, inner vertex fingerprints
can help us decide which match is the most likely one. The fingerprint ofe2 is AAAI and the fingerprints oft2
andt3 areAAII andAAAI respectively. The algorithm decides thatt3 is the most likely match fore2. The match
(e2, t3) forces the match(e3, t2) due to the prefix preservation of the anonymization. The above illustrates our main
optimization over the brute force search. Sincef(e2) = f(t3), f(e3) = f(t2), f(e2) 6= f(t2), andf(e3) 6= f(t3),
the minimum cost of the match(e2, t3) is zero rather than the minimum cost of(e2, t2) which is2ǫ (for simplicity, we
use(e, t) to denote that vertexe is de-anonymized ormatchedto vertext). If later in the process we believe for some
reason that this decision was incorrect, we backtrack and follow the opposite match. But if the cost of matching the
leaves of the(e2, t3) match is still zero (as predicted), then there is no need to verify the match(e2, t3). The next step
is to decide if the best match fore4 is t6 or t7. Again we use fingerprints to decide the most likely match: (e4,t6). Next
we have to decide ife8 matchest12 or t13. In this case we could go either way. The reason we cannot decide is that
botht12 andt13 have the same labels. In this case we say thate8 is in the match set oft12 andt13, or more formally:
e8 ∈ β(t12, Fe, Ft, c

⋆) ande8 ∈ β(t13, Fe, Ft, c
⋆). In the next step we find thatt15 is a good match toe10 (thuse11 is

a good match tot14). If we continue the algorithm we find that the edit distance is zero and thatβ(t15, Fe, Ft, c
⋆) =

{e10}. After finishing the match(e2, t3), we follow the match branch(e3, t2). As f(e4) = f(t5) andf(e4) 6= f(t4),
we first follow the match(e4, t5), from which we conclude thatβ(t10, Fe, Ft, c

⋆) = β(t11, Fe, Ft, c
⋆) = {e14, e15}.

Likewise, we also findβ(t8, Fe, Ft, c
⋆) = β(t9, Fe, Ft, c

⋆) = {e12, e13}. Note that we find all matches that have
added costs (eq. 1) zero. The edit distance is therefore zero. However, when external fingerprints are imperfect, the
edit distance may not be zero.

T(F t) T(F e)

Label D

Label C

Label B

Label A

(a) (b)

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 e1 e2 e3 e4 e5 e6 e7 e8

Figure 7:(a) Trace fingerprint tree;(b) External fingerprint tree.

D Algorithm

The baseline algorithm without its main optimization follows a depth-first search order, starting from the roots of
T (Ft) andT (Fe). The algorithm returns all leaf matches that can achieve the edit cost (minimumcost). It works
recursively as follows. LetT ′(Ft) andT ′(Fe) be two subtrees ofT (Ft) andT (Fe), respectively. The body of the
algorithm is the functionmatch_mincost that receivesT ′(Ft) andT ′(Fe) as inputs and returns the minimum cost
of matchingT ′(Ft) to T ′(Fe) plus all leaf matches that can achieve such cost. LetR(T) denote the root of a treeT .
Let r(a) (l(a)) denote the right (left) subtrees of a vertexa. In the case whereR(T ′(Ft)) andR(T ′(Fe)) are leaves,
the algorithm returns the match{(R(T ′(Ft)), R(T ′(Fe)))} with costc(f(R(T ′(Ft))), f(R(T ′(Fe)))). Otherwise,
the function returns the edit cost (and respective leaf matches) of

c1 = match_mincost (r(R(T ′(Ft))), r(R(T ′(Fe)))) + match_mincost (l(R(T ′(Ft))), l(R(T ′(Fe)))),

or the edit cost (and respective leaf matches) of

c2 = match_mincost (r(R(T ′(Ft))), l(R(T ′(Fe)))) + match_mincost (l(R(T ′(Ft))), r(R(T ′(Fe)))),

whoever is smaller. All leaf matches are returned whenc1 = c2.
The above baseline algorithm is not very practical (slow) due to its combinatorial nature of the computation ofc1

andc2. However, two simple modifications can significantly speed-up the processing time under scenarios that we
are likely to encounter. The first modification occurs before the computationof c1 andc2. Instead of computing both
c1 andc2, the functionmatch_mincost computes them selectively. This selection is based on a lower bound ofc1

andc2 obtained using the fingerprints ofr(R(T ′(Ft))), r(R(T ′(Fe))), l(R(T ′(Ft))), andl(R(T ′(Fe))). Such lower
bound is exemplified in Appendix C. Functionmatch_mincost first computes the actual value of the edit cost (c1

or c2) with the smallest lower bound. Lets consider that it chooses to compute the actual value ofc2 first. Then the
actual costc1 is only computed if its lower bound is no greater thanc2. Our experiments indicate that the second edit
cost is rarely computed and great speed-ups are achieved using suchselective computation. The second modification
(speed-up) to the baseline algorithm uses specific fingerprint values. For instance, in the case where eitherT ′(Ft)
or T ′(Fe) have no active address, our lower bound is equal to the edit cost (plus, all leaf matches are trivial) and no
recursive call is needed.

E Proof of the upper boundV
⋆(K)(Theorem 4.1)

Theorem For an arbitrary set of trace and external fingerprintsFt, Fe, any cost functionc, and any value ofK:
V (K, Fe, Ft, c) ⊆ V (K, F ⋆

e , Ft, c
⋆), i.e.,V ⋆(K) = V (K, F ⋆

e , Ft, c
⋆) is an upper bound inC(K).

Proof. In what follows we sacrifice formalism for clarity in order to covey the main idea behind the proof. We
use the example in Figure 7 to illustrate the proof. In Figure 7 we represent four distinct address fingerprints.
Figure 7(a) and (b) show the trace and the external fingerprint trees,respectively, of our example. It is clear that

ta ∈ V ⋆(2), a = 3, 4, 5, 6, ti 6∈ V ⋆(2), i = 1, 2, 7, 8, andV ⋆(4) contains all addresses. Suppose thatV ⋆(2) ⊂ V (2).
We show that the previous statement must be false. If the above is true then existsj ∈ {1, 2, 7, 8} such thattj ∈ V (2).
Without loss of generality assumej = 8. Then|β(t8, Fe, Ft, c)| ≤ 2. But ti ∈ V ⋆(2), i = 1, 2, 7, 8 implies that
any bijective mapping betweent8 andt1, t2, or t7 is an isomorphism (i.e.,t8 is indistinguishable fromt1, t2, or t7).
Thus, for any value ofm, the overall cost of matching(em, t1) cannot be different than the overall cost of matching
(em, t8). Thusem ∈ β(t1, Fe, Ft, c) implies thatem ∈ β(t8, Fe, Ft, c). The same is valid fort2 andt7. From the
above we conclude thatβ(t8, Fe, Ft, c) must have at least four addresses and thust8 6∈ V (2).

F Upper bound computation, full prefix-preservation

Lemma Let T (Ft) be a trace fingerprint tree,y be a leaf of this tree, andN(y) be the set of all inner vertices
from y (exclusive) to the root ofT (Ft) (inclusive). LetW (y) be the number of white vertices inN(y). Then
|β(y, F ⋆

e , Ft, c
⋆)| ≤ 2W (y)

Proof. If z ∈ N(y) is white, it means that the children ofz are isomorphic. Thus there are2W (y) leaves that can be
mapped toy using an isomorphism.

G Upper bound computation, partial prefix-preservation

Let T (Ft) be a trace fingerprint tree,y be a leaf of this tree, andN(y) be the set of all vertices fromy (exclusive) to
the root ofT (Ft) (inclusive). Letz be an inner vertex inT (Ft) andb(z) be the number of siblings ofz that have the
same fingerprint asz. ThenW (y) =

∑

∀z∈N(y) b(z) and2W (y)is number of leaves that can be mapped toy using an
isomorphism.

