
Herding BitTorrent Traffic away from Expensive ISP Links

UMass CMPSCI Technical Repor UM-CS-2008-036
Bruno Ribeiro∗, Daniel Figueiredo+, Don Towsley∗

∗Computer Science Department +Computer and Systems Engineering Department
University of Massachusetts UFRJ/COPPE

Amherst, MA, 01003 Rio de Janeiro, RJ, Brazil
{ribeiro,towsley}@cs.umass.edu daniel@land.ufrj.br

Abstract
The steady increase in access link capacity of broadband
subscribers coupled with the significant increase in traffic,
partially due to popular peer-to-peer (P2P) file sharing ap-
plications, has had an adverse economic impact on last-mile
Internet Service Providers (ISPs). Reducing the cost asso-
ciated with P2P traffic has become a major issue for ISPs
worldwide and has triggered several proposals. However,
previous works advocate for changes to P2P software or re-
quire application-specific packet identification and manipu-
lation. This paper presents a distinct approach. We leverage
on the observation that traffic costs can be reduced by di-
verting traffic away from expensive links and into cheaper
links. We focus on BitTorrent (BT) traffic and propose a
change to the ISP’s access router packet schedulers in or-
der to divert traffic away from links labeled as expensive by
the ISP. Our proposed packet scheduler is stateless. Our ap-
proach requires no change to applications, is blind to packet
payload, and only requires changes to access routers of ISPs
that desire to reduce their BT traffic costs. Our simulation
and experimental results indicate that our approach can suc-
cessfully herd BT traffic towards cheaper links (up to 50%
reduction), without sacrificing user-level performance.

1. Introduction

The last decade has witnessed a steady increase in the
access link capacities of broadband subscribers, which are
mainly home users. Despite its initial commercial success,
broadband access has recently had an adverse economic im-
pact on Internet Service Providers (ISPs), mainly due to the
significant increase in traffic traversing their networks [4,
14, 20]. Recent studies indicate that large fractions of such
traffic are generated by peer-to-peer (P2P) file sharing ap-
plications, such as BitTorrent and Gnutella [17]. Since for
most ISPs traffic costs are proportional to traffic volume, the

cost of P2P traffic can be reduced using one (or both) of the
following approaches: (i) reduce the amount of traffic gener-
ated by P2P applications; (ii) divert traffic generated by P2P
applications into cheaper links. In a competitive market,
where ISPs share a subscriber population, ISPs prefer cost
reduction mechanisms that do not degrade user-level perfor-
mance. For such a reason, several proposals for diverting
P2P traffic without degrading user-level performance have
appeared in the literature [1, 3, 5, 12, 18, 19, 22].
Unfortunately, these mechanisms are generally inadequate

for several reasons. First, the diversity in the implemen-
tation of a given P2P protocol, as well as the increasing
use of payload encryption, makes it hard, if not impossible,
to implement mechanisms that are application dependent
(e.g., payload-based application identification). Second, the
vast amount of illegal content present in P2P applications
discourages large ISPs from adopting solutions that require
interacting with the applications (e.g., content caching or
tracker modifications). Third, changing the behavior (i.e.,
source code) of P2P applications is not an immediate op-
tion available to ISPs, as most applications are developed
by third parties. Moreover, even if P2P applications were to
be modified, it is not clear that such modifications would be
aligned with the individual interests of every ISP.
In contrast, we take a fresh look at the problem of reduc-

ing the cost of P2P traffic in a given ISP, focusing specif-
ically on BitTorrent traffic. We propose a novel approach
to divert traffic that requires no changes to the application
nor resorts to any application-dependent packet classifica-
tion. Our proposal is practical and can be readily deployed
by ISPs, as we next describe.
Reducing the economic cost of traffic in an ISP can be a

simple matter of transferring traffic load between ISP links.
Figure 1 illustrates this approach. In this example we focus
on the cost of serving traffic of a user of ISP A. Assume
that forwarding or receiving traffic through two of the three
ISPs connected toA is expensive (the two links marked with

1

$$$
$

network 1

net 2

net 3
$$$

net 4

Partition: cheap
Partition: expensive

Figure 1: Reduce the ISP’s operating costs by diverting
traffic into the cheap partition.

$$$). However, there is an ISP that charges A much less,
making the link cheap. Note that it may also be cheap for the
ISP to use its own network. Thus, in order to reduce costs
ISP A should try to change its traffic matrix, i.e., induce ap-
plications to exchange traffic with cheaper hosts whenever
possible.
One idea to transparently induce applications to use cheaper

hosts is to treat traffic differently. For example, traffic ex-
changed with cheap hosts can be provided some priority
over traffic exchanged with expensive hosts. A common
mechanism to differentiate traffic are class-based packet schedul-
ing policies. Under the right conditions and using an ade-
quate scheduler, such differentiation might suffice to induce
applications to exchange more traffic with cheap hosts and
less with expensive hosts. This is the essence of our ap-
proach.
In a nutshell, our solution is a simple class-based packet

scheduling discipline deployed at the subscriber’s access link.
In particular, the scheduler we propose operates only on
the link from the subscriber to the ISP (i.e., uplink) and
no change is required in the reverse direction (i.e., down-
link). Our solution targets mostly BitTorrent traffic, since
the characteristics of this application, as we soon describe,
provide the necessary conditions for our approach to work
effectively. In what follows, and in the remainder of this
paper, we simplify our exposition by restricting our discus-
sion to two classes of links: cheap and expensive. However,
our approach can be extended to accommodate more cost
classes.
The proposed scheduler, in brief, works as follows. Pack-

ets that arrive to the uplink of a user are classified into one of
two classes: expensive or cheap. This classification is trivial
since an ISP knows if a given packet will traverse expen-
sive links on its path to its destination, based on the packet’s
destination IP address. The scheduler maintains two sepa-
rate finite capacity queues, one for each class, and mixes the
FIFO and strict priority disciplines as follows. It schedules

W consecutive packets according to their global order of ar-
rival (FIFO) and then the highest priority packet available
(strict priority). This pattern is repeated indefinitely.
Recall that the desired effect is for expensive flows to

decrease their sending rates, while for cheap flows to in-
crease theirs, thus, reducing the costs to the ISP. However,
can the proposed scheduler effectively divert traffic? More-
over, will user-level performance, such as download com-
pletion times, be preserved? In this paper, we show that
when considering BitTorrent applications the answer to both
these questions is yes. We have conducted an extensive eval-
uation of our proposal using simulations and world-wide
scale PlanetLab experiments. All our results indicate that
BitTorrent traffic on expensive links can be significantly re-
duced (e.g., up to 50% reduction) without increasing down-
load completion time.
It is important to note that conventional class-based sched-

ulers, such as strict priority or weighed fair queueing, are not
appropriate for our purposes, as we soon discuss. For exam-
ple, the greedy approach taken by the strict priority sched-
uler, where the cheap class is always served ahead of the
expensive class, can backfire and increase ISP expenditure
when users are running BitTorrent.
The remainder of this paper is organized as follows. In

Section 2 we formally describe the problem we investigate,
stating our assumptions. Section 3 describes the proposed
scheduler and discusses why other schedulers are not ap-
propriate. In Section 4 presents the evaluation through sim-
ulation and experimental results, respectively. Section 5
presents the related work. Finally, Section 6 concludes the
paper.

2. Problem Statement and Solution

The recent clash between users of P2P file sharing appli-
cations and ISPs has its roots in a business dilemma. While
ISPs that provide Internet access to users enjoy the revenue
generated by broadband subscribers, they prefer that such
users not fully utilize the contracted bandwidth, since users
generally pay a flat rate, independent of the amount of traf-
fic exchanged. However, P2P applications tend to exchange
large amounts of data (e.g., movie downloads), leading to a
high utilization of the contracted bandwidth. Such behavior,
if widely adopted by broadband users, can have a significant
impact on the operational costs of ISPs.
The operational costs borne by an ISP can be divided into

fixed costs and variable costs. Among the variable costs, is
the cost associated with sending traffic to or receiving traffic
from its neighboring ISPs. Network links between ISPs are
regulated by financial contracts, which can vary in their pric-
ing and are usually volume dependent (e.g., monthly cost is
proportional to the amount of traffic). In particular, an ISP

2

that has multiple neighbors is likely to have different costs
associated with these links. Thus, a way to reduce costs is to
avoid using expensive links, and use cheap links when possi-
ble. But should an ISP always do this? More fundamentally,
why maintain the expensive links in the first place?
In a competitive market, where multiple ISPs share a po-

tential subscriber population, user performance matters. A
given ISP needs to provide rich connectivity to its users,
many times establishing multiple links to other ISPs in or-
der to efficiently cover the entire IP address space (e.g., AS
peering links). In particular, users paying for broadband
access that receive poor performance are likely to switch
to another ISP (possibly the reason why most ISPs toler-
ate P2P file sharing applications). Thus, ISPs would prefer
not to adopt practices that reduce costs at the expense of
user performance. This is a serious concern for ISPs, as it
jeopardizes their main source of revenue namely, broadband
subscribers.
Therefore, we search for an approach that can reduce costs

by diverting traffic away from expensive links and into cheaper
links, while preserving user-level performance. Moreover,
we search for a solution that is both practical, namely that
an ISP alone can deploy, and effective. Therefore, such a
solution should not be application-dependent, such as re-
quiring packet-based application identification, nor require
changes to applications, something not under the control of
the ISP.

2.1 Scheduling: a promising approach
Given the tight constraints presented above, it might seem

that there is little hope for an effective mechanism to re-
duce the cost of P2P traffic. However, an ISP has con-
trol of a fundamental part of the end-to-end path, namely,
the packet scheduling policy at the access link of their sub-
scribers. Thus, our hope is to leverage this scheduling policy
in order to construct a mechanism that will reduce the costs
of an ISP by diverting traffic away from expensive links,
without degrading user-level performance. But can this lead
to an effective solution? And if so, under what conditions?
A few observations about BitTorrent, and more broadly

modern P2P file sharing applications, will help us under-
stand why and when scheduling-based solutions can be ef-
fective. First, a key observation is that the same data (e.g.,
data block) is available at several locations, in hosts possi-
bly behind cheap and expensive links. Moreover, retrieving
information from a cheap host is in many cases equivalent
(or better), in terms of user-level performance, to retrieving
it from an expensive host. Therefore, it is possible to reduce
costs without degrading user-level performance, by simply
changing the host from which information is retrieved.
Second, due to their high efficiency, P2P file sharing ap-

plications tend to saturate the uplink of a user, generating

prolonged busy periods and occasional packet drops (i.e.,
high link utilization). Thus, scheduling can play an impor-
tant role in controlling traffic, such as deciding the order at
which packets are served. Note that if no queue was ever
generated then work-conserving scheduling policies would
have no impact.
Third, most P2P file sharing applications simultaneously

connect to multiple hosts to exchange information, giving
rise to multiple simultaneous packet flows. Thus, a class-
based scheduling policy can have an impact on which hosts
the application connects to.
Fourth, BitTorrent operates an incentive mechanism, such

that the download bandwidth obtained by the application is
an increasing function of the upload bandwidth. This means
that the download bandwidth of BitTorrent can be indirectly
controlled through its upload bandwidth. This indicates that
a schedule in the uplink might also impact the downlink
without any changes to the downlink scheduler. In fact, Pi-
atek et. al provide evidence that the download bandwidth in
BitTorrent is indeed a convex function of the upload band-
width [16].
Last, but fundamentally important, P2P applications use

the TCP protocol to exchange data. Recall that the conges-
tion control mechanism of TCP reacts to packet losses and
delay, either by increasing or decreasing its sending rate.
Thus, flows experiencing a lower packet loss and delay are
likely to have a higher throughput. This would allow a class-
based scheduler to impose differences on the throughput of
different TCP flows. For example, cheap flows can be made
to experience lower packet losses and delays than expensive
flows, thus being more likely to increase their sending rate.
In fact, this issue is closely related to the framework of con-
gestion pricing [13].
Given the observations above, at least intuitively it seems

that a class-based scheduling policy controlling the uplink
can be used to divert traffic away from expensive links with-
out degrading user-level performance. In the next section
we describe the proposed scheduler in detail.

3. The vFIFO+PRI scheduler

In this section we first describe in detail the proposed
class-based packet scheduler, illustrated in Figure 2. In what
follows, we also discuss why conventional class-based sched-
ulers, such as weighted fair queueing and strict priority are
not an appropriate solution for our problem.
The first task of the class-based scheduler is to classify

arriving packets into one of its classes. In this paper, we
assume there are only two possible classes, namely cheap
(high priority) and expensive (low priority). However, this
can be readily extended, if needed. From the ISP perspective
a packet is classified as expensive if it will traverse expen-

3

High priority packets Low priority packets

Queue C

Queue E
vFIFO+PRI
scheduler

Subscriber

Internet

Uplink (subscriber > Internet)
size N

Figure 2: Schematic view of the proposed scheduler

Algorithm 1: Enqueue a new packet
input : packet pkt, two physical queues QC and

QE , individual queue capacity N , and
virtual FIFO queue F

output: Updated queues F and QC or QE

/* pkt.class ∈ {C,E} */
i ← pkt.class;
if |Qi| < N then

pushTail (Qi, pkt);
if # of class i packets in F < N then

pushTail (F , i);
end

end

sive links on its path to its destination; all remaining packets
are classified as cheap. For the ISP this effectively divides
the Internet (i.e., the IP address space) into two partitions.
For example, ISP A of Figure 1 partitions the Internet into
cheap and expensive. Note that this classification is trivial,
as ISPs know if a particular packet arriving from the sub-
scriber will be forwarded through expensive links (based on
the destination IP address of the packet). This classification
can be applied to flows1, since all packets in a given flow
receive the same classification.
After being classified, a packet is placed in its correspond-

ing queue. In particular, the scheduler maintains two finite
capacity queues, QC and QE , where cheap and expensive
packets, respectively, are stored. In order to maintain the
global ordering of arrival, the scheduler maintains a virtual
finite capacity queue F , where packet classes are stored.
Note that queue F stores just the packet class (and noth-
ing about the packet) as this is sufficient to establish the
global ordering among the arrivals of the different classes.
The scheduler serves using a global FIFO discipline and a
strict priority discipline, alternating between these two dis-
ciplines. In particular, for every W packets served accord-

1A flow is a sequence of packets relatively close together in time
with identical source and destination IP addresses, source and des-
tination port numbers, and protocol number.

ing to their global order of arrival, one packet is served ac-
cording to the strict priority discipline. This procedure is
repeated indefinitely. Note that the virtual FIFO queue F
defines which class is going to be served next by the FIFO
scheduler. When a packet is served by the priority scheduler
it is not removed from the virtual FIFO queue (this measure
is taken to reduce bursts of packets in the expensive class).
The FIFO scheduler serves the next non-empty queue that
is first in the virtual FIFO queue. We refer to the proposed
scheduler as vFIFO+PRI(W), withW being the its sole pa-
rameter.

Algorithm 2: Dequeue a packet
input : Two physical queues QC and QE , virtual

FIFO queue F , scheduler weightW , and
counter c

output: Packet to be served, updated queues QC

and QE , updated queue F , and updated
counter c

pkt ← null;
if |QC | + |QE | > 0 then

/* Virtual FIFO */
if c < W then
repeat

i ← popHead (F);
until |Qi| > 0 ;
pkt ← popHead (Qi);
c ← c + 1;

end
/* Priority */
else
if |QC | > 0 then

i ← C;
else

i ← E;
pkt ← popHead (Qi);
c ← 0;

end
end
return pkt;

The pseudo-code of the algorithm to enqueue a packet
as well as the algorithm to dequeue (serve) a packet are
given in Algorithms 1 and 2, respectively. These algorithms
fully describe the proposed scheduling policy. Note that the
scheduler is simple to implement and fast to execute, and
more importantly, it has an adjustable priority given by the
parameter W . When W is zero, the scheduler behaves as a
strict priority scheduler. As W increases, the scheduler be-
haves more and more like the classical FIFO scheduler. We
next describe why previous class-based schedulers are not
appropriate for our purposes.

4

3.1 WFQ scheduler: an unfit approach
Consider the traditional weighted fair queue (WFQ) sched-

uler operating with two classes, namely a cheap and a ex-
pensive class. This scheduler will unequally divide the band-
width capacity of the link between the two classes. Thus,
the cheap class will receive a fraction ω > 1/2 of the link’s
bandwidth capacity, since it should have some priority over
the expensive class. The expensive class will receive the rest
of the link’s capacity. Unfortunately, this discipline does not
appropriately differentiate the classes at the flow level. The
problem occurs because theWFQ discipline only guarantees
that the link’s bandwidth capacity will be divided among the
classes according to ω. However, it makes no guarantees as
to the relative bandwidth that individual flows will receive.
For example, consider a scenario where ω = 2/3 and

there are four flows traversing the link. However, assume
that three of these flows belong to the cheap class, and that
both queues are non-empty (cheap and expensive classes
have packets waiting). Thus, each cheap flow receives 2/9
of the bandwidth capacity while the expensive flow receives
1/3. Thus, the expensive flow will receives more bandwidth
than the cheap flows, inverting the desired effect! Clearly,
WFQ is unfit for our purposes.

3.2 Strict priority scheduler: potential draw-
backs

We now consider the traditional strict priority scheduler
operating with the cheap and expensive classes. Thus, pack-
ets in each queue are served in FIFO order, however, the ex-
pensive class is only served when the cheap queue is empty.
Recall that this scheduler is obtained by setting W = 0 in
the proposed scheduler.
Under strict priority, the packet loss probability of the

cheap class will be minimal, usually around zero, while the
expensive class will have to bear the entire link cost, being
exposed to high packet loss probabilities and large delays.
This large difference between the two classes would poten-
tially divert more traffic away from the expensive links than
any other work conserving split. Since the goal of the ISP
is to reduce its financial costs by moving traffic away from
expensive links, the strict priority scheduler seems poten-
tially optimal from the perspective of the ISP. Unfortunately
strict priority can starve expensive class packets, possibly
impairing other subscriber applications. Another undesired
effect of the strict priority scheduler may happen under cer-
tain scenarios where it may increase ISP expenditures, as
described next.
Consider the pricing scheme where ISPs are billed ac-

cording to their largest traffic bursts. These schemes con-
sider a charging horizon (e.g., one month) that contains the
traffic volume of N five-minute time periods. Under maxi-
mum rate charging, the ISP is charged based on the largest

of these N recorded volumes, regardless of all volumes in
other time periods. Under 95-th percentile charging, the ISP
is charged according to the (N/20)-th largest traffic volume.
Refer to [15] for more details on these pricing schemes.
When considering BitTorrent applications, a strict prior-

ity scheduler can sometimes generate a maximum traffic
burst higher than a less strict priority scheme, increasing the
cost to the ISP. We discuss this phenomenon, which we refer
to as the partition problem, in the next section.

3.3 The partition problem
In this section, we intuitively present the partition prob-

lem through the following example. Consider a swarm (i.e.,
set of peers interested in disseminating and retrieving a given
file) formed by few seeders (i.e., peers that have the entire
file and behave like servers for some time) and a large num-
ber of homogeneous leechers (i.e., same bandwidth peers
that need the content) that join the system almost at the same
time (i.e., a flash crowd). Suppose seeders serve all data
blocks a certain number of times and then depart from the
system. Moreover, suppose that the set of leechers is strictly
partitioned, such that leechers prefer to serve other leech-
ers in their own class. After all seeders have departed the
system, there might be a non-negligible probability that no
leecher within a given partition has a copy of one (or more)
particular data block. As time progresses, leechers within
a partition tend to exchange data blocks among themselves.
And because all leechers have arrived at about the same time
and are homogeneous, leechers in a partition finish exchang-
ing their blocks almost simultaneously. At this point, nearly
all leechers in a given partition will request the missing data
blocks to peers outside the partition, potentially generating
a large burst of traffic between partitions. Moreover, this
burst of traffic can be larger than the bursts generated when
no partitions are used.
The above phenomenon can occur because strict parti-

tioning the set of peers can lead to a synchronization of
the demand for particular data blocks. This synchroniza-
tion is more easily observed when peers arrive in batches to
a partition that has missing data blocks. In the appendix, we
provide a simple model to capture the likelihood of having
partitions with missing blocks.
Note that partitioning the set of peers occurs whenever a

strict preference mechanism is used for peer selection. For
example, a strict priority scheduler, which prefers a set of
peers over the others, will partition the system. Another
example is strictly exploiting network locality, where peers
within the ISP are always preferred for exchanging data.

3.4 Deployment issues
In this section we discuss a few issues related to the de-

ployment of the proposed scheduler in a given ISP. Our so-

5

lution can be deployed both when the access link uses the
cable modem or the ADSL technology. In the cable modem
setting, ISPs today already deploy a per subscriber rate lim-
itation mechanism at their access router (i.e., their end of
the access link). This is needed to ensure that a given sub-
scriber receives just the contracted bandwidth, and not more.
Our solution can be readily deployed in this setting, simply
coupling the proposed vFIFO+PRI scheduler with the rate
limitation mechanism.
In the ADSL setting, the proposed scheduler could be

placed inside the user’s modem, scheduling packets to be
transmitted on the access link. Another option is for the ISP
to increase the line speed of the access link and then deploy
a rate limitation mechanism at their end of the link. This
would ensure that the bottleneck is inside the ISP and would
require no change to the user modem. In this case, the pro-
posed scheduler could be deployed in conjunction with the
rate limitation mechanism.
Finally, recall that the proposed scheduler operates only

on the uplink, such that download-intensive applications,
such as Web browsers and Email, would remain mainly un-
affected. However, to further minimize the impact of the
proposed scheduler on these applications, ACK packets travers-
ing the uplink can be treated differently by the scheduler, for
example, completely bypassing it.

4. Experiments

In this section we evaluate our approach by showing that
it can effectively reduce traffic costs when compared to the
traditional FIFO scheduler. Traffic costs can be defined us-
ing three metrics, which reflect the three most common traffic-
based charging schemes [15]: the overall average, the maxi-
mum, and the 95-th percentile rates, all taken over 5-minute
interval bins. Please refer to Section 3.2 for more details on
these charging schemes. For example, under the 95-th per-
centile charging scheme, a reduction in the 95-th percentile
rate of a link results in a cost reduction for the link. Thus,
our measure of interest is the reduction in traffic between
partitions using these three metrics. We perform experi-
ments using the NS-2 [23] simulator and the PlanetLab [6]
network.
Unless stated otherwise we use the following scenario:

We consider a single BitTorrent swarm. Subscribers par-
ticipate in the same swarm and have capacities taken from
Table 1. These subscribers are randomly split between par-
titions A and B, which guarantees that end-to-end network
performance is independent of partition memberships. Par-
tition A is typically small. We restrict the deployment of our
vFIFO+PRI scheduler to peers in partition A only. All other
links, including upload links of peers in partition B, use reg-
ular FIFO schedulers. This is an important characteristic

Capacity Probability Downlink Uplink
High 0.1 10Mbps 5Mbps

0.15 3Mbps 1Mbps
Low 0.525 1.5Mbps 384Kbps

0.225 784Kbps 128Kbps

Table 1: Bandwidth used in PlanetLab experiments.
This bandwidth distribution is closely related to the val-
ues reported in [2].

of our experiment: only subscribers in partition A imple-
ment our vFIFO+PRI scheduler. All peers in partition A
see peers in partitions A and B as “cheap” and “expensive”,
respectively. Note that such scenario tests our approach un-
der unfavorable conditions as partition A is typically small
and peers in B do not implement the vFIFO+PRI scheduler.
Our results show that our approach can reduce traffic be-

tween partitions by up to 50% (both in the simulation and
in our PlanetLab experiments). Our experiments also indi-
cate that our approach does not increase BitTorrent down-
load completion times. The results of our simulations are
presented in Section 4.1, followed by the results of our Plan-
etLab experiments in Section 4.2.

4.1 Simulation
In this section we show the results of our simulations. Our

simulator is a modified version of the NS-2 simulator [23]
that implements two extra modules: our proposed sched-
uler and the BitTorrent client developed by Eger et at. [9].
All simulations focus on the following basic scenario: 100
peers split into two partitions (A and B). Figure 3 shows
the topology of our simulation. Partition A and B peers are
assigned to networks A and B, respectively. The link be-
tween networks A and B is over-provisioned to guarantee
that the end-to-end performance between pairs of peers is
virtually independent of their partition assignments. Down-
link and uplink capacities are chosen according to the distri-
bution shown in Table 1 and kept fixed across experiments.
The swarm file consists of 430MB (megabytes) divided into
1720 blocks of 256 kilobytes each. Upon finishing its down-
load a peer becomes a seeder and serves the data for a time
given by an exponential random variable with average of
one minute. Each experiment is the result of 30 runs where
two runs differ only in the times in which peers decide to
join the swarm.

Single seeder with flash crowd (FC).
Our first experiment simulates a flash crowd where there

is a single seeder in partition B and all remaining 99 peers
arrive randomly between zero and 2 minutes. In this exper-
iment we compare schedulers FIFO, vFIFO+PRI(4), vFI-
FO+PRI(2), and strict priority. The notation vFIFO+PRI(W)

6

6.25 Gbps

1ms
A Bscheduler

...

...

10ms

10ms

10ms

Pe
er

s Peers

Partition A Partition B

link AB
10ms

Figure 3: Simulated topology

refers to the proposed scheduler with parameter W , where
W is the number of packets served according to the FIFO
discipline for every packet served according to strict prior-
ity discipline.
Figure 4 shows the results averaged over 30 runs. We can

observe that the vFIFO+PRI(2) scheduler is able to reduce
the average traffic rate between partitions A and B by nearly
50% in both directions. Thus, despite being implemented
only at peers in partition A, our scheduler effectively trig-
gers BitTorrent’s reciprocation mechanism (a.k.a. tit-for-tat)
to reduce traffic from B to A. We also observe a significant
reduction in the maximum and 95-th percentile rates on the
traffic fromA to B, while the reverse direction shows a much
smaller reduction. Note that the vFIFO+PRI(2) scheduler
provides almost the same reduction in traffic as the strict
priority scheduler with the advantage of being less likely
to starve low priority flows. Finally, we observe that the
vFIFO+PRI(4) scheduler is less effective than the vFIFO+-
PRI(2) scheduler when it comes to reducing the AB traffic.

Lower peer arrival rate with 50% as seeders.
In our second experiment we simulate peers arriving ran-

domly between zero and 10 minutes. Different from the pre-
vious experiment (where there is only one seeder in partition
B) half of the peers in partitions A and B are seeders (10 and
40, respectively). The results in Figure 5 show the average
over 30 runs. We can see that the vFIFO+PRI scheduler
achieves even larger reductions (more than 50%) in inter-
partition traffic when compared to our previous experiment.
Note that here the vFIFO+PRI(4) scheduler reduces the AB
traffic almost as much as the vFIFO+PRI(2) scheduler.

BitTorrent performance.
Here we assess the average user-level performance of our

experiments. Figure 6 shows the average fraction of peers
that finish within 6 hours (solid bars) with the respective
standard deviation (lines). Table 2 shows the average down-
load completion times of peers that finish within 6 hours.
These results show that our approach does not have a neg-
ative impact over BitTorrent performance. In fact, the pro-

FIFO
vFIFO+PRI(4)
vFIFO+PRI(2)
Full Priority

 1 Mbps

 3 Mbps

 5 Mbps

 7 Mbps

 9 Mbps

Avg. rate 95% rate Max rate

T
r
a
f
f
i
c

r
a
t
e
s

f
r
o
m

A

t
o

B

(a) Traffic at A→B

FIFO
vFIFO+PRI(4)
vFIFO+PRI(2)
Full Priority

 1 Mbps

 3 Mbps

 5 Mbps

 7 Mbps

 9 Mbps

Avg. rate 95% rate Max rate

T
r
a
f
f
i
c

r
a
t
e
s

f
r
o
m

B

t
o

A

(b) Traffic at B→A

Figure 4: Single seeder and 99 leechers. Leechers arrive
randomly between zero and 2 minutes. Graphs show the
overall average, 95-th percentile, and maximum traffic
rates in the AB link. Figure 5(a) shows the direction
A→B and Figure 5(b) the direction B→A.

posed scheduler is sometimes able to improve BitTorrent’s
performance. Note that the strict priority scheduler can in-
duce slightly longer downloads when compared to the vFI-
FO+PRI(4) scheduler. This behavior is likely due to the par-
tition problem described in Section 3.3 but further investiga-
tion is required. In the next section we provide the results of
our PlanetLab experiments.

4.2 PlanetLab experiments
In our Internet experiments we use the PlanetLab net-

work and implement a user-level scheduler using Planet-
Lab’s TAP/TUN support. PlanetLab nodes are carefully
chosen among the most unloaded and reliable servers over
five continents. The number of PlanetLab nodes partici-
pating in our experiments ranges from 82 to 123. Upload
and download links are artificially rate limited with speeds
taken from a distribution based on the access link experi-
ments [2]. Nodes are located mainly in North America and
Europe (with a small fraction of them in other continents).
These experiments emulate a swarm that starts with one

7

 A−>B
 B−>A

 −10%

 0%

 10%

 20%

 30%

 40%

Average rate Max rate 95% rate

R
e
d
u
c
t
i
o
n

i
n

t
r
a
f
f
i
c

(a) Run 1, Azureus client, large buffer, 20% peers in partition A

 A−>B
 B−>A

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

Average rate Max rate 95% rate

R
e
d
u
c
t
i
o
n

i
n

t
r
a
f
f
i
c

(b) Run 2, Bittornado client, small buffer, 20% peers in partition A

 A−>B
 B−>A

 0%

 10%

 20%

 30%

 40%

 50%

Average rate Max rate 95% rate

R
e
d
u
c
t
i
o
n

i
n

t
r
a
f
f
i
c

(c) Run 3, Azureus client, large buffer, 20% peers in partition A

 A−>B
 B−>A

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

Average rate Max rate 95% rate

R
e
d
u
c
t
i
o
n

i
n

t
r
a
f
f
i
c

(d) Run 3, Azureus client, large buffer, 50% peers in partition A

Figure 7: PlanetLab experimental results. In this experiment we replace the FIFO scheduler with a vFIFO+PRI(2)
scheduler and plot the reduction in traffic in the link AB (bars show directions A→B and B→A). Our experiments
indicate that a vFIFO+PRI(2) scheduler can effectively reduce the BitTorrent traffic between partitions in most sce-
narios.

Avg. download
Experiment Scheduler time (hours)
Single seeder w/FC FIFO 3:18

vFIFO+PRI(4) 2:25
vFIFO+PRI(2) 2:24
Priority 2:44

50% seeders w/o FC FIFO 2:20
vFIFO+PRI(4) 2:18
vFIFO+PRI(2) 2:22
Priority 2:22

Table 2: Average download completion times of peers
that finish within 6 hours.

seeder. Leechers join the swarm randomly between zero and
30 minutes. PlanetLab nodes are instrumented with a user-
level packet scheduler that manages buffers using a simple
drop-tail strategy; i.e., incoming packets are dropped when
the buffer is full. We implement two packet scheduling dis-
ciplines: FIFO and vFIFO+PRI. PlanetLab nodes are di-
vided into high (between 19 and 32 nodes) and low (between
62 and 91 nodes) bandwidth nodes. The starting seeder has
high bandwidth, 10Mbps (megabits/s) downlink and 5Mbps
uplink. High and low bandwidth nodes have bandwidth as
described in Table 1. Unless stated otherwise the queue
size is set to 1.5 times the bandwidth value, i.e. maximum
queue delay of 1.5 seconds, to reflect real access link queue
sizes [8]. A leecher becomes a seeder after completing the
file download but leaves the swarm after a time randomly
distributed between zero and 2 hours. The starting seeder is
located inside network B. The torrent file size is again 430
MB. We perform our experiments with two of the most pop-
ular BitTorrent clients, Azureus [24] and BitTornado [25],
both with their default configuration (e.g. maximum of 4
simultaneous uploads).
These experiment were performed between December 2007

8

FIFO
vFIFO+PRI(4)
vFIFO+PRI(2)
Full Priority

 0.5 Mbps

 1 Mbps

 2 Mbps

 3 Mbps

Avg. rate 95% rate Max rate

T
r
a
f
f
i
c

r
a
t
e
s

f
r
o
m

A

t
o

B

(a) Traffic at A→B

FIFO
vFIFO+PRI(4)
vFIFO+PRI(2)
Full Priority

 0.5 Mbps

 1.5 Mbps

 2.5 Mbps

 3.5 Mbps

 5.5 Mbps

Avg. rate 95% rate Max rate

T
r
a
f
f
i
c

r
a
t
e
s

f
r
o
m

B

t
o

A

(b) Traffic at B→A

Figure 5: 50 seeders and 50 leechers. Leechers arrive
randomly between zero and 10 minutes. Graphs show
the overall average, 95-th percentile, and maximum traf-
fic rates in the AB link. Figure 5(a) shows the direction
A→B and Figure 5(b) the direction B→A.

FIFO
vFIFO+PRI(4)
vFIFO+PRI(2)
Full Priority

 20%

 40%

 60%

 80%

 100%

One seeder 50% seeders

F
r
a
c
t
i
o
n

o
f

p
e
e
r
s

f
i
n
i
s
h
e
d

Figure 6: Fraction of peers that finish the download
within 6 hours. This graph shows the average (solid
bars) with the standard deviation (lines).

and May 2008. We define an experiment run to be an ex-
periment where the same capacities and peer starting times
were used. In what follows we present the results of four
experiments taken from three different runs. But before we

present our results we believe that our PlanetLab experi-
ments require a disclaimer. Our experiments are sensitive
to resource (e.g. CPU, network) variability, i.e., comparing
two runs requires the same resources availability for both
runs. PlanetLab is a shared worldwide experimental net-
work and as such suffers from a good amount of resource
variability. Nevertheless, we believe that our PlanetLab ex-
periments can be used to indicate potential benefits of our
approach on a real network.

Run 1: 20% peers in A, Azureus client.
In the first experiment we place 14 leechers inside parti-

tion A and 71 leechers inside partition B. In this experiment
Azureus [24] acts as the BitTorrent client. The results shown
in Figure 7(a) indicates that our approach is able to signifi-
cantly reduce (up to 38%) the traffic flowing from partition
A to partition B. The reverse traffic, from B to A, suffers
only an 8% increase over its maximum rate. This shows
that in this experiment our scheduler failed to get leechers
in partition B to reciprocate the reduction in traffic from A
to B.

Run 2: 20% peers in A, smaller queue size, Bittornado
client.
In the second experiment we reduce queue sizes (as to

make the maximum delay 500 milliseconds) and use Bittor-
nado [25] as our BitTorrent client. There are 23 leechers
inside partition A and 100 leechers inside partition B. The
results shown in Figure 7(b) indicate that the vFIFO+PRI(2)
scheduler can significantly reduce (up to 40%) the traffic ex-
change between partitions (in both directions).

Run 3: 20% peers in A, Azureus client.
In this third experiment we place 17 leechers inside par-

tition A and 67 leechers inside partition B. As in run 1 we
use Azureus [24] as our BitTorrent client. The results in
Figure 7(c) show a greater reduction in traffic over the link
AB when compared to run 1. The reduction in the 95-th
percentile in the A→B direction was close to 50%.

Run 3: 50% peers in A, Azureus client.
In this last experiment we place 41 leechers inside par-

tition A and 41 leechers inside partition B. Capacities and
peer starting times are the same as in the previous exper-
iment. The results shown in Figure 7(d) indicate a good
reduction (up to 40%) in traffic in the link AB. Our results
also show that the reduction in traffic in the direction A→B
is similar to the reduction in traffic in the direction B→A.

BitTorrent performance.
In the above experiments, both schedulers achieve roughly

the same download completion times. Figure 8 shows the

9

Avg. download
Experiment Scheduler time (hours)
Run 1 FIFO 2:57

vFIFO+PRI(2) 3:07
Run 2 FIFO 3:11

vFIFO+PRI(2) 2:19
Run 3 20% in A FIFO 3:01

vFIFO+PRI(2) 2:49
Run 3 60% in A FIFO 2:46

vFIFO+PRI(2) 2:40

Table 3: Average download times for each experiment.

fraction of peers that finish the download within 6 hours
and Table 3 shows the average download times for each ex-
periment. As with the simulation results, the experimen-
tal results also indicate that the vFIFO+PRI(2) scheduler is
able to significantly reduce traffic between partitions with-
out hurting BitTorrent’s performance. In particular, we again
observe that vFIFO+PRI(2) can reduce the average down-
load completion time, up to 25% (on Run 2).

FIFO
vFIFO+PRI(2)

 20%

 40%

 60%

 80%

 100%

Run1 Run2 Run3 20% Run3 60%

F
r
a
c
t
i
o
n

o
f

p
e
e
r
s

f
i
n
i
s
h
e
d

Figure 8: PlanetLab experiments: Fraction of peers that
finish the download within 6 hours.

4.3 Experiment conclusions
The experiments above show that our approach reduce

traffic between partitions by approximately 30% in most
cases according to our PlanetLab experiment and by approx-
imately 50% according to our simulations. The experiments
also indicate that our approach does not increase BitTorrent
download completion times.

5. Related Work

The increasingly higher volumes of peer-to-peer (P2P)
traffic in the Internet has prompted the search for mech-
anisms to mitigate its cost on ISPs, both in the industry
as well as in the academia. A concrete and effective ap-
proach towards reducing the cost of P2P traffic is caching,

since it reduces the volume of traffic the ISP has to ex-
change [11, 18, 19]. In an early study, Gummadi et. al have
shown that P2P traffic can be highly cacheable due to the
skewed popularity of the content [11]. More recently, Saleh
and Hefeeda proposed a specific caching algorithm for P2P
traffic that was shown to be efficient even when cache sizes
are relatively small [18]. Shen et. al have proposed a frame-
work to leverage the existing web proxy cache infrastructure
in order to cache P2P traffic and showed that this can signif-
icantly reduce network traffic [19]. Despite being fairly ef-
fective in reducing traffic, caching P2P content is not trivial
and remains controversial. Implementing caching requires
either changes to the P2P application (to become aware of
the cache) or actively interfering with the P2P protocol (to
serve download requests directly from the cache). More-
over, due to the vast amount of copyrighted content down-
loaded by P2P users, caching could raise delicate legal copy-
right violation issues.
Another concrete direction to reduce the amount of P2P

traffic entering/leaving the ISP network (thus, reducing costs)
is the exploitation of locality [1, 3, 11, 12]. In particular,
Gummadi et. al showed that network locality could be ex-
ploited in P2P file sharing applications [11]. More recently,
Karagiannis et. al have evaluated simple locality-aware so-
lutions using real BitTorrent logs which have shown to sig-
nificantly alleviate P2P traffic [12]. Bindal et. al propose an
algorithm based on biased neighbor selection in order to ex-
plicitly exploit locality within the ISP [3]. Aggarwal et. al
have proposed an oracle-based framework to assist P2P ap-
plications in the exploitation of locality [1], while Choffnes
and Bustamante have shown how to exploit the Content De-
livery Network (CDN) infrastructure to act as an oracle [5]
for BitTorrent. Finally, Xie et. al have recently proposed
an infrastructure to facilitate the interaction between ISPs
and P2P applications [22]. Despite having shown to be ef-
fective, the proposals for exploiting locality or creating in-
frastructure within the ISP all require modifying the P2P
application, something that is not under the ISP’s control.
Some ISPs have decided to take active measures in or-

der to reduce the amount of P2P traffic in their networks.
Approaches like selective dropping and rate limiting are in-
deed being used by ready-to-install solutions [7]. However,
such approaches also require identifying P2P applications
within the aggregate traffic, which is non-trivial and applica-
tion dependent. Finally, although effective, such approaches
clearly degrade user-level performance, and are therefore
avoided by some ISPs.
Finally, mathematical models have recently been proposed

to better understand this problem [10, 21]. In particular,
Garetto et. al propose an economic and performance-based
framework to study the dilemma between ISPs and P2P file
sharing users [10]. Their study establishes conditions under

10

which the ISP can operate a lucrative business when users
run P2P applications.

6. Conclusion

In this paper we leverage on the observation that traffic
costs to an ISP can be reduced by diverting traffic away from
expensive links. We propose a novel class-based scheduler
that should operate on the uplink of broadband subscribers
of a given ISP. Our solution is innovative in the sense that
it requires no changes to applications nor any application-
dependent packet classification. The proposed scheduler
can be readily deployed by an ISP that wishes to reduce
its BitTorrent traffic costs. Through simulations and Inter-
net experiments, we have shown that the proposed sched-
uler can significantly reduce BitTorrent traffic on expensive
links, without degrading user-level performance.
We believe the approach proposed in this paper, namely

using a class-based scheduler to differentiate traffic, is a
powerful mechanism that can be more broadly applied to
reduce traffic costs. This is the subject of our ongoing in-
vestigations.

7. References
[1] Vinay Aggarwal, Anja Feldmann, and Christian

Scheideler. Can ISPs and P2P users cooperate for
improved performance? ACM SIGCOMM Computer
Communication Review, 37(3):29–40, 2007.

[2] Ashwin R. Bharambe, Cormac Herley, and Venkata N.
Padmanabhan. Analyzing and improving a BitTorrent
networks’ performance mechanisms. In Proceedings
of the IEEE INFOCOM conference, 2006.

[3] Ruchir Bindal, Pei Cao, William Chan, Jan Medved,
George Suwala, Tony Bates, and Amy Zhang.
Improving traffic locality in BitTorrent via biased
neighbor selection. In Proceedings of the 26th IEEE
ICDCS, page 66, 2006.

[4] Kenjiro Cho, Kensuke Fukuda, Hiroshi Esaki, and
Akira Kato. The impact and implications of the
growth in residential user-to-user traffic. In Proc. of
the ACM SIGCOMM, 2006.

[5] David R. Choffnes and Fabin E. Bustamante. Taming
the torrent: A practical approach to reducing
cross-ISP traffic in P2P systems. In Proc. of the ACM
SIGCOMM, 2008.

[6] Brent Chun, David Culler, Timothy Roscoe, Andy
Bavier, Larry Peterson, Mike Wawrzoniak, and Mic
Bowman. PlanetLab: An Overlay Testbed for
Broad-Coverage Services. ACM SIGCOMM
Computer Communication Review, 33(3):00–00, July
2003.

[7] Sandvine co. Meeting the challenge of todays evasive
P2P traffic. Technical report, Waterloo, Canada, 2004.
An Industry Whitepaper.

[8] Marcel Dischinger, Andreas Haeberlen, P. Krishna
Gummadi, and Stefan Saroiu. Characterizing
residential broadband networks. In ACM Internet
Measurement Comference, pages 43–56, 2007.

[9] Kolja Eger, Tobias Hoßfeld, Andreas Binzenhöfer,
and Gerald Kunzmann. Efficient simulation of
large-scale P2P networks: Packet-level vs. flow-level
simulations. In 2nd Workshop on the Use of P2P,
GRID and Agents for the Development of Content
Networks (UPGRADE-CN’07) in conjunction with the
16th IEEE HPDC, Monterey Bay, California, USA,
June 2007.

[10] Michele Garetto, Daniel Figueiredo, Rossano Gaeta,
and Matteo Sereno. A modeling framework to
understand the tussle between ISPs and peer-to-peer
file-sharing users. Performance Evaluation,
64(9–12):819–837, 2007.

[11] P.K. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble,
H.M. Levy, and J. Zahorjan. Measurement, modeling,
and analysis of a peer-to-peer file-sharing workload.
In ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[12] Thomas Karagiannis, Pablo Rodriguez, and
Konstantina Papagiannaki. Should internet service
providers fear peer-assisted content distribution? In
ACM Internet Measurement Conference (IMC), pages
66–76. USENIX Association, 2005.

[13] Frank Kelly. Charging and rate control for elastic
traffic. European Transactions on
Telecommunications, 8:33–37, January 1997.

[14] Kevin J. O’Brien. Who will pay as the internet grows?
International Herald Tribune, Jun 2008. URL:
http://www.iht.com/articles/2008/06/
08/technology/neutral09.php.

[15] Andrew Odlyzko. Internet pricing and the history of
communications. Computer Networks,
36(5-6):493–517, August 2001.

[16] Michael Piatek, Tomas Isdal, Thomas E. Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. Do
incentives build robustness in bittorrent? In NSDI,
2007.

[17] Louis Plissonneau, Jean-Laurent Costeux, and Patrick
Brown. Analysis of peer-to-peer traffic on adsl. In
Passive and Active Network Measurement Workshop,
pages 69–82, 2005.

[18] O. Saleh and M. Hefeeda. Modeling and caching of
peer-to-peer traffic. In IEEE International Conference
on Network Protocols (ICNP), 2006.

11

[19] Guobin Shen, Ye Wang, Yongqiang Xiong, Ben Y.
Zhao, and Zhi-Li Zhang. HPTP: Relieving the tension
between ISPs and P2P. In International workshop on
Peer-To-Peer Systems (IPTPS), 2007.

[20] Brad Stone. Comcast adjusts way it manages internet
traffic. The New York Times, Mar 2008. URL:
http://www.nytimes.com/2008/03/28/
technology/28comcast.html.

[21] J.H. Wang, D.M. Chiu, and J.C. Lui. Modeling the
peering and routing tussle between ISPs and P2P
applications. In IEEE International Workshop on
Quality of Service (IWQoS), pages 51–59, 2006.

[22] Haiyong Xie, Y. Richard Yang, Arvind
Krishnamurthy, Yanbin Liu, and Abraham
Silberschatz. P4P: provider portal for applications. In
Proc. of the ACM SIGCOMM, 2008.

[23] http://www.isi.edu/nsnam/ns/.
[24] http://azureus.sourceforge.net/.
[25] http://www.bittornado.com/.

APPENDIX

A simple partitioning model

Figure 9: Fraction of blocks not present in any peer in
a given partition as a function of the fraction of peers in
the partition.

Consider a swarm (i.e., a set of peers interested in dis-
seminating and retrieving a file) formed by a few seeders
(i.e., peers that have the entire file and behave like servers
for some time) and a large number of leechers (i.e., peers
that are downloading the file) that join the system almost at
the same time (i.e., a flash crowd). Let s be the number of
seeders in the swarm and k be the number of times that each
block is served by a seeder. We assume that once a seeder
has served each block k times, it leaves the system. More-
over, we also assume that seeders serve blocks uniformly at
random (i.e., the probability that a particular block is served
by a particular seeder to a particular leecher is the same for
all blocks, seeders and leechers). Let m be the total num-
ber of blocks that form the data. Finally, assume the set of
leechers is partitioned and let α be the fraction of leechers
that are in partition A. Let p denote the probability that no
leecher in partition A receives a copy of a particular block
from the seeders. Thus, we have p = (1 − α)sk, since sk
copies of a block are disseminated by the seeders. Finally,
let X denote the number of blocks that are not present in
partition A. Thus, X follows a binomial distribution with
parametersm and p, and is given by

P [X = j] =

(

m

j

)

pj(1 − p)m−j , j = 0, 1, . . . ,m.

Note that the expected number of blocks not present in par-
tition A is given by E[X] = m(1 − α)sk, which may not
be small when m (# of blocks) is large and s (# of seeders)
is small. Finally, we can calculate the expected fraction of
blocks that are not present in partition A, which is given by

fb =
E[X]

m
= (1 − α)sk.

Note that this fraction does not depend on the number of
blocks m. Figure 9 illustrates this fraction as a function of
α for various values of s, assuming k = 5 (a commonly
used value in BitTorrent-like applications). Notice that fb

strongly depends on the number of initial seeders. How-
ever, for cases where α is not too large, a significant frac-
tion of the blocks cannot be found within the partition after
all initial seeders have departed from the system. This anal-
ysis indicates that the partition problem can indeed occur.
We further investigate this issue by evaluating the following
scenario using a BitTorrent implementation [9] for the NS-2
simulator [23].

12

