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ABSTRACT

Complex network phenomena — such as information cascades
in online social networks — are hard to fully observe, model,
and forecast. In forecasting, a recent trend has been to forgo
the use of parsimonious models in favor of models with in-
creasingly large degrees of freedom that are trained to learn
the behavior of a process from historical data. Extrapolat-
ing this trend into the future, eventually we would renounce
models all together. But is it possible to forecast the evo-
lution of a complex stochastic process directly from the data
without a model? In this work we show that model-free fore-
casting is possible. We present SED, an algorithm that fore-
casts process statistics based on relationships of statistical
equivalence using two general axioms and historical data. To
the best of our knowledge, SED is the first method that can
perform axiomatic, model-free forecasts of complex stochas-
tic processes. Our simulations using simple and complex
evolving processes and tests performed on a large real-world
dataset show promising results.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data mining

General Terms

Algorithms; Measurement

Keywords

Model-free Forecasting; Cascade Forecast

1. INTRODUCTION

Complex networked processes — such as information cas-
cades and the spread of influence and viruses over online
social networks — are hard to fully observe, model, and fore-
cast. Self-reinforcing and latent effects can drive random
and deterministic amplifications that are hard to predict
without aggregate, large-population models. For instance,
the way people react to social and monetary incentives can
affect how information cascades spread over online social
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networks [12]; individuals also have evolving social inter-
ests [19,24].

In our work we focus on forecasting statistics of complex
network processes, such as the distribution of sizes of an epi-
demic process over a network. Recently, the availability of
large-sample historical data — that details the evolution of
similar processes in the past — has started a trend of forgo-
ing parsimonious models in favor of models with increasingly
large degrees of freedom that are trained over this historical
data; these include latent Markovian infection models [24],
auto-regressive models [20, 21], distance-based models for
time series [14,37], and classification-based approaches such
as logistic regression [4] and naive Bayes classifiers [13]. Hid-
den Markov models have also been proposed to replace par-
simonious population models in ecology research [26].

Extrapolating this trend into the future, eventually we
could renounce models all together. But is this possible?
That is, can we forecast statistics of complex network pro-
cesses directly from the data without the help of models?
Such forecasting algorithm would be the ultimate data-driven
method.

Contributions

In this work, we propose SED (Statistical Equivalence Di-
graph algorithm), an algorithm to forecast statistics of com-
plex networked processes using general axioms that do not
entail a model. Our algorithm works by extracting statisti-
cal information contained in the historical data through two
axioms that define relationships of statistical equivalence be-
tween stochastic processes. To the best of our knowledge,
our algorithm is the first that can perform (true) model-free
forecast of network processes. Using simulation results and
also a large real-world dataset, we show that SED is able
to accurately forecast a variety of metrics under complex
scenarios. We also show that accurate unbiased forecast-
ing is limited to time horizons less than twice of that of
the training data for a class of seemly simple infection pro-
cesses. This proof further motivates our quest for forecasting
directly from the data.

An important property of SED is its ability to adjust pre-
dictions according to the amount of evidence. Consider fore-
casting the distribution of sizes of hashtag cascades #A and
#B on Twitter:

e We observe 20 hashtag seeds' of #A: ten seeds get cas-
cades of size one and ten get cascades of size at least ten.

!Seeds are network nodes that are infected independently from
other already infected nodes.



e We also observe two seeds of #B generating cascades of
size one and of size greater than ten, respectively.

Should we make the same forecast for #A and #B?7 As
#B has less samples than #A we are more uncertain about
#B’s behavior. The lack of evidence prompts SED to assign
greater uncertainty when forecasting metrics of #B, auto-
matically adjusting forecasts to the amount of evidence.

Outline

Section 2 provides some definitions used throughout the pa-
per. Section 3 explains the SED algorithm using the predic-
tion of cascade statistics as an example. Section 4 presents
the theory behind our approach. Section 5 tests the accu-
racy of SED using simulated data and shows an application
of SED to forecast complex cascades over a large online so-
cial network dataset. Finally, Section 6 discusses the related
work and Section 7 presents our conclusions.

2. DEFINITIONS

We first give a few definitions used throughout this work.
In this paper we also often simplify our exposition by de-
scribing what are really general stochastic processes as an
infection process on a network, a.k.a., a cascade process.

DEFINITION 2.1. [Cascade Process] UV € Q is a cascade
process with ID i, i = 1,...,|Q|. For each cascade process
UD€ Q we observe a set of sample paths. The random
variable X(Aiz is a measure over the sample paths of v
over relative time interval [0, At], where time zero is the
time relative to the beginning of the cascade process. For
instance, XX'Q may be a random variable that gives the size
of a cascade of U over time window [0, At].

The definition of X Xz allows us to be conservative and “mis-
takenly” merge two or more independent cascades of process
U@ into a single larger cascade. This property is particu-
larly useful when there is ambiguity to which independent
cascade seed is responsible to infect a set of nodes.

DEFINITION 2.2. [Forecasting] The process to forecast ¥(©,

; (0,1) (0,ko) (0) ; ;
has ko observations Ty, ", ..., Taz, ~ Xap, over time win-

dow [0, At1], At1 > 0, where time zero represents the time
that the process starts. A forecast is an estimate of an statis-
tic of Xg)t)2 where At > Aty. A forecast assumes that all
processes in 0 have been observed for at least Ato time.

For instance, if U is a viral marketing campaign we may
want to forecast, using the observations of the first day of
the campaign, what will be the average number of infected
nodes per infected seed after a week, a statistic that predicts
the performance of the campaign in the first week per user
exposure.

DEFINITION 2.3. [Historical Data] The historical data of
process U i =0,..., defined as th) = xX’tl), - ,a:X’tki) ~
X(AZQ}7 is the set of all available observations of process v@
over time interval length At.

In what follows we illustrate the SED algorithm. The
theory behind the algorithm is explained in Section 4.

3. ALGORITHM

In this section, we present the SED Algorithm. Here we
focus on the “how-to” solution. Our description of SED fo-
cuses on cascade processes to simplify our exposition; the

Algorithm 1 The SED Algorithm

Input: Historical data th), i =1,...,]Q|, At = At1, At
and X éot)l;
a: Probability amplifier parameter;
n: Bootstrap resample size;
m: Number of bootstrap resamples;
Stat: Statistic of interest of Xg)t)Q.

Output: Set of predicted observations of Stat(X(AOt)z)

1: for i := 0 to |2| do

Q i j
I s Pruiper (X8, 28) )

2 pE= ar tl(o)
Pguiper (X, g X

3 w(i>0) < W
4: end for
5 W < [w(l0)%,...,w(|Q >0)7]

. 1 1
6 W wh
7Y <[]
8: for j =1 tom do -
9 Sample ¢ with probability W;, ¢ € {1,...,|Q|}.

10: /\A’X?Q < BoostrapSampling(src = XXQQ,size =n)
11:  Y[j] < Stat(XL))
12: end for

13: return Y

algorithm for general networked processes is presented in
Section 4, along with the justifications and the theory be-
hind SED.

The SED algorithm (Algorithm 1) takes as input the set of
observations of each process \Il<i), over time interval lengths
Aty > 0 and Aty > Aty for i = 1,...,|Q| and over interval
length At; for the process we want to forecast i = 0. The
goal is to forecast a statistic of U(©) over time interval length
Aty. The algorithm also requires a parameter « that later
we describe how to automatically optimize. For now it is
enough to know that a large value of a indicates that the
process to forecast behaves like an outlier in our dataset.
Two other parameters are related to bootstrap sampling, n
and m, where n = m = 100 should suffice for most appli-
cations but larger values always give more accurate results.
The final input is the statistic we wish to forecast.

Step 2 of Algorithm 1 applies a two-sample Kuiper’s test [16]
to get the probabilities that the observations of two processes
i and j, i # j, come from the same underlying distribu-
tion. Step 3 of Algorithm 1 computes the equivalence score
w(i > 0) between process U and the process to forecast
T(© We call this equivalence score the Equivalence Odds
Ratio (EOR), described in details in Section. 4.

With the EOR computed we build a weight vector W at
step 5 of Algorithm 1, and normalize it using its L1-norm at
step 6. The probability amplifier « (step 5) is a real number
that is chosen automatically by another algorithm that we
describe later. The next steps (9-11) forecast the statistic of
interest using a two-step bootstrapping process with m and
n resamples. These statistics may include, but are not lim-
ited to, the Complementary Cumulative Distribution Func-
tion (CCDF), mean, standard deviation and second moment
of cascade sizes. We start by randomly sampling a process
index i according to the weight in W (step 9). At step 10
we perform bootstrap sampling from the long-term observa-
tion X ng to obtain an estimate of the bootstrap resample



of Xg?z, where |)2§’32| = n. Finally, the statistics of the
estimated X éog , e.g., the mean of X éot) , are computed and
2 2

stored in the vector Y (step 11). By repeating steps 9 to 11
m times we obtain the bootstrapped statistics, which pro-

vide the forecast of the statistic of interest over Xg)t)z.

3.1 Choosing Amplifier o« and Sample Size n

To complete the algorithm, we also need to choose the
amplification factor a and the sample size n. Larger values
of n make the forecast more accurate, thus n is only limited
by computational constraints. In our forecasts, however,
we would like to compare our prediction with the ground
truth of Xg)t)z, thus, we set n = |Xg)t)2| to make the com-
parison easy. Finally, we determine « heuristically by min-
imizing the squared error in SED’s prediction of the value
of Stat(Xg)t)l), which we can easily get an estimate with

Stat(H4,, ).

4. THEORY

The framework of classical statistics, as developed by pi-
oneers like R.A. Fisher [6], describes stochastic processes
using models as building blocks. For instance, a process can
be a Galton-Watson process, Markovian, auto-regressive, or
a hierarchical combination of processes and non-parametric
distributions. In 1933 Kolmogorov [15] laid the modern ax-
iomatic foundations of probability theory that eliminated
the necessity of models, although models are still useful in
Kolmogorov’s framework. To the best of our knowledge, our
SED method is the first method able to perform forecasting
using axioms rather than models.

Roadmap: In what follows (Section 4.1) we detail our ax-
iomatic forecast framework and our SED method. Section 4.2
takes an in-depth look at the problem providing forecast ac-
curacy bounds for a class of stochastic processes, proving
that in some scenarios even for the best model cannot make
accurate long-term forecasts of seemly simple processes.

4.1 SED: Axiomatic Forecasting

In what follows, we describe our SED method. SED per-
forms forecasts using the following two axioms in lieu of a
model. For the sake of conciseness and clarity, the definition
of dynamic networked processes is given later in the text in
Definition 4.1.

AxioMm 4.1. The state of any dynamic networked process
is unique at any time t > 0.

Axiom 4.1 guarantees that at any given time ¢ there is no
ambiguity about the true state of the process, even if this
true state is not observable.

AXioM 4.2. Let ) be a set of processes with historical
data and let U be the process that we wish to forecast.
Each process W' € Q, where Q' = QU {0}, with the ex-
ception of at most one process, is equivalent to one and only
one other process in ) besides itself according to a measure
A: S — R, where S is the appropriate o-algebra.

Note that Axioms 4.1 and 4.2 do not entail a model. To
illustrate the use of Axiom 4.2 in our method consider the
following example. ' is the set of epidemic processes over
the same graph G = (V, E). We wish to forecast another

epidemic v using multiple independent sample paths of
the processes in ©'. Let A(o) as defined in Axiom 4.2 count
the number of infected nodes in a sample path o € S. The
example also works if A is another non-trivial metric, such
as the cumulative number of infected nodes, the Wiener in-
dex, the reproduction number at time ¢t > 0. Axiom 4.2
guarantees that the set of all observed infection processes
Q' is such that for any process ¥’ € ' there is one and only
one other process ¥’ € €' for which the distribution of the
number of infected nodes is exactly the same.

Unless stated otherwise in what follows we simplify our
exposition assuming that Q' has an even number of elements.
Our method also can be readily extended to support A : & —
R™ n > 1, to incorporate complex features of the process.
As we see later, the scenario with n > 1 requires the use of
kernel two-sample tests [10] for the forecast. In what follows
we consider A\ : & — R unless stated otherwise.

Intuition: Axiom 4.2 goes at the heart of what it means
to forecast the evolution of a process using historical data.
We can only predict the future if, somehow, the present
mimics what has happened in the past. When aided by
models, there is a notion of behavior distance (e.g. likeli-
hood function), which helps us find which processes in the
past look similar to the process we are trying to forecast
and use them to predict the future. Because models often
have trouble assigning measures of similarity between two
significantly different processes, many modern methods only
consider “close enough distances”, creating a manifold that
is then used in the forecast. One of the challenges in man-
ifold learning is determining a close enough distance where
the model empirically works without being fooled by the
data. Axiom 4.2 makes this distance precisely zero, which
brings some advantages. First, the forecast does not need
to learn parameters, often a computationally intensive task.
Second, in a complex scenario it is probably better to state
ignorance about process behavior than being very wrong.
Network processes can be hard to forecast. In Section 4.2
we show that the statistical information used in the forecast
of a seemly simple process cannot be extrapolated by models
beyond the time horizon of the dataset (At2).

Choice of A: The measure A can be thought of as a “fin-
gerprint” of process behavior. With a bad choice of A, too
many “unrelated” processes have similar (but not equivalent)
statistics, which in turn makes it hard to empirically distin-
guish them. In these cases SED assigns similar weights to
most processes, and forecasting is performed conservatively
(large confidence intervals). If the process to forecast has
too few observations, SED also acts conservatively to reflect
the uncertainty in the limited number of observations.

Violating Axiom 4.2: If no process in the historical
data is equivalent to the process we wish to forecast (a real-
ity in some scenarios), then one of two things can happen. If
the process to forecast and most processes in the historical
data have similar processes but not an equal process, then
Axiom 4.2 provides a robust metric of process similarity. It
is robust because it does not assume how processes behave
and cannot be fooled by data. This shows well in our experi-
ments with a real dataset. If most processes in the historical
data are equal and the process to forecast is an outlier, SED
will forecast in an uninformative way with large confidence
intervals. This outlier status is easy to spot and stating the
lack of confidence in the prediction is highly desirable.



Formal Definitions: In what follows, we use Random
Marked Point Processes (RMPP) to formalize the networked
process. Note that RMPPs allow us to avoid describing how
the process evolves and, thus, no model is described. Let
G = (V, E) be a directed graph with node set V and edge
set E CV xV. Let Lv and Lg denote an arbitrary set of
node and edge labels that will be used to define the state
of the process at any time. As an example, in an epidemic
process Ly = {infected, susceptible} and Lr = @. The fol-
lowing generalization takes into account the complexity of
real-world cascading processes.

DEFINITION 4.1. [Cascade Process] Let Z,i” CVxLyx
E x Lg denote the state of the i-th process after k > 0
events. Let W,ii) > 0 be the time between the k-th and
the k + 1-st events. A dynamic networked process U@ is
a simple Random Marked Point Process (RMPP) W) =
{(Z,gi), Wéi))}kez* operating over V- x Lv X E x Lg, where
Z* is the set of non-negative integers. By convention,

0=T" <1V <.
are the successive times at which the process evolves with
Wi =18 — 1, k> 0.

Note that the dynamic networked process need not follow
the edges of G. RMPPs are versatile stochastic models that
allow arbitrary spatial and temporal correlations in process
evolution. Also note that in real life we only have a finite
number of realizations of the processes and, thus, we may
not be able to distinguish some of them. In what follows,
we define the measure A precisely and introduce the notion
of A-stochastic equivalence.

DEFINITION 4.2

fine two stochastic processes U@ gnd O a5 equivalent ac-
cording to a Lebesgue measure X\ : S — R at time window
[0, At], At € (0,00), if X LX) where X&) = A2
is a random variable, o) = {(Zi(k),Wi(k)) :0< Ti(k) < At}
is a sample path of the stochastic process % k € {a,b}, S
is the appropriate o-algebra, and the operator 2 defines the
random variables are equal in distribution.

In what follows, we use Axioms 4.1 and 4.2 and the def-
inition of A-stochastic equivalence to build an equivalence
digraph representing the equivalence relationships between
all processes in €0’

4.1.1 Stochastic Equivalence Digraph

Axioms 4.1 and 4.2 state that the cascade process ¥ &
Q' - e.g., the process of spreading a Twitter hashtagover
the Twitter network — has one and only one A-stochastic
equivalent process ¥’ € . To create our forecast, all we
need to do is to identify this process. This idea yields a
simple statement wherein lies the answer to our practical
forecasting problem:

THEOREM 4.1. Any two-sample hypothesis test can be used
to determine whether two processes ¥ WU e QO are A-
stochastic equivalent at time interval At > 0.

PROOF. Axiom 4.1 states that sample paths are simple
and thus admit a stochastic equivalence measure A. From
Axiom 4.2, we know that all processes in ' have a M-
stochastic equivalent process (except at most one process if
|Q'] is odd). The set of sample paths of U9 and ¥ entail

(A-STOCHASTIC EQUIVALENCE). We de-

a set of independent observations of X(Aiz and sz). Thus,

A-stochastic equivalence yields X(Aiz iX(Aii. A two-sample

hypothesis test assesses whether independent observations
of the random variables X(Ait) and X(Aiz are drawings of the
same underlying distribution. Hence, a two-sample hypoth-
esis test is a tool to determine whether ¥ and ¥\ are
A-stochastic equivalent at time At > 0. [

Interestingly, a test with low statistical power forces us to
make conservative forecasts with large confidence intervals.
The forecast uncertainty reflects the lack of statistical infor-
mation. In such case, we can identify the problem as the
test says that all processes in Q' have a similar p-value. An
interesting consequence of Axiom 4.2 and Theorem 4.1 is our
ability to create a complete digraph whose nodes are the pro-
cesses in ' and the weights represent the probability that
they are A-stochastic equivalent. We call the weights of the
edges in this digraph the Equivalence Odds Ratio (EOR),
defined as follows.

DEFINITION 4.3. [Equivalence Odds Ratio (EOR)] The EOR,

denoted we(i > j), i # j, under n observations
th) = {xX’tl), . ,;cX’tn)} of X(Alt) and m observations
) = o or X8 i

Preuper(XS), X51)
i h
Zq;(’wggf\{\p(j)} PKuiper(Xét)’ th))

where Pguiper(,+) s the p-value of a two-sample Kuiper’s
test [16,32], X™ are the observations of process U™ | and
with ' is as defined in Aziom 4.2 and XX%, th) as in
Definition 4.2.

The Equivalence Odds Ratio (EOR) wy(z &> j) is the ratio
between p(X Xt) , X gjt)) and the average p-value when 7 is com-
pared to all other cascades in '\{¥¥)}. The EOR is not to
be confused with a likelihood-ratio test, which compares the
likelihood of two models given the data. In our framework
there are no models.

we(i > j) = ||

(1)

DEFINITION 4.4  (STOCHASTIC EQUIVALENCE DIGRAPH).
Let Gx , be a simple (no loops) complete digraph that con-
nects all processes in Q' with directed edge weights. For any
two cascade processes WD W9 € Qi #£ j, the weight of
edge i — j is the EOR w:(i > j).

An EOR w (i>>5) > 1 suggests that process ¥ is w (i>5)
times more likely to be A-stochastic equivalent to ¥) than
a random process selected from Q'\{¥U?}. Note that the
equivalence odds ratio is not symmetric, i.e., there can be
processes ¥ and U such that we (it j) # w:(j>4). Note
that Definition 4.4 does not impose the one-to-one equiva-
lence required by Axiom 4.2. This is because the one-to-one
equivalence is unnecessary and computationally expensive if
Q' is large, thus we assume we can safely approximate it
through probabilistic matching. The Kuiper test in Pxuiper
can be also replaced by any two-sample hypothesis test such
as Kolmogorov-Smirnov’s test or extend our method to in-
clude Pierner [10] that allows the use of a multi-dimensional
A through kernel two-sample tests. In one dimension, we
choose Kuiper’s test over Kolmogorov-Smirnov’s test be-
cause the former gives equal importance to all domain values
while the latter tends to be most sensitive around the me-
dian value [16,32].

Next, we show how to use the stochastic equivalence di-
graph Gx ,, to make predictions of cascade characteristics.



4.1.2 Forecasting Procedure in Time
Using the stochastic equivalence digraph Gx A, WE can

forecast W(" using an of estimate P[X(Aii2 >z], 0 < Aty <
Ats, obtained by the mixture
PXY), > 2] =

DY

(@ e\ {w)}

wae, (j > 9)P[XY), > al,

where C' = 3., wae, (j > i) is a normalization constant.
The above equation gives the first iteration of Sinkhorn’s al-

gorithm that finds probabilistic pairwise matches in a weighted

graph [31]. For computational reasons we limit our match-
ing to a single iteration. Sinkhorn’s algorithm converges to
a doubly stochastic matrix that defines the probability of
pairwise matchings in a weighted graph, widely used in soft
matching problems [40]. If the SED adjacency matrix is ir-
reducible then the probabilistic matching is unique [31]. To
increase estimation accuracy when Q' is large, we can add
an exponential amplification factor:
PIXY), >a] =
o X wanGe i PIXE), >l
v e \{w}

where Co = 37, o wat, (j > 4)* and « is chosen as to
minimize a regret function over the estimated distribution

P[sz, > x| for Aty ~ At;. Note that even for historical
2

cascades U9 € \{¥D}, we do not have the true function
P[th)2 > z] that is used inside the sum. Therefore, we

estimate P[Xg’t)2 > ] by bootstrapping the observations of

th)z in the historical cascades. In Section 5.2 we show that
the estimates have good accuracy in practice.

4.2 A Big Data Forecast Paradox

In what follows we present a seemly simple forecasting
problem and prove that under conditions common to large
social networks, no model or procedure is capable of extrap-
olating accurate unbiased cascade statistics beyond the time
horizons of the historical data. This inability of models to
extrapolate cascade statistics beyond what is already in the
historical (training) data indicate that model-free forecasts
can do as well as forecasts with perfect models.

Moreover, we also show the following paradox: As a the
size of a power law network scales and increases both the
historical data and the maximum cascade sizes, forecasts be-
yond the historical data horizon get more inaccurate while
forecasts within the horizon get more accurate. This para-
dox poses a great challenge for big data analytics, where
short-term forecasts can get increasingly better as the sys-
tem and the historical data grow while long-term forecasts
get worse.

This paradox happens because the present is a biased
view of the future. More precisely, in the historical data we
are more likely to see at least one infection from a cascade
that will be larger in the future than a cascade that will be
smaller. This bias is related to the inspection paradox [36]
and depends on the observation window. The bias is so hard
to correct for power law distributions that it denies us the
ability to forecast beyond historical data horizons, where we
have not yet recorded the bias. Moreover, our results are not
confined to power laws; we consider all distributions (Type

I, II, and III). The results apply to statistics such as the
unbiased average of cascade sizes and the cascade size dis-
tribution.

Model: We collect data during time interval [0,7] and seek
to forecast statistics for interval [0,cT], ¢ > 1. Consider
n independent cascades. Cascade infections arrive accord-
ing to a constant-rate Poisson process with possibly distinct
rates in the interval [0, ¢T']. The size of a cascade at time ¢T’
has distribution A(c¢T") ~ 6, where 6 is a distribution with
support {1,...,W}. Our initial goal is to estimate an un-
biased average of the cascade sizes over the interval [0, ¢T7,
¢ > 1. At first inspection the forecasting problem looks
like a simple task and the impossibility results stated above
seem surprising. We choose the Poisson process in our illus-
tration precisely because its simplicity allows us to clearly
understand why the forecasting problem is hard.

Our use of the Poisson process is also of interest because
it connects the axiomatic framework with the classic model-
based one. Poisson processes are arguably among the sim-
plest and most widely used stochastic processes. Let N; be
the number of events in the time interval [0,¢]. A Poisson
process {A(At)} with constant rate § is defined as an arrival
process that satisfies the following three axioms:

Al. limeo P[A(At) — A(At +¢€) = 1] = Be + o(€), and
lima¢—o P[Nt — Nipar > 1] = o(At); that is, no two
events can happen at the same time;

A2. forallt, s > 0, Ny+s — N is independent of the history
up to t, {Nu,u < 1};

A3. for all ¢, s > 0, N¢ys — N; is independent of ¢t.

An equivalent constructive way to define the same process
is: P[N; > k] = P[>F | Xi < t], where {X1,..., X)} are
independent and identically distributed (i.i.d.) exponential
random variables with parameter (3.

Forecast Problem Definition. Let Or denote the set of in-
dices of the cascades in the historical data observed during
interval [0, T]. The forecasting problem is defined as follows:
We observe the cascades during time window [0, T'] and wish
to forecast the average number of events we will observe in
the window [0, T, mer =1, Nc(lT)/n.

4.2.1 Forecast Accuracy Bounds

In the following theorem, we prove that forecasting the
average number of events in our mixture Poisson process is
a hard problem. ‘ '

THEOREM 4.2. Let {NC(,}) 1, Né? ~ (01,...,0w), be a
set of observed events of a mixzture of n Poisson processes
during time interval [0,cT]. Let |Or| denote the number of
processes with at least one arrival in the interval [0,T]. As-
sume we are given the best unbiased forecast function mer|r
of the average number of events mcr, where mqr|r takes
as input the observations over time interval [0,T]. Then,
the following conditions regarding the mean squared error
MSE(merir) = El(merir — mer)?] hold:

1. If Ow decreases faster than exponentially in W, i.e.,
—log 0w = w(W), then MSE(mcrir) = Q(1/]|0r]|).

2. If Ow decreases exponentially in W, i.e., log 0w = W log b+
o(W) for some 0 < b < 1, then

(a) log[MSE(m.r7)] = QW —log|Or|), provided ¢ >
1+1/b,



(b) MSE(m.rir) = QW/|Or|), provided c =1+ 1/b,
(¢c) MSE(m.rir) = Q(1/|Or|), provided c < 1+ 1/b.
3. If Ow decreases more slowly than exponential, i.e.,
—log Ow = o(W), then
(a) log[MSE(m.r7)] = QW —
provided ¢ > 2,
(b) MSE(m.rir) =w(1/|Or|), provided c =2 and
> 3705 = w(1),
(¢c) MSE(m.rir) = Q(1/|O7|), provided either ¢ < 2 or
c=2and 31V, 5°0;, = O(1).
Proof of Theorem 4.2. Our proof of Theorem 4.2 shows
that the forecasting mixtures of Poisson processes can be
mapped into the set size distribution estimation problem;
we then use our results on the hardness of estimating set
size distributions from sampling [23] to prove the theorem.
We start by showing how to map the forecasting mixtures
of Poisson processes into the set size distribution estimation
problem. Let P[N{? = k|N{)] be the probability that k
events happen in the time window [0, 7] given the number
of events at time cT' is NC(ZT>, ¢ > 1. The distribution of
P[Néi) = k:|NC(ZT)] is given in the following lemma.

log |Or]),

LEMMA 4.1. If Ner is the number of events of a Poisson
process at time ¢I' and N} is the number of events that
happened between [0,T], ¢ > 1, then P[Ny = k|N.r| =
(N;T)cfk(l —1/c)Ner =k,

PRrOOF. A Poisson process is defined as an arrival pro-
cess that satisfies the three axioms listed above. Axiom A3
states that V¢, s > 0, Nyys — N, is independent of t. Thus,
the counts of the number of events at a time interval [0, T is
independent of the number of events at time interval (7', ¢T]
(axiom A2). Our Poisson process is time-homogeneous and
thus the probability that an event lands in [0,7] is pro-
portional to T/(cT) = 1/c¢ (axiom Al). As the number of
events between [0, T and T cT] are 1ndependent we have
P[N} = k|N.r] = —1/c)Ner=F O

In what follows, we show that the timestamps of the past
events in the interval [0, 7] are not relevant in the forecast.

LEMMA 4.2. The event counts in the historical data pro-
vide all the statistical information collected in the interval
[0,T] w.r.t. the counts {N(I) i1 in the interval [0, cT].

PrOOF. Axiom A2 states that the exact timestamps of
the events in the interval [0, 7] gives no statistical informa-
tion about future events in (T, cT]. [

We are now ready for theorem that connects the forecast
with an estimation problem that is known to be hard.

THEOREM 4.3. The problem of forecasting any function
g( {N( )}1 1) of the mizture Poisson sample paths described
in Section 4.2 is equivalent to the set size estimation prob-
lem [23], where elements are randomly sampled from a col-
lection of non-overlapping sets and we seek to recover the
original set size distribution from the samples.

Proor. We prove the theorem by mapping the forecast-
ing problem into the set size estimation problem. Let {NV, C(ZT) i
be the sizes of n sets, whose elements are sampled indepen-
dently with probability 1/¢ > 0, leading to sampled set sizes
that are binomially distributed as in Lemma 4.1. Finally,
Lemma 4.2 shows that these non-zero sampled set sizes are
the only information available to forecast the process. [

Theorem 4.3 shows that the present is a biased view of the
future, as the set size problem suffers from the inspection
paradoz [23]. In what follows we prove our main theorem.

Proor OF THEOREM 4.2. Using Theorem 4.3 we can con-
struct a perfect map between the forecasting problem and
the set size distribution problem. Theorem 4.2 follows from
using Theorem 4.3 of our previous work (Murai et al. [23])
to this mapping, where we analytically compute the inverse
of the Fisher information matrix of the data, giving rise to
the error bounds in the theorem (through the Cramér-Rao
bound). [

Theorem 4.2 shows clear limitations of forecasting with mod-
els. In realistic scenarios, where event sizes are large and
have heavier-than-exponential distributions, no algorithm
can obtain accurate unbiased forecasts of the average num-
ber of events beyond time interval [T, 2T if the dataset is
limited to time horizon [0,7]. Fortunately, SED is not im-
pacted by this problem as it limits its forecasts to the time
horizons in the historical data. These results inspire the fol-
lowing apparent paradox.

4.2.2 A Big Network Data Paradox

When More Data Means Worse Forecasts. Theorem 4.2
creates an apparent paradox. The forecasting can become
more inaccurate as the dataset Or grows. The forecasting
is not just more inaccurate, the forecast simply breaks down;
as Or grows, and the data time horizon remains the same
[0, T, there is nearly zero statistical (Fisher) information to
forecast beyond horizon [T, 2T7.

To showcase the impact of this paradox, consider a grow-
ing network where the distribution of the size of events (cas-
cade sizes) is Pareto with parameter 8 > 1. Our results
hold generally but for illustration we use a scenario where
the number of seeds increases proportionally with network
size. In this scenario the relationship between the maxi-
mum number of events per seed W and the number of seeds
|Or| > 1is E[W] =~ {/|Or|T(B8 — 1), a known result from
extreme value theory [28]. Theorem 4.2 case 3(a) shows
that the MSE error is lower bounded by log[MSE(m.r )] =
QW —log|Or|). As E[W] x {/|Or| and |Or| increases,
so does W. We can think of the MSE lower bound growing
roughly as exp( {/]0r|)/|Or|.

Thus, if the training data Or has time horizon [0, 7] and
event (cascade) sizes have a power law distribution, The-
orem 4.2 cases 3(b-c) show that as the network grows the
estimate in the interval [T, 277 gets more accurate. However,
Theorem 4.2 case 3(a) shows that as the network grows the
estimation error in the interval (27, ¢T], ¢ > 2, grows expo-
nentially with network size.

S. RESULTS

In this section we present our results. We start with our
simulation results in Section 5.1. Section 5.2 shows our re-
sults over a large Twitter dataset.

5.1 Forecasting Using Simulated Data

In this section, we test the forecasts of SED on synthetic
datasets. We test the performance of SED over two dis-
tinct models: the Poisson process and the Galton-Watson
process. Recall that ' = Q U {¥(} is the union of the

historical processes Q and the process to forecast ¥(¥. SED



forecasts metrics of ¥(© at time interval Ato using data
from time interval At;, At; < Ate In addition to SED, we
also have two baseline naive predictors: uniformed predic-
tion, and K-means prediction. Uninformed prediction re-
turns the bootstrapped statistics at time interval Ats of a
randomly selected process in 2. Whereas, K-means predic-
tion first clusters the set of historical cascades using K-means
algorithm and Euclidean distances between the CCDFs of
cascade metrics (probability density functions, PDF's, give
similar results). The number of cluster k is chosen using
the elbow method, without making the clusters too small (k
equals 10 for the two synthetic datasets, and 20 for the Twit-
ter dataset). After that, given a new cascade \II(O), K-means
prediction finds the cluster it belongs to, and returns the
bootstrapped statistics at time interval Aty of a randomly
selected process in that cluster.

For evaluation, we use violin plots to compare the pre-
dicted statistics with the bootstrap statistics from the ground-
truth empirical distribution of ¥(?) at At¢,. A violin plot is
a box plot combined with a kernel density estimate of the
probability density function, giving a more detailed view of
the data’s variance. The box extends from the first quartile
Q1 to the third quartile @3 of the data, with a line at the
median. The whiskers extend from the box to Q1 —1.5%xIQR
and Q3+1.5%IQR, where IQR = Q3—Q)1 is the inter-quartile
range. The violin plots show the spread.

5.1.1 Scenario 1: Mixture Poisson Processes

Our mixture Poisson process is a Poisson process with
random rate 3 that has support (0, W], W > 0.
Data Generation: The simulated historical data H is gen-
erated through simulations from time zero until Ats = 1
month from two sets of mixture Poisson processes. The first
set has n1 = 100 processes with rate distribution v; 572
and the second set has ny = 100 processes with rate distri-
bution v2 ,3_3. Poisson rates are measured in number of
events per month. Each process has 1,000 infection seeds.
The process to forecast ¥(® belongs to one of two sets and
was observed from time zero until Aty = Aty /4, approxi-
mately one week. In what follows we test how well SED can
forecast W(®). In Section 4.2 we show that estimating the
Poisson rates is hard due to observation bias.

Results: In Figure 1 we show the results of forecasting pro-
cesses with IDs 10 to 100 (type 1) and processes with IDs
110 to 190 (type 2). Four forecasts are evaluated: fore-
casting the CCDF's, mean, standard deviation, and second
moment. For comparison baselines we use uninformed pre-
diction — uniform matching weights — and matching using
K-means with Euclidean distances, as the latter have been
extensively and successfully used in mining and classifying
time series [37]. For each process we present the true statis-
tics at Atq1 (Present) and Aty (Future), and the predicted
statistics at Ats, including SED, uninformed, and K-means
predictions. The Figure 1 shows that SED is the method
that better represents, consistently, the true statistics at
time Ato under all scenarios (Future).

5.1.2  Scenario 2: Galton-Watson Process

The Galton-Watson process is a branching process {X,, }
such that X,41 = Ej.(:"l w;m, where Xo = 1 and {¢§”) ~
Poisson(\) : n,j € N} is a set of i.i.d. natural number-
valued random variables [22]. Intuitively, wl(n) is the number

Parameters Temporal delta

Process Type IDs o 00 Yo Ay Ao Ay

Small-inc 0..9 +0.2 +0.1 +30
Small-dec 10..19 1.5 1 300 -0.2 -0.1 -30
Small-const 20..29 0 0 0
Medium-inc 30..39 +0.2 +0.1 +30
Medium-dec 40..49 2 2 500 -0.2 -0.1 -30
Medium-const ~ 50..59 0 0 0
Large-inc 60..69 +0.2 +0.1 +30
Large-dec 70..79 3 2.5 700 -0.2 -0.1 -30
Large-const 80..89 0 0 0

Table 1: Galton-Watson process simulation parameters.

of male children of the j-th descendants, and X, is the num-
ber of descendants in the n-th generation. The total number
of people with the considered family name at time ¢ would
be E::O X:. A simple epidemic cascading on a network can
be modeled as a Galton-Watson process.

To make this model harder to forecast, we replace the
Poisson distribution of the number of children by a log-
normal distribution. The purpose of the log-normal dis-
tribution is to skew the obtained distribution of the num-
ber of children, mimicking real life situation where the de-
gree of a node in a network follows a heavy tail distri-
bution. We call the values generated by the log-normal
distribution the descendant effect of a node. Here is the

model we use X,411 = Z]Lffj wj(-n), where Xo = 1 and

{w](.n) ~ log-normal(s,0?) : n,j € N}. The operation | X, |
is to get an integer-valued number of descendants.

Cascade Process Evolution: For each information cascade,
we use a birth rate v to generate new seeds over time. Given
a single seed node (Xo = 1), the total descendant effect up
to time ¢ in a Galton-Watson process, i.e., ZZ:O X, will
be used as the cascade size at time ¢ for this seed. As a
result, we obtain a sample of the cascade size per seed. To
add more complexity to the model, we allow the parameters
to change over time: py = po +1t* Ay, 0 = 0o + 1 % Ag,
Y = o + t * Ay, where p, oy, v+ are the parameter values
at time point ¢, and A,, Ay, A, are the amount of change
at each time step.

Table 1 shows our parameter settings. We create 9 differ-
ent cascade types, each one containing 10 cascades spanning
a period of seven time units. These cascade types can be
grouped into three big groups — small, medium and large —
based on their mean p in the log-normal distribution. Larger
cascades have a larger variation (larger o) and higher birth
rate . For each of these big groups, we generate three sub-
groups with different evolutionary trends: increasing in size
(inc), decreasing in size (dec), and constant size (const). Fi-
nally, we set At; = 2 time units and Aty = 7 time units.

Results: Figure 2 shows the results of three processes: 0
(Small-inc), 10 (Small-dec) and 60 (Large-inc). We get sim-
ilar results in the other processes. Note that the statistics
of Present and Future are significantly different. Figure 2
shows that the uninformed and k-means forecasts are far
from the truth that the confidence intervals do not fit in our
plot. Over the same scenario SED accurately forecasts the
mean, standard deviation and second moment as shown in
the last three rows of Figure 2.
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Figure 1: Prediction for mixture Poisson processes (Scenario 1) of the future CCDF, average, standard deviation, and second moment
metrics. SED predictions match well the true future distributions and clearly outperform uninformed predictions.
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Figure 2: Prediction for Galton-Watson processes (Scenario 2) of the future CCDF, average, standard deviation, and second moment
metrics. SED predictions again match well the future distributions and are clearly superior to uninformed predictions.



5.2 Forecasting Twitter Cascades

We study the Twitter dataset collected by Yang et al. [39]?,
which contains 467 million Twitter posts from 20 million
users covering a 7-month period from June 1st to December
31st, 2009. The underlying Twitter follower-followee net-
work is obtained from Kwak et al. [18]. The fact that this
Twitter dataset is only a sample of all tweets does not in-
validate the dataset to test SED. SED is designed to make
predictions over general dissemination processes, including
sampled cascading processes such as our Twitter dataset.

Hashtag cascades

We are interested in the diffusion of a hashtag over the Twit-
ter online social network. When an individual uses a hash-
tag in her tweet at a given time, if neither she nor any of
her followees have tweeted the same hashtag for at least a
week prior to the post timestamp, we consider her as a seed.
The timestamp of the first tweet is the timestamp of a node
hashtag “infection”. Once the seed of a cascade has been
identified, we start tracking the cascade over time. Note
that our definition of seed is stringent and we may merge
almost unrelated cascades into a single cascade. From our
RMPP definition, metrics over merged cascade processes are
allowed and, thus, we can be conservative to define indepen-
dent cascades in our dataset.

If a hashtag was not been used for more than a week,
we assume the cascade has ended. The first occurrence of
the same hashtag after that would mark the beginning of a
new cascade. Due to this one-week time window, hashtags
appearing for the first time in the dataset during the first
and last weeks of the monitored time frame are ignored.
The time difference between the first and the last posts of an
information cascade is defined as the duration of the cascade.

Cascade metric

In our case study, we are interested in the distribution of the
number of infected descendants of a seed node for each hash-
tag in Twitter. In particular, given an infected seed node,
we quantify how many of its descendants are “infected” by a
hashtag complying with temporal infection order (infected
children in the branching process must be infected after their
parents). These quantities are obtained from the induced
subgraph of the infected nodes over the original follower-
followee network. Note that a user may have several fol-
lowees who posted the same hashtag before she did. As a
result, simply counting the number of infected descendants
of an infected user does not guarantee the independence be-
tween samples required by our theory. To reduce the effect of
these independence violations, we assume that two infected
parents of an infected node are evenly responsible for the
infection. Under this assumption we propose a normalized
metric as follows.

DEFINITION 5.1. Given a time window length T', the num-
ber of normalized infected descendants (NNID) of a node v

are defined as:

NNID(v) = 0(v — w)
’LUGN;S‘S(’U)

where N (v) and Na,,(v) are the set of infected parents,
and infected descendants of node v within the time window
T respectively; 6(v — v) = 1; §(v — w) is the amount of

’http://snap.stanford.edu/data/twitter7.html
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Time window T=7
Ndescendant(c) ={D,E,H}

8(C>D)

=% Dt=8 (E)t=4 t=13
5(CE)=1
8(COH) =%
H
NNID(C) = 9/4
© / t=11 t=9 t=12

=§(C>D) + 5(CE) + 5(CH)

Figure 3: An example induced subgraphs of infected nodes and
cascade metric. Node infection timestamps are shown in red.

infection spread from mode v to w through all possible time-
ordering paths, and is defined recursively as follows:

ZuGNZ;L(w)ﬁN(};S(v) 6(v — u)
IN, (w)]

We assume that if a node v is infected at time point ¢, then
after time point ¢+ 7, its effect on other nodes will diminish
to zero. Thus, the set of infected descendants of node v
do not contains nodes infected after time ¢t +T. To get a
distribution of NNIDs for a cascade ¢ at a given time point
t, we first extract the induced subgraph Ging = (Vind, Find),
where Vi,q4 is the set of infected nodes of ¢ up to time ¢. In
addition, given two infected nodes u and v, if the edge (u —
v) € E and tinfect(V) —tinfect(v) < T, then (u — v) € Eing,
where i fect(v) is the timestamp at which v is infected in
c. Next, for each seed node of the cascade, i.e., nodes with
no infected parents within a time window 7', we compute its
NNID in Ging using Definition. 5.1. In the end, we obtain
a sample of NNID values, each for a seed in ¢, giving us an
empirical distribution of NNIDs of c.

o(v = w) =

Example 1. An induced subgraph of infected nodes is
shown in Fig. 8. Given a time window T = 7, the descendant
set of C is {D,E,H}; the infected parent sets of D and E
are {B,C} and {C} respectively. Thus, §(C — D) = %, and
6(C — E) = 1. The infection from C can spread to H fol-
lowing two different paths: C - D — H, and C - E — H.
Thus, 6(C — H) = w = %. Finally, the num-
ber of normalized descendants of C is NNID(C) = §(C —
D)+6(C—>E)+6(C—H)=1+14+3=2

Similarly, the set of seed modes with no infected parents
within a time window T = 7 is {A, B, C, F, I}, which
gives a sample of NNIDs {1, %, %, 1,1} accordingly.

Twitter Results

For our tests, we identify the Twitter hashtag cascades that
last at least 8 weeks. Using this dataset, we predict dis-
tribution of NNID (time window 7' = 1 week) at week 8
(Atz) using data from the week 2 (At1). To guarantee that
enough data is available for prediction, we only consider cas-
cades that contain at least 300 infected users after 8 weeks
and at least 30 infected users after one week. In the end, we
are left with 1050 cascades split among the different hash-
tags. Similar to the simulations, besides the CCDF plots,
we use violin plots to compare the predicted statistics (SED
prediction and uninformed prediction) with the bootstrap
statistics from the ground-truth sample at Ats. It is worth
noting that the uninformed prediction simply returns the
average statistics of all cascades in €2 at time Ato.

The forecasting results for twenty four Twitter hashtags
are shown in Figures 4 and 5. SED forecasts frequently out-
perform uninformed and k-means predictions. For exam-
ple, all #FORASARNEY statistics differ considerably from
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those of uninformed and k-means predictions. Whereas SED
accurately forecasts the average CCDF's and all three statis-
tics, as observed by contrasting SED forecast violin plots
against those of the ground truth (Future). For #HINI,
#FIERFOX and #SOUNDCLOUD, the uninformed fore-
casts are rather uncertain of the values of the mean, the
standard deviation, and the second moment, leading to sig-
nificantly lengthened violin plots. On the other hand, the
SED forecasts are, once again, close to the ground truth. In
the case of forecasting the mean of #JQUERY (last column,
second row), the true mean (Future) is so close to the future
average statistics (uninformed prediction), that SED shows
no clear improvement over naive approaches. We include
this #JQUERY example to show that in hard-to-forecast
cases SED does no worse than uninformed and k-means.
Note, however, that for standard deviation and the second
moment of #JQUERY show SED superior to uninformed
and k-means.

It must be noted that the hashtag Twitter dataset that
we are using is noisy (cascades are not fully independent),
making our forecasting task very difficult. Moreover, for
many of the cascades in this dataset, the distribution at week
8 (Atz) is very close to the average prediction (uninformed
prediction). Thus, more challenging datasets and further
research are needed to further validate practical aspects of
our approach.

6. RELATED WORK

Analyzing and predicting network processes in general,
and information cascades in particular, has attracted much
attention in recent years. Multiple works focus on build-
ing theoretical models (e.g., [8,9,38]) of dissemination pro-
cesses. These models capture information diffusion at nodes
through network topology as well as user interests and the
information content [7,27,38]. Wang et al. [35] uses partial
differential equations to predict information diffusion over
both temporal and spatial dimensions. One challenge in
this line of research is the gap between empirical data and
theory. Building parsimonious models is a complex task and
the resulting models are often not vetted against real data.

Most relevant to this paper are the works that predict
cascade popularity. Some of these works predict the volume
of aggregate activity, such as the number of votes on Digg
stories [33], or Twitter hashtag usage [20]. A few works
examine how information cascades grow in size depending
on its content [19,30] and user interests [2]. Other works
make prediction using observations of a cascade during a
given fixed time interval [17,20,34]. The cascade size pre-
diction task is seen as a regression problem in a variety of
works [3,17,33,34]. Matsubara et al. [21] proposes a par-
simonious model that captures the rise and fall patterns in
information diffusion. In lieu of predicting the exact cascade
sizes, many studies bin the cascades sizes and solve a binary
classification problem of whether or not a cascade becomes
viral [11,13,17] or if it doubles in size [4]. Instead of model-
ing the diffusion process, Najar et al. [25] directly predicts
the final propagation state of the information given its initial
state. Outside cascade sizes, Cheng et al. [4] also predicts
structural features of the cascade sample paths. Our goal
is different as we do not perform binary classification of the
evolution of a sample path, or just predict cascade sizes.
We propose a general axiomatic forecasting framework that
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is not tied to a specific set of cascade features or process and
can be used off-the-shelf in any similar forecasting scenario.

Since we predict cascade statistics, our work also relates to
research on fitting empirical data to parsimonious statistical
models [1,5]. While the empirical data can be readily fit-
ted to many known parsimonious models such as power laws,
log-normal, or exponential, there is no guarantee that the fit-
ted model can be used to predict the tail of the distribution
or how the distribution changes with the observation win-
dow. Indeed, our experimental results using Twitter data
show that cascade statistics can significantly change over
time. Thus, the need to go beyond parsimonious models
to design a data-driven statistical approach using axiomatic
forecasting.

7. CONCLUSIONS

In this work we propose SED, a new algorithm for fore-
casting statistics of complex networked processes. SED is
the first of its kind, a (true) model-free approach that uses
axioms rather than models to extract statistical informa-
tion from the data, pointing to a promising new direction
of axiomatic forecasting. More importantly, we provide the
underlying theory behind SED’s model-free axiomatic fore-
casting approach. We test SED on two synthetic datasets
and a large Twitter dataset, showing that SED can forecast
accurately a variety of statistics under complex scenarios.
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