

Unearthing the Relationship Between Graph Neural Networks and Matrix Factorization

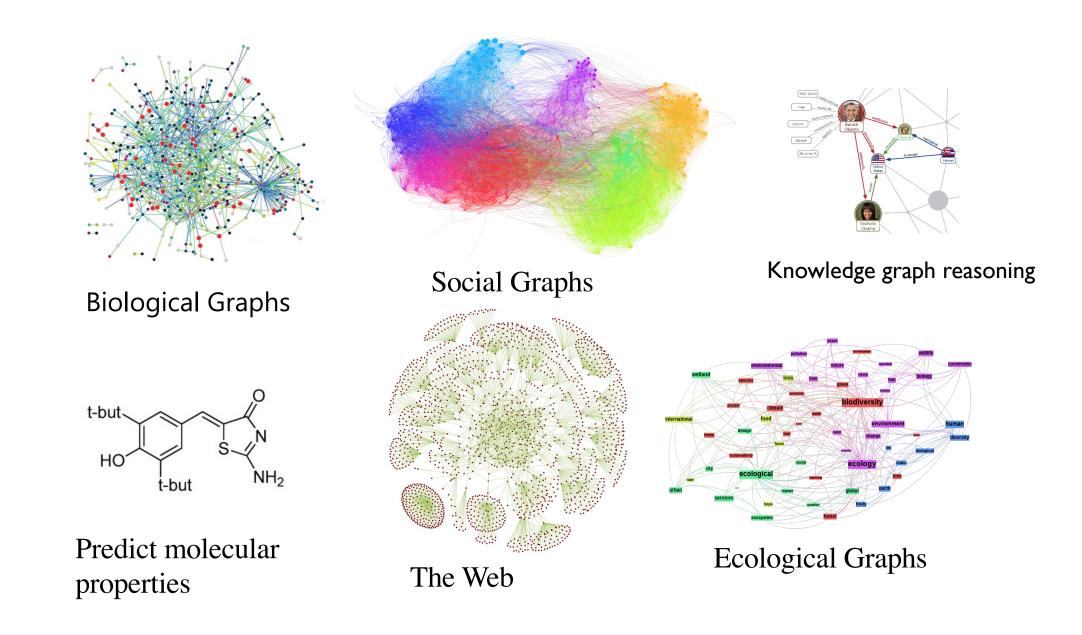
Bruno Ribeiro

Assistant Professor Department of Computer Science Purdue University

Twitter, September 2nd , 2021

Work w/ Bala Srinivasan, Beatrice Bevilacqua, Jianfei Gao, Yangze Zhou, S Chandra Mouli

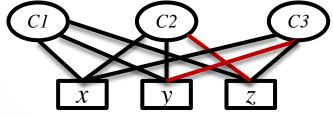
Traditional Graph Tasks



Recent years: Dramatic expansion of graph tasks

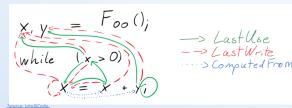
New Graph Tasks in Machine Learning

Logical reasoning

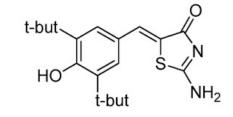


 Scene understanding, world understanding (RL)

Program synthesis



Graph generation (drug discovery)

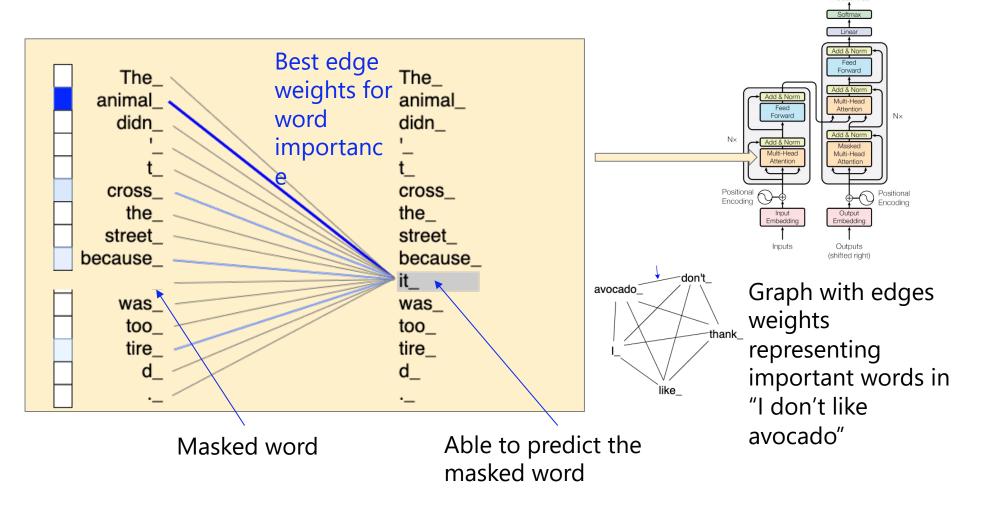


 Natural language processing (Transformers)

Mayer	prophyses in constant of	In Changer			
national (and argument technologies for	B Ments Park, California			
	analysis more	(M.M.)			

Bruno Ribeiro

e.g.: Learning to Represent Programs with Graphs ICLR'18 Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khaden Self-attention is a type of graph neural network

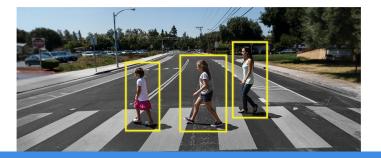


Output Probabilities

What is special about neural networks for graphs?

Tasks Standard Neural Networks Excel

Image/Video Tasks

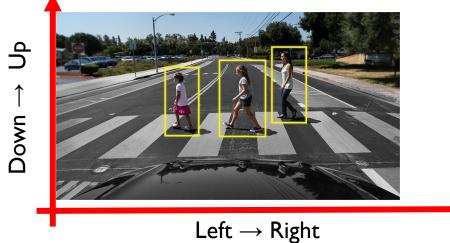


What do these tasks have in common?

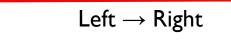
- Text Recognition / Prediction
 - The quick brown fox jumps over the lazy dog
- Speech Recognition

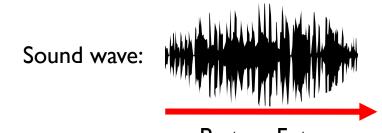
Standard Neural Networks Need a Canonical Orientation

- All training examples have the same orientation
- Input can be represented as a vector (ordered set)



The quick brown fox jumps over the lazy dog





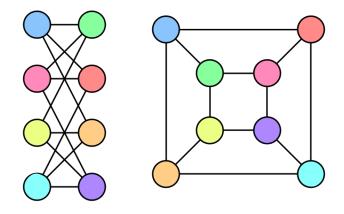
 $Past \rightarrow Future$

Graph Input Has no Clear Canonical Orientation

• Example:

Consider two graphs

• Are these the same graph?

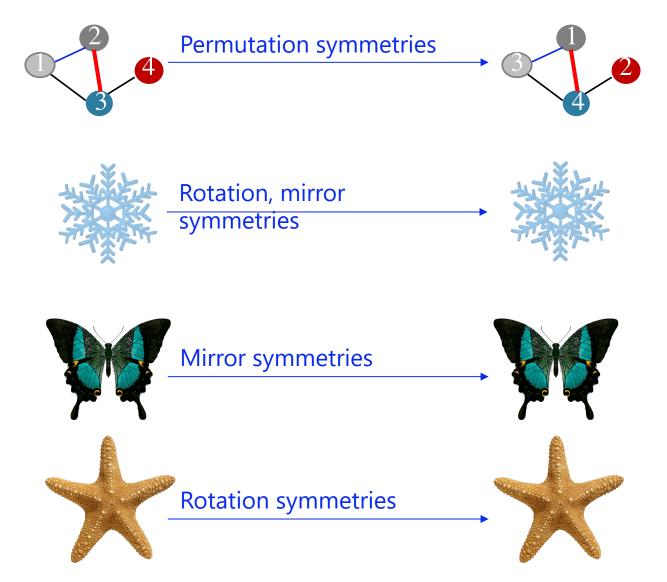


src: Wikipedia

isomorphic graphs = same input

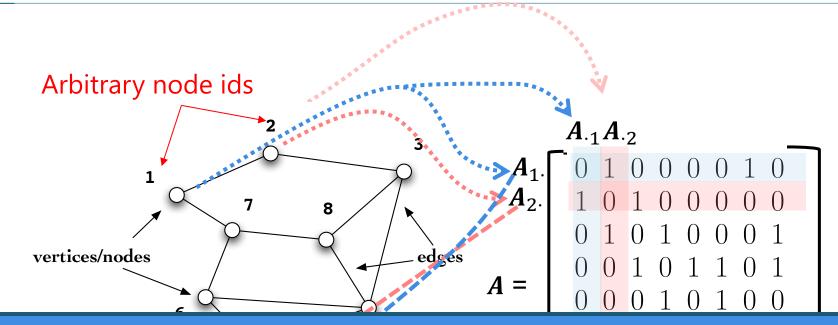
Machine Learning on Graphs is all about Symmetry

Symmetries in nature



Invariance/Equivariance in Graph Representation Learning

Step 1: Encode all graph + node & edge attributes as a matrix (Tensor)



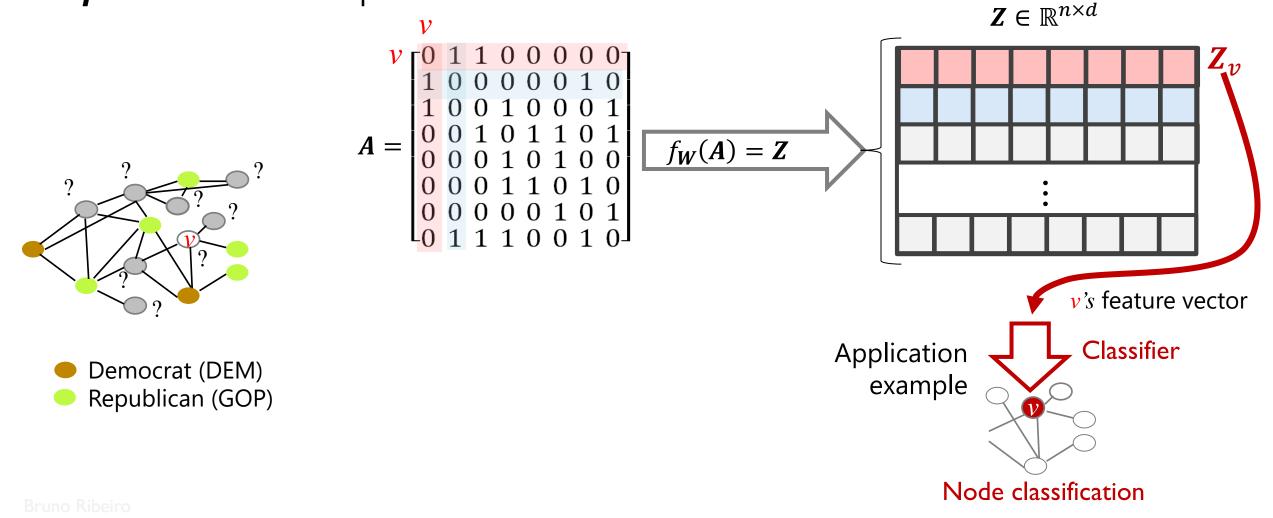
Elements of Graph matrices may be *m*-dimensional (for arbitrary *m*):

- To encode node and edge attributes
- To encode multiple edges (for multiplex networks)

$$\boldsymbol{\pi} = (2,1,3,4,5,6,7,8) \, \boldsymbol{\Box} \qquad \rho_{\pi}(\boldsymbol{A}) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

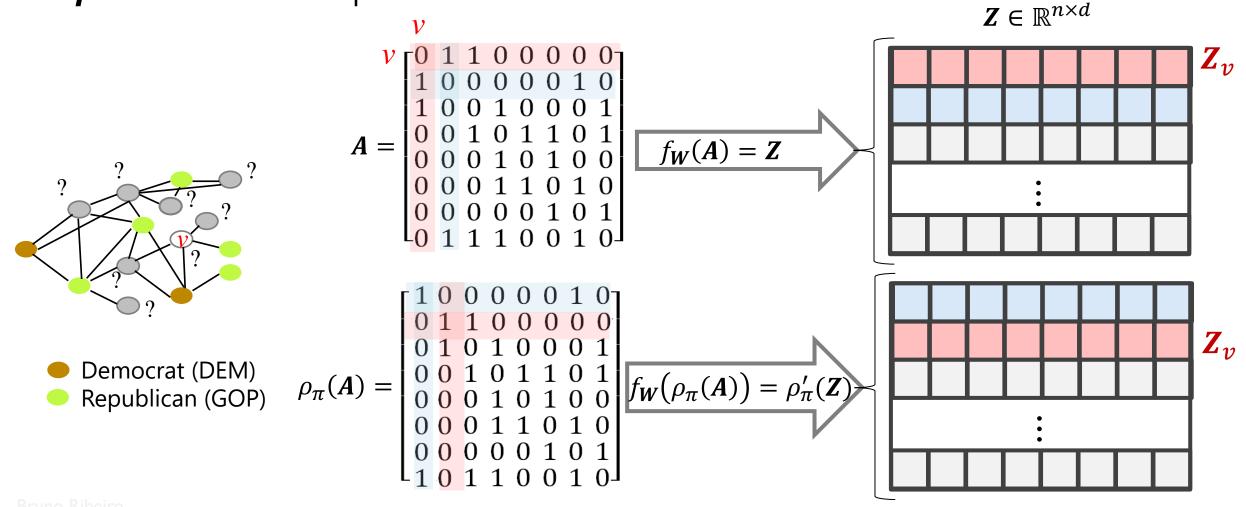
Step 2: Define Representation (e.g. Graph Neural Networks (GNNs))

A GNN f_W(A) is a neural network that learn graph A representations that are equivariant to node permutations



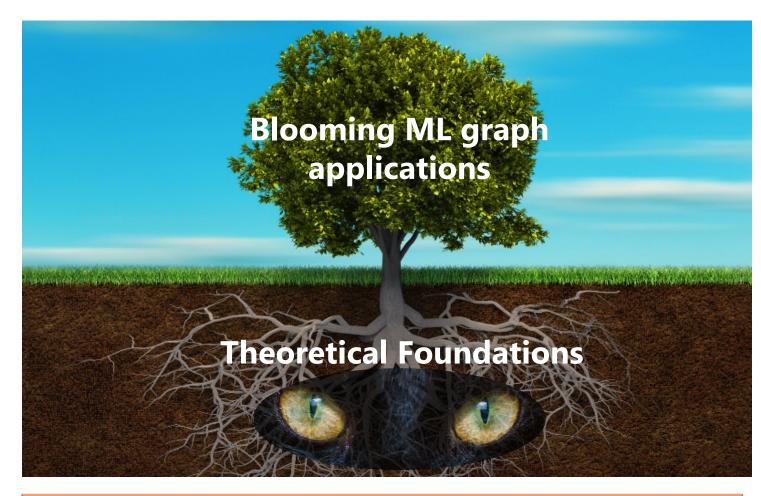
Step 2: Define Representation (e.g. Graph Neural Networks (GNNs))

• A GNN $f_W(A)$ is a neural network that learn graph A representations that are *equivariant* to node permutations



Foundations of Machine Learning on Graphs

Blooming graph applications



This talk: What is lurking in the foundations?

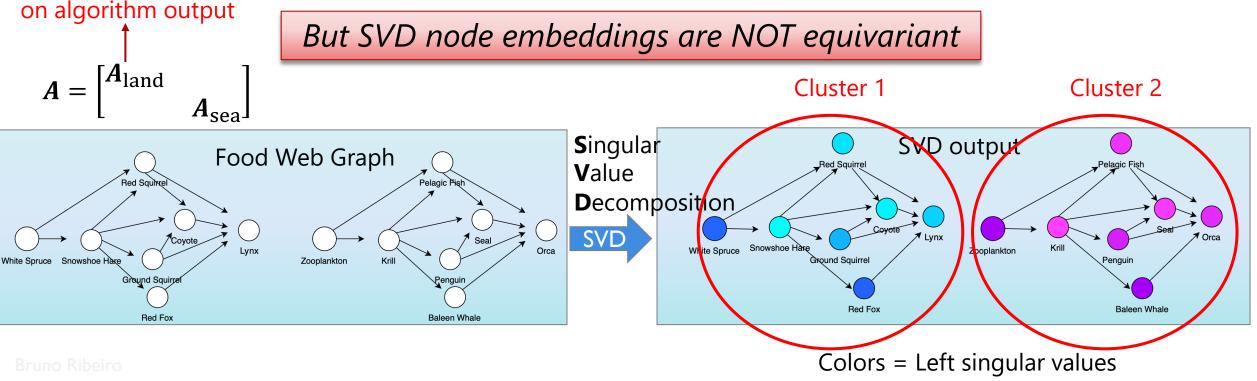
Equivariance to node permutations is the defining characteristic of node embeddings in graph representation learning

What about matrix factorization?

Matrix Factorization

- Node embeddings arguably first defined by the common factors of Spearman (1904) via Singular Value Decomposition (SVD)
- Hotelling (1933) and others defined Principal Component Analysis (PCA)
- 116+ years later, we essentially use the same methods
 - They are very useful!

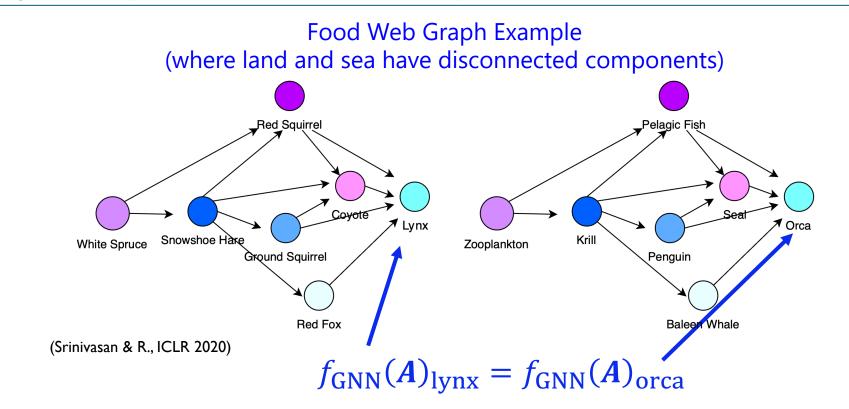
The node order matters



Equivariance to node permutations is the defining characteristic of node embeddings in graph representation learning

What defines graph representation learning then?

A Property of Equivariant Node Representations

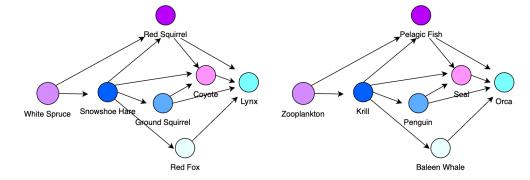


- Equivariant node representations are based on graph structure alone (isomorphic nodes → same representations)
- True for GNNs and true for all equivariant node representations

Types of Node Representations

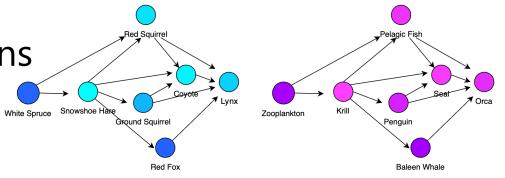
What is the relationship between

 Equivariant node representations (e.g. GNNs)



Structural node representations

 Permutation-sensitive node representations (e.g., SVD's left singular vectors)



Positional node representations

Definition:

- **Positional node representation:** Any permutation-**sensitive** node representation (e.g. matrix factorization)

- Structural node representation: Any permutation-insensitive node representation

(e.g. GNN)

ON THE EQUIVALENCE BETWEEN POSITIONAL NODE EMBEDDINGS AND STRUCTURAL GRAPH REPRESEN-TATIONS

Balasubramaniam Srinivasan Department of Computer Science Purdue University bsriniv@purdue.edu Bruno Ribeiro Department of Computer Science Purdue University ribeiro@cs.purdue.edu

(Srinivasan & R., ICLR 2020)

See (Srinivasan & R., ICLR 2020) for details & notation

Theorem 1. Let $S \subseteq \mathcal{P}^*(V)$ be a set of non-empty subsets of V. Let $Y(S, \mathbf{A}, \mathbf{X}) = (Y(\vec{S}, \mathbf{A}, \mathbf{X}))_{S \in S}$ be a sequence of random variables defined over the sets $S \in S$ of a graph $G = (\mathbf{A}, \mathbf{X})$, such that $Y(\vec{S_1}, \mathbf{A}, \mathbf{X}) \stackrel{d}{=} Y(\vec{S_2}, \mathbf{A}, \mathbf{X})$ for any two jointly isomorphic subsets $S_1, S_2 \in S$ (Definition 7), where $\stackrel{d}{=}$ means equality in their marginal distributions. Then, there exists a measurable function φ such that, $Y(S, \mathbf{A}, \mathbf{X}) \stackrel{a.s.}{=} (\varphi(\Gamma^*(\vec{S}, \mathbf{A}, \mathbf{X}), \epsilon_S))_{S \in S}$, where ϵ_S is a pure source of random noise from a joint distribution $p((\epsilon_{S'})_{\forall S' \in S})$ independent of \mathbf{A} and \mathbf{X} .

*Structural causal model (e.g. noise transfer theorem (Kallenberg 2006))

See (Srinivasan & R., ICLR 2020) for details & notation

Theorem 2 (The statistical equivalence between node embeddings and structural representations). Let $\mathbf{Y}(\mathcal{S}, \mathbf{A}, \mathbf{X}) = (Y(\vec{S}, \mathbf{A}, \mathbf{X}))_{S \in \mathcal{S}}$ be as in Theorem 1. Consider a graph $G = (\mathbf{A}, \mathbf{X}) \in \Sigma$. Let $\Gamma^*(\vec{S}, \mathbf{A}, \mathbf{X})$ be a most-expressive structural representation of nodes $S \in \mathcal{P}^*(V)$ in G. Then,

$$Y(\vec{S}, \mathbf{A}, \mathbf{X}) \perp \!\!\!\!\perp_{\Gamma^{\star}(\vec{S}, \mathbf{A}, \mathbf{X})} \mathbf{Z} | \mathbf{A}, \mathbf{X}, \quad \forall S \in \mathcal{S},$$

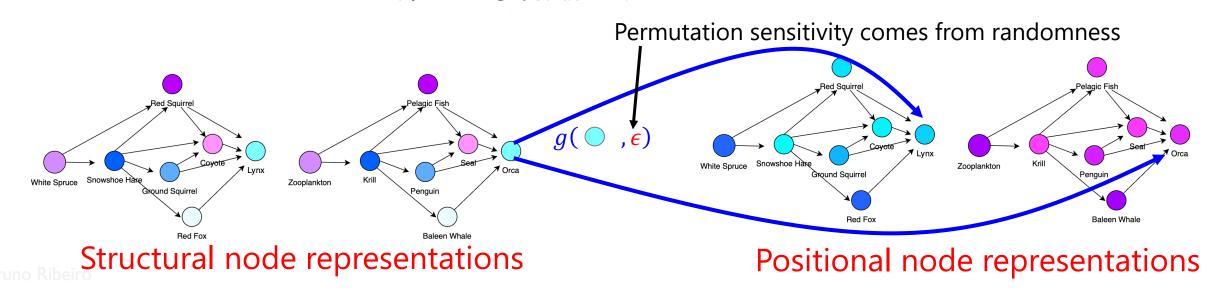
$$\Gamma^{\star}(\vec{S}, \mathbf{A}, \boldsymbol{X}) = \mathbb{E}_{\boldsymbol{Z}^{\star}}[f^{(|S|)}((\boldsymbol{Z}_{v}^{\star})_{v \in S}) | \mathbf{A}, \boldsymbol{X}], \quad \forall S \in \mathcal{S},$$

for some appropriate collection of functions $\{f^{(k)}(\cdot)\}_{k=1,...,n}$.

Structural (node-equivariant) representations \downarrow Positional (permutation-sensitive) node representations

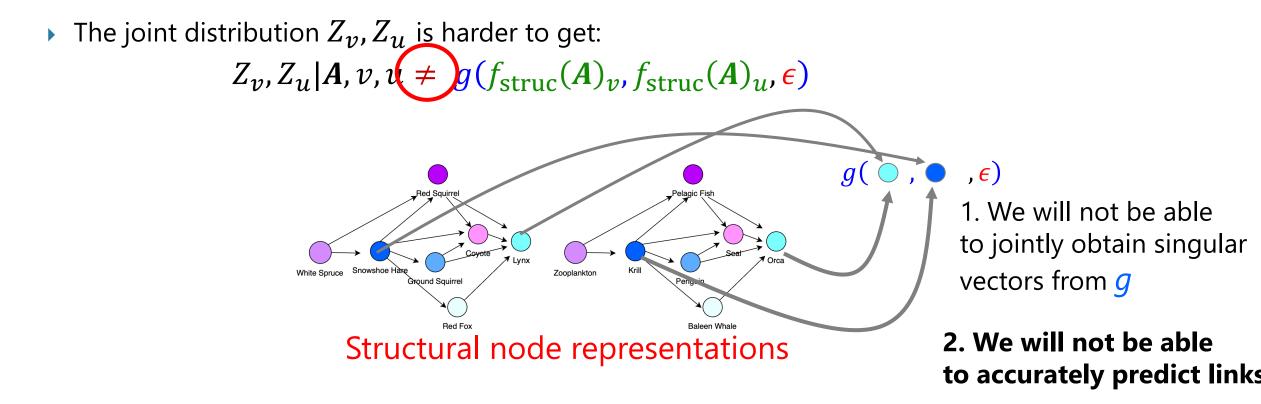
Consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

- If equivariant representation $f_{\text{struc}}(A)_{v}$ is most-expressive, then:
 - For any r.v. Y_{v} , $\exists g$ s.t. $Y_{v}|A, v = g(f_{struc}(A)_{v}, \epsilon),^{*}$ $\epsilon \sim \text{Uniform}(0,1)$
- Example:
 - For the SVD's **left singular vector** Z_v for node v in adjacency matrix A, $\exists g$ s.t. $Z_v | A, v = g(f_{struc}(A)_v, \epsilon)$



More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

• Note $Z_v | A, v = g(f_{\text{struc}}(A)_v, \epsilon)$ is a marginal distribution over the nodes

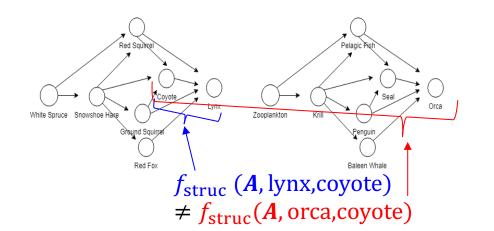


More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

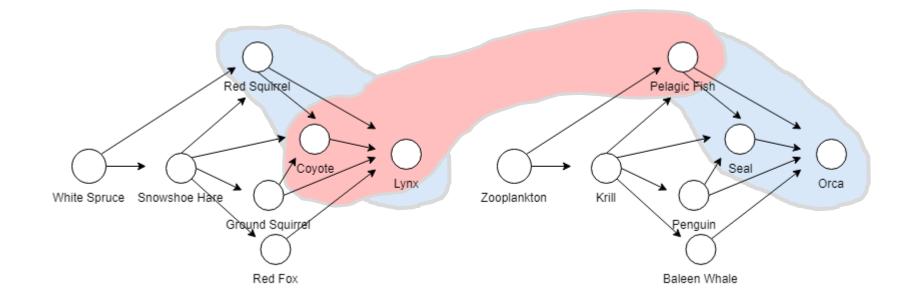
- Predictions over multiple nodes require a joint structural representation of those nodes
- Consequence:
 - To predict a hidden edge Y_{vu} we need a **JOINT** representation
 - Pairwise node representation equivariant over edges, not nodes

 $Y_{vu}|A, v, u = g_2(f_{\text{struc}}(A, v, u), \epsilon), \quad \epsilon \sim \text{Uniform}(0, 1)$

Joint k-node representations to predict properties of k nodes



Example: Joint structural k-node representations



 $f_{\text{struct}}^{(3)}(A)_{\text{squirrel,coyote,lynx}} = f_{\text{struct}}^{(3)}(A)_{\text{fish,seal,orca}} \neq f_{\text{struct}}^{(3)}(A)_{\text{fish,coyote,lynx}}$

Positional node representations \Rightarrow Structural representations

Averaging: Positional node representations \Rightarrow Structural representations

Positional representations of k nodes are to most-expressive k-node structural representations

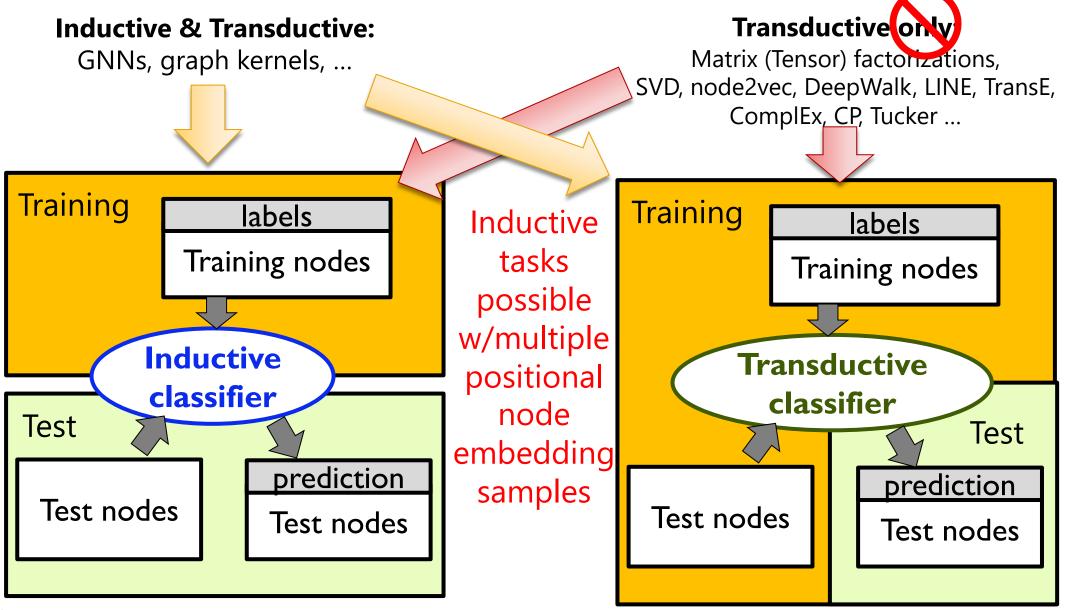
as Samples of a distribution are to sufficient statistics of the distribution

Statistical implications (an analogy)

- Suppose $Z_1, Z_2, ... \sim \text{Normal}(\mu, \sigma)$, sampled independently
- Assume $f(Z_1, Z_2, ...)$ is a most-expressive permutation-invariant representation Then, $\hat{\mu}, \hat{\sigma} \iff f(Z_1, Z_2, ...)$, where $\hat{\mu}, \hat{\sigma}$ are sufficient statistic of $Z_1, Z_2, ...$
- Using a single sample Z_1 we cannot estimate $\hat{\sigma}$

Same happens with positional node representations: Single sample not good enough for some tasks

Example: Inductive vs transductive classifiers on graphs

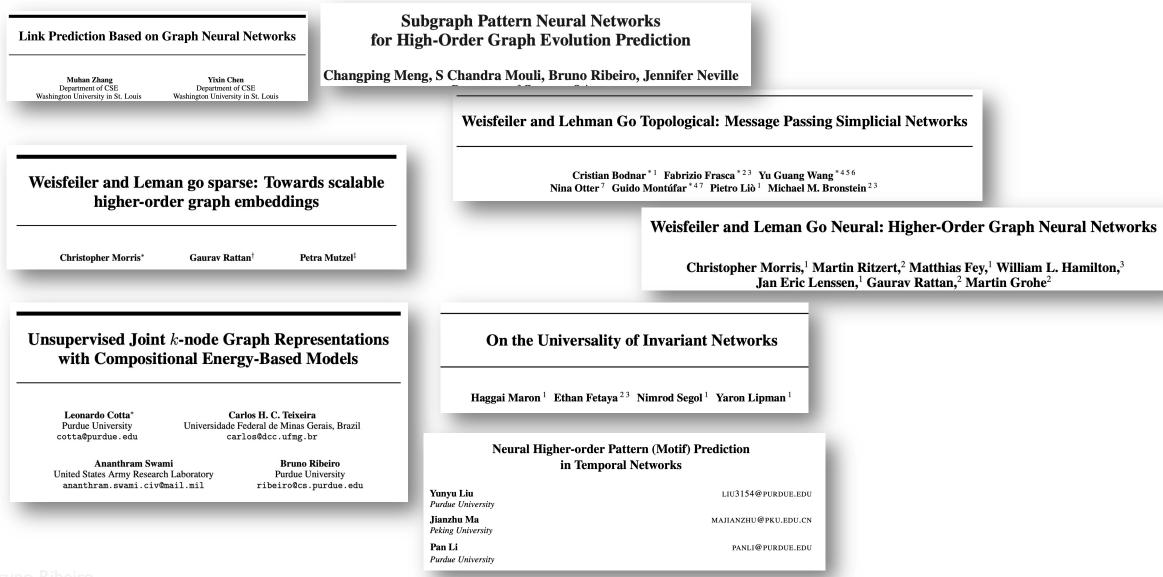


This theoretical framework explains results in the literature

- Use of **unique node IDs as node features** in **GNNs** breaks equivariance
 - Make representations depend on node ID permutation (i.e., positional)
 - With unique IDs, GNN node representation is positional and predicts links well

Variational Graph Auto-Encoders	Position-aware Graph Neural Networks	On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs	Rethinking Graph Transformers wi Attention	hinking Graph Transformers with Spectral Attention		
Thomas N. Kipf Max Welling University of Amsterdam University of Amsterdam T. H. Kipf @uva.nl Canadian Institute for Advanced Research (CIFAR) H. Veilling@uva.nl H. Veilling@uva.nl	Jiaxuan You ¹ Rex Ying ¹ Jure Leskovec ¹	. Hejie Cui ^{1,*} , Zijie Lu ^{2,*} , Pan Li ³ , and Carl Yang ^{1,†}	Devin Kreuzer * McGill University, Mila Montreal, Canada devin, kreuzer%nail, ncgill, ca			
A General	ization of Transformer Network	ss to Graphs Benchmarking Graph Neural Networks	Dominique Beaini * William L. Hamilton Valence Discovery McGill University, Mila Montreal, Canada Montreal, Canada dominique@valencediscovery.com wih@cs.mcgill.ca	Vincent Létourneau University of Ottawa Ottawa, Canada vletour20uottawa.ca		
	Vijay Prakash Dwivedi, [¶] Xavier Bress Science and Engineering, Nanyang Technologic		Profescio Tomon Waters I. Donosty Montral, Canada prudenci odvalance di scovery . cc	Neural Bellman-Ford Netv Neural Network Framewo	-	
Can also build more	e expressive e	quivariant representation	S	Zhaocheng Zhu ^{1,2} , Zuobai Zhang ^{1,2} , Lou	is-Pascal Xhonneux ^{1,2} , Jian Tang ^{1,3,4}	
Through position	al \Rightarrow structura	l representations (via ave	raging pos	sitional repres	sentations)	
	Building powerful and equivariant g networks with structural message		A Collective Learning Framework to Boost GNN Expressiveness for Node Classification 2021			a 1
Relational Pooling for Graph Rej	presentations 2019	Clément Vignac, Andreas Loukas, and Pascal Frossard		Mengyue Hang ¹ Jennifer Neville ¹ Bruno Ribero ¹		And mar more
Ryan L. Murphy ¹ Balasubramaniam Srinivasan ² Vina	ayak Rao ¹ Bruno Ribeiro ²		Ca	n Graph Neural Networks	Count Substructures?	
		How hard is to distinguish grapl with graph neural networks?		Zhengdao Chen New York University z=1216@nyu.edu	Lei Chen New York University 1c3909@nyu.edu	
		Andreas Loukas École Polytechnique Fédérale Lausanne	2020	Soledad Villar Johns Hopkins University soledad.villar@jhu.edu	Joan Bruna New York University bruna@cims.nyu.edu	

Quest to build joint structural representations



Positional or Structural?

- Positional or Structural is the most important characteristic of a graph representation learning model
 - Positional \Rightarrow Sensitive to node ID permutations
 - Can predict properties of any subset of nodes but prediction (actually, intermediate representations) should be averaged over multiple samples
 - Structural \Rightarrow Equivariant to node ID permutations
 - Can only predict properties of a **node** or the **entire graph**, but nothing* in-between
- Everything else is less important to know:
 - Model expressiveness is not as important as type of node embedding
 - If GNN is message-passing or not is not as important as type of node embedding

* In certain tasks, with large subset sizes, the reconstruction conjecture kicks in and it may be possible using smaller k-node representations Bruno Ribeiro

Now that we understand node representation uses and limitations... ... are there other fundamental limitations in graph representation learning?

Predicting the future of a temporal graph can be just observational

Gao & R., On the Equivalence Between Temporal and Static Equivariant Graph Representations for Observational Predictions, arXiv:2103.07016, 2021.

Temporal Graph Representation Learning is Observational

(Gao & R., 2021) describes the theory of temporal graph representation learning

- Modeling time evolution unrelated to modeling cause and effect
- Classifies temporal graph representation learning:
 - 1. Time-and-graph methods
 - 2. Time-then-graph methods
 - In general, **time-and-graph** and **time-then-graph** are equally expressive
 - Using standard GNNs, time-then-graph are more expressive than time-and-graph

Time-then-graph more expressive than Time-and-graph (when using GNNs)

Time-and-graph

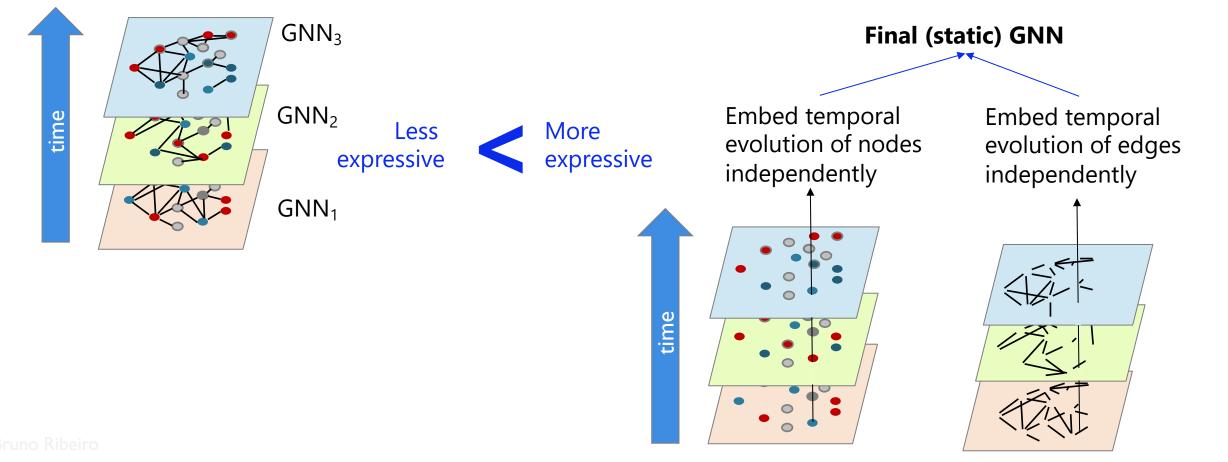
- Encodes how node embeddings evolve over time
- Majority of existing works

Time-then-graph

 Embedding encodes time evolution of nodes and edges independently

PURDUE

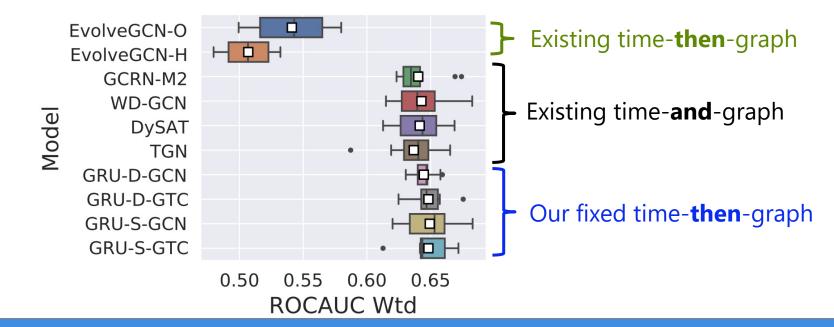
 Impose permutation-equivariance via final static graph



Example: COVID-19 Observational Predictions

Task: Predict if a node will get infected

- **Input:** Temporal graph and epidemic evolution (discretized in time)
- **Output:** Probability a node gets infected in next step



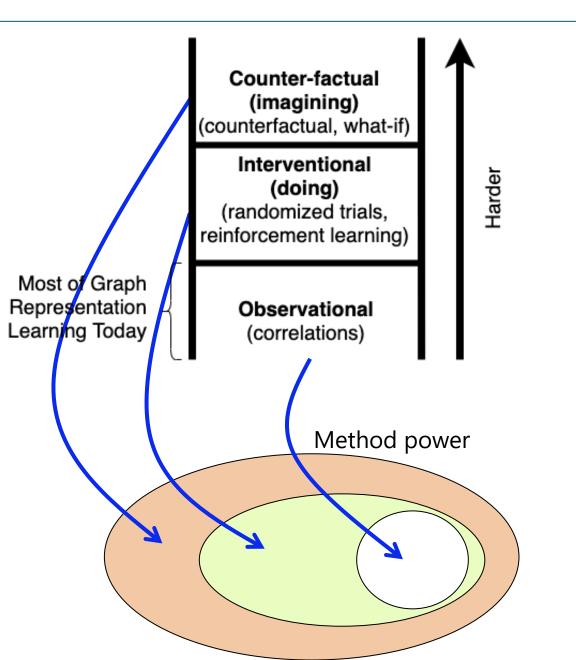
Shows Temporal-GNNs predictions can be purely observational: Predicts infections without modeling how virus spreads over the graph

Take-home: Temporal GNNs are not designed to learn causal models (even if just Granger causality)

The Ladder of Causality

- Graph Representation Learning today is designed for **observational tasks**
- The hierarchy of causality: Lower-levels methods incapable of higher-level tasks
 - **Counterfactual** methods can perform **all** tasks
 - Interventional methods can also perform observational tasks
 - Observational methods can only perform observational tasks
- Rest of the talk:

Counterfactual Graph Representation Learning



Counterfactual Graph Representation Learning: Two Findings

- 1. Out-of-distribution generalization from single training environment is possible via G-invariances
 - But counterfactual G-invariances are stronger (more invariant) than G-invariance

```
NEURAL NETWORKS FOR LEARNING COUNTERFAC-
TUAL G-INVARIANCES FROM SINGLE ENVIRONMENTS
```

S Chandra Mouli Department of Computer Science Purdue University **Bruno Ribeiro** Department of Computer Science Purdue University

2. Out-of-distribution generalization w.r.t. graph sizes without test examples

• Possible if GNN is coupled with a stable property as graphs grow

Size-Invariant Graph Representations for Graph Classification Extrapolations

Beatrice Bevilacqua^{*1} Yangze Zhou^{*2} Bruno Ribeiro¹

Counterfactual Graph Representation Learning: Two Findings

- 1. Out-of-distribution generalization from single training environment is possible via G-invariances
 - But counterfactual G-invariances are stronger (more invariant) than G-invariance

NEURAL NETWORKS FOR LEARNING COUNTERFAC-TUAL G-INVARIANCES FROM SINGLE ENVIRONMENTS

S Chandra Mouli Department of Computer Science Purdue University **Bruno Ribeiro** Department of Computer Science Purdue University

2. Out-of-distribution generalization w.r.t. graph sizes without test examples

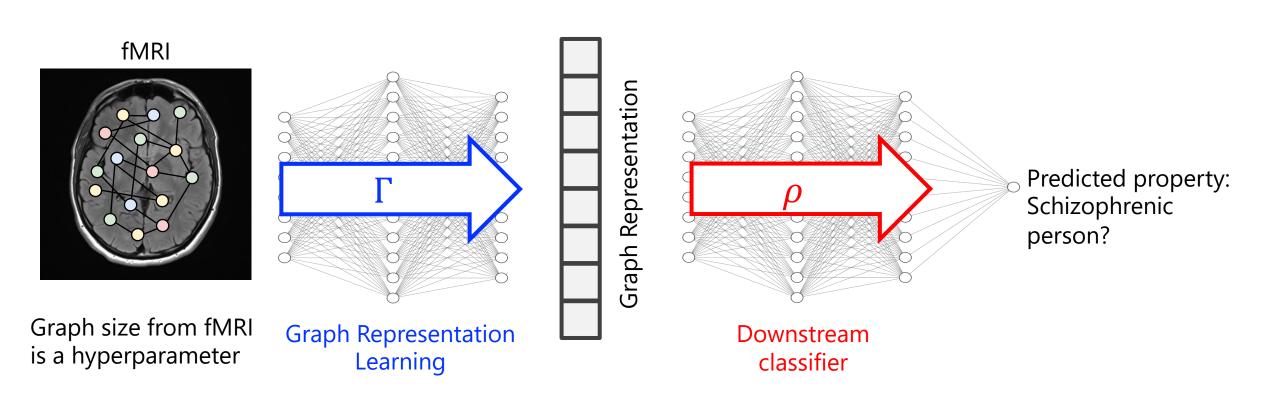
• Possible if GNN is coupled with a stable property as graphs grow

Size-Invariant Graph Representations for Graph Classification Extrapolations

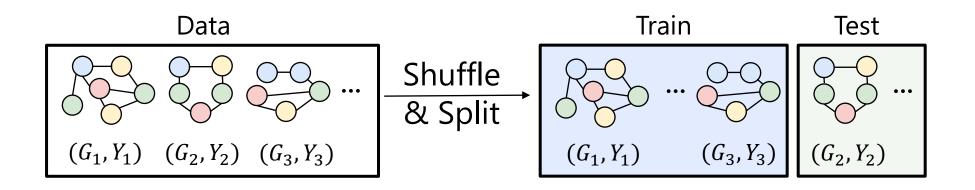
Beatrice Bevilacqua^{*1} Yangze Zhou^{*2} Bruno Ribeiro¹

Out-of-distribution Generalization w.r.t. Graph Sizes

Setting: Graph Classification Task



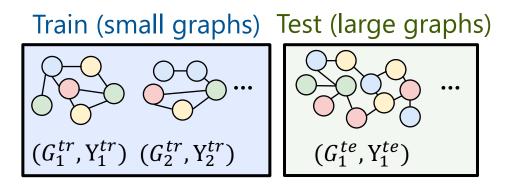
Graph Representation Learning generally assumes: Train distribution = Test distribution



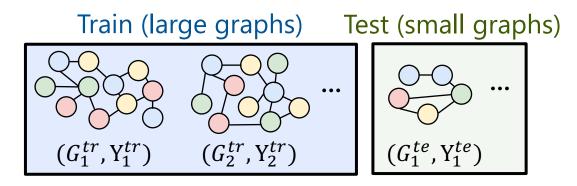
What if test data were out of distribution (OOD)?

Extrapolation to Different Graph Sizes

What if train has **small** graphs but test has **large** graphs?



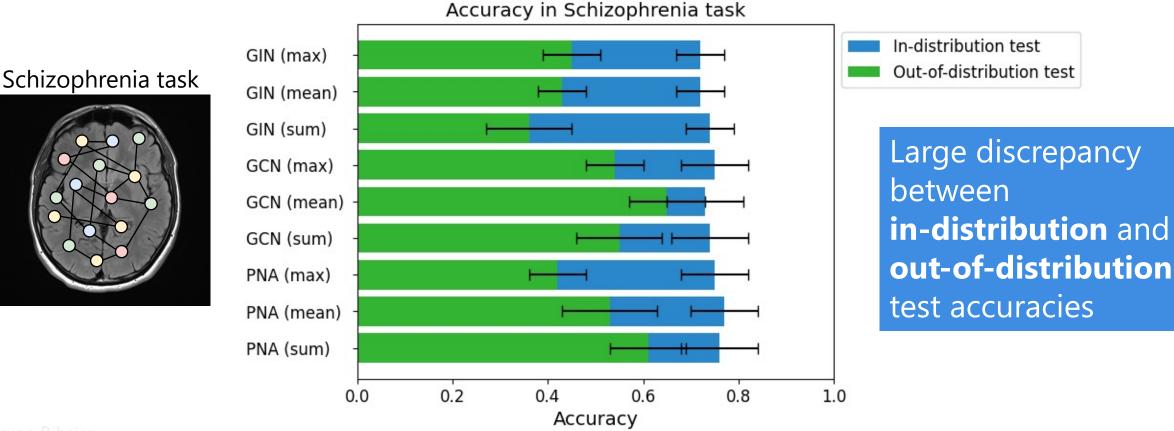
What if train has **large** graphs but test has **small** graphs?



Size Extrapolation with GNNs?

Do Graph Neural Networks (GNNs) extrapolate?

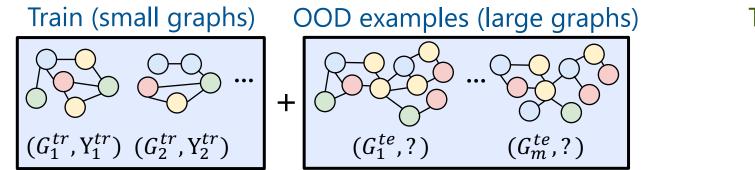
- \Rightarrow GNNs can be applied to graphs of any size
- ⇒ But may not extrapolate between **small (train)** and **large (test)** graphs:

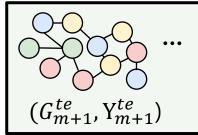


How to Extrapolate in Graph Classification Tasks?

How do we extrapolate beyond the training distribution?

- If OOD examples available, data-driven methods work:
- Domain Adaptation
- Covariate Shift Adaptation
- Few-shot Learning
- Data Augmentation
- Invariant Risk-Minimization (IRM)*





Data-driven methods:

Pros	Cons
 Can use existing GNN methods Don't assume a mechanism for distribution shift 	 Must have OOD examples during training

What if no access to OOD data?

Must define a causal mechanism

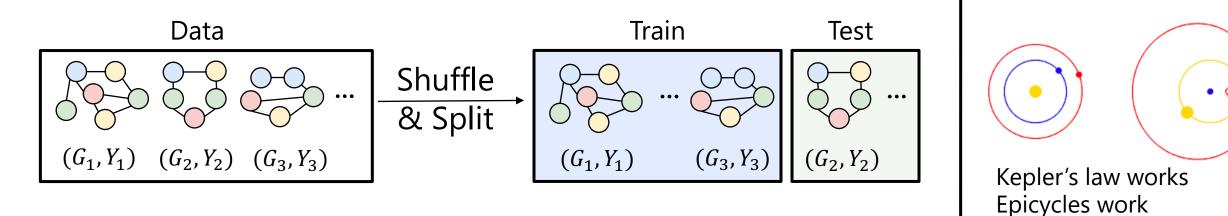
Next: Observational vs Causal (Counterfactual) modeling

Planetary Motion Equivalent

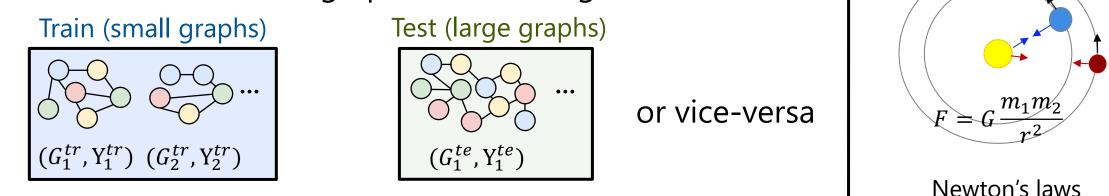
Differences between Observational and Counterfactual Tasks

Observational Task:

Predicting unseen examples of training distribution



Counterfactual Task (since we have no access to test data): What would be the label of a graph if it were larger?



What would be the labels if the graphs were larger?

Assuming a Graph Mechanism

Q: What would be the label if the graph were infinitely large?

 $N \to \infty$

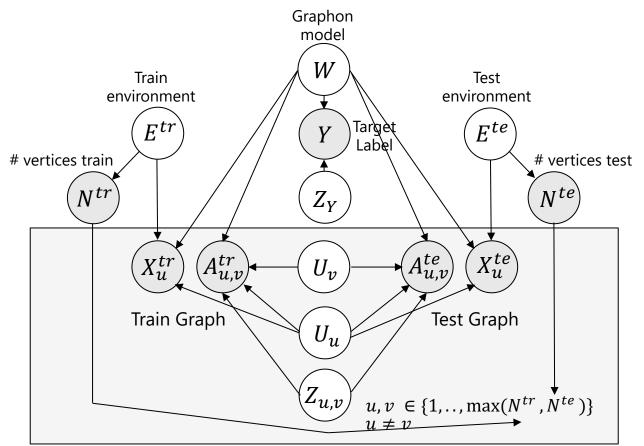
Lovász & Szegedy (2006) shows that for some graph families (graphons) there are features invariant to size

Build GNN based on these features

Paper: <u>https://proceedings.mlr.press/v139/bevilacqua21a</u> Slides: <u>https://www.cs.purdue.edu/homes/ribeirob/pdf/Bevilacqua_Zhou_ICML2021_slides.pdf</u>

Assumes Causal Mechanism

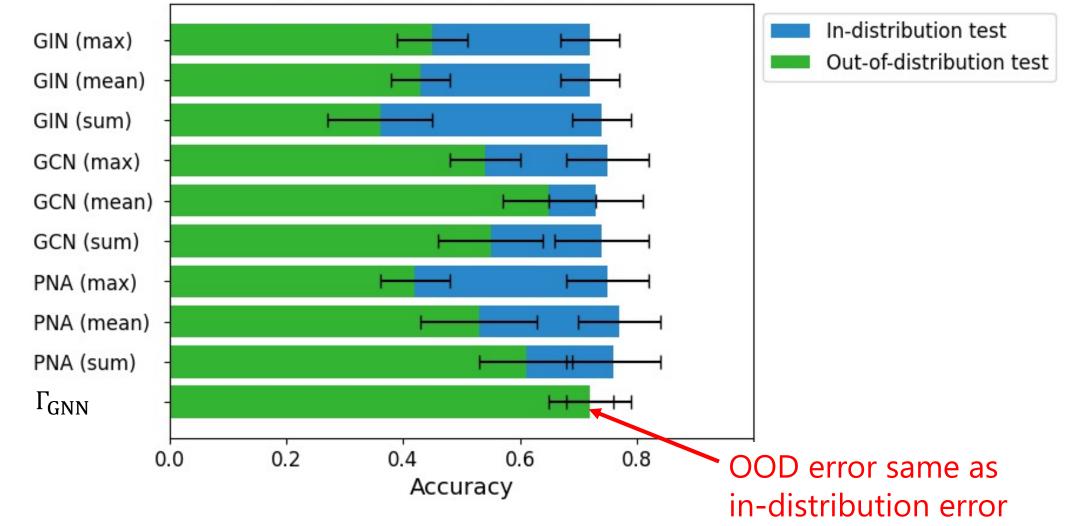
- Structural Causal Model:
 - Graph label Y is a function of the graph model W + some random noise
 - Graph size $N^{tr}(N^{te})$ is a function of "environment" $E^{tr}(E^{te})$ only
 - Train (test) graphs are generated by W and $E^{tr}(E^{te})$ with same random noises



OOD Error in Schizophrenia Task

• Can Lovász & Szegedy's inspired GNN (Γ_{GNN}) extrapolate OOD?

Accuracy in Schizophrenia task



Take-home

Graph representation learning:

Thank you!

- Fundamental difference:
 - Positional vs Structural node representation
- Structural representations have limitations in joint predictions
- Positional representations rely on Monte Carlo averaging for some tasks
- Graph representation learning methods are observational not causal
 - OOD without test data examples requires a counterfactual model
 - There are no universal OOD graph representations

[®]brunofmr

