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Traditional Graph Tasks

Knowledge graph reasoning
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Recent years: Dramatic expansion of graph tasks



New Graph Tasks in Machine Learning
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» Logical reasoning
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https://arxiv.org/abs/1711.00740

Example of Graph Application in Language:
Text Generation / Translation / Comprehension
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» Self-attention is a type of graph neural network
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What is special about neural networks for graphs?
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Tasks Standard Neural Networks Excel

» Image/Video Tasks

What do these tasks have in common?

» Text Recognition / Prediction
» The quick brown fox jumps over the lazy dog

» Speech Recognition

WWQ :> quick brown fox
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Standard Neural Networks Need a Canonical Orientation

» All training examples have
the same orientation

» Input can be represented as
a vector (ordered set)

Left — Right
The quick brown fox jumps over the lazy dog

Left — Right

Sound wave:

—
Past — Future
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Graph Input Has no Clear Canonical Orientation

» Example:
Q O
Consider two graphs
* Are these the same graph? O O

Isomorphic graphs = same input
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Machine Learning on Graphs is all about Symmetry

Symmetries in nature

Permutation symmetries

v

©

Rotation, mirror
symmetries

v

Mirror symmetries

" Rotation symmetries
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Invariance/Equivariance in Graph Representation Learning
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Step 1: Encode all graph + node & edge attributes as a matrix (Tensor)

Arbitrary node ids g

Elements of Graph matrices may be m-dimensional (for arbitrary m):
* TJo encode node and edge attributes
* To encode multiple edges (for multiplex networks)

0 ( D 0 (
00101101
m=(21345678) prAD=100010100
00011010
00000101
01110010
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Step 2: Define Representation (e.g. Graph Neural Networks (GNNs))

» A GNN fy,(A4) is a neural network that learn graph A representations that are
equivariant to node permutations

v Z € R™
vi0 110000 07 1 Z,
10000010
10010001
100101101
4=100010100( fw@=2 ><
00011010
00000101
0111001 0-

: v’s feature vector
Application Classifier
@® Democrat (DEM) pzxample @

Republican (GOP)
O

Node classification
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Step 2: Define Representation (e.g. Graph Neural Networks (GNNs))

» A GNN fy,(A4) is a neural network that learn graph A representations that are
equivariant to node permutations

v Z € R™?
0110000 O0; 1 Z,
10000010
10010001
_100101101
A=100010100f fwA=2 ><
00011010
00000101
01110010
10000010
01100000
5 OEM) 01010001 Z,
® Democrat 00101101 —,
Republican (GOP) P =15001010 ollw(ez(A)=pr(Z
00011010
00000101
110110010
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Foundations of Machine Learning on Graphs

Blooming graph applications

Blooming ML graph
.- applications. 2=
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This talk: What is lurking in the foundations?
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Equivariance to node pe
node embeddings in graph ré

| s is the defining characteristic of
\ 240N learning

What about matrix factorization?




PURDUE

IIIIIIII

Matrix Factorization

R " » Node embeddings arguably first defined by the common factors of Spearman (1904) via
Singular Value Decomposition (SVD)

(D Hotelling (1933) and others defined Principal Component Analysis (PCA)

» 116+ years later, we essentially use the same methods

o They are very useful!
The node order matters

on algorithm output

But SVD node embeddings are NOT equivariant

A= [Ala“d Cluster 1 Cluster 2
Asea

QQN\‘ Value
Decom
Qf}‘\ O mF

Nood Wet? Singular

White Spruce  Snowshoe H

Colors = Left singular values
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Equivariance to node pe
node embeddings in graph rog

s is the defining characteristic of
on learning

What defines graph representation learning then?
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A Property of Equivariant Node Representations

Food Web Graph Example
(where land and sea have disconnected components)

ed Squirrel Pelagic Fish

Red Fox

foNN (A)lynx = foNN(A)orca

* Equivariant node representations are based on graph structure
alone (isomorphic nodes — same representations)

White Spruce  Snowshoe H Zooplankton

(Srinivasan & R., ICLR 2020)

* True for GNNs and true for all equivariant node representations
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Types of Node Representations

What is the relationship between

» Equivariant node representations
(e.g. GNNs)

and

» Permutation-sensitive node representations./ S
(e.g., SVD's left singular vectors)

White Spruce  Snowshoe H

Positional node representations
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Definition:

- Positional node representation: Any permutation-sensitive node representation
(e.g. matrix factorization)

- Structural node representation: Any permutation-insensitive node

representation
(e.g. GNN)
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ON THE EQUIVALENCE BBTWEEN POSITIONAL NODE
EMBEDDI UCTURAL GRAPH REPRESEN-

TATIONS
Balasubramaniam Srinivasan Bruno Ribeiro
Department of Computer Science Department of Computer Science
Purdue University Purdue University
bsriniv@purdue.edu ribeiro@cs.purdue.edu

(Srinivasan & R., ICLR 2020)
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See (Srinivasan & R., ICLR 2020) for details & notation

Theorem 1. Let S C P*(V) be a set of non-empty subsets of V. Let Y(S,A, X) =

(Y(g A, X))scs be a sequence of random variables defined over the sets S € S of a graph

G = (A, X), such that Y (S, A, X) £ Y (S5, A, X) for any two jointly isomorphic subsets

S1,S5 € S (Definition 7), where 2 means equality in their marginal distributions. Then, there

exists a measurable function o such that, Y (S,A, X) = @(F*(g, A X) es))secs, where eg is a
pure source of random noise from a joint distributio €s')vs cs) independent of A and X .

*Structural causal model (e.g. noise transfer theorem (Kallenberg 2006))
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See (Srinivasan & R., ICLR 2020) for details & notation

Theorem 2 (The statistical equivalence between node embeddings and structural representations).
Let Y (S,A, X) = (Y(S,A, X))ses be as in Theorem 1. Consider a graph G = (A, X)) € 3. Let
['*(S, A, X)) be a most-expressive structural representation of nodes S € P*(V') in G. Then,

Y(S,A, X) L. s5ax) ZIA X, VSES,

for any node embedding matrix Z that satisfies Definition 12, where A 1lg C means A
is independent of C' given B. The above is a consequence of the fact that, for any embed-
ding distribution p(Z|A, X), there exists a G-equivariant function ¢ such that p(Z|A, X) =
J.o((T* (v, A, X))vev, €)dP(€), where € is a pure noise source and P its associated Lebesgue
measure. Finally, V(A, X) € 3, there exists a most-expressive node embedding Z*|A, X such that,

(S, A, X)=Ez [fID((Z4),e9)|A, X], VSeES,

for some appropriate collection of functions { f*)(-)}1.—
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Structural (node-equivariant) representations
U

Positional (permutation-sensitive) node representations



Structural representations = Positional node representations = i

Consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

» If equivariant representation f,:-,c(4), iIs most-expressive, then:

o Foranyrv. Y, 3g s.t.
Y |4, v = 9(fstruc(A)y, €),* € ~ Uniform(0,1)

» Example:
> For the SVD's left singular vector Z, for node v in adjacency matrix 4, 3g s.t.

Zy|lA, v = g(fstruc(A)v: €)

Permutation sensitivity comes from randomness

Structural node representations Positional node representations
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Structural representations = Positional node representations HORDUE

More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)
» Note Z,|A,v = g(fsiruc(A)y, €) is a marginal distribution over the nodes

» The joint distribution Z,,, Z, is harder to get:
Zv: Zu |Ar U, @ (fstruc (A)v» fstruc (A)u: E)

g(O,® ,¢e)

1. We will not be able
to jointly obtain singular

vectors from g

2. We will not be able
to accurately predict link:
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Structural representations = Positional node representations = i

More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

» Predictions over multiple nodes require a joint structural representation of those
nodes

» Consequence:
o To predict a hidden edge Y,,,, we need a JOINT representation
- Pairwise node representation equivariant over edges, not nodes

Yould, v,u = go(fsiruc(4,v,u),€), € ~ Uniform(0,1)

Joint k-node representations to predict properties of k nodes

Coyote Seal
3 Orca
wshoe Haxe (ql
Graynd Squil
RedFox ~  \  Baleen) Whale I

fstruc (4, lynx,coyote
# fstruc(4, orca,coyote)
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Example: Joint structural k-node representations

» Example: Structural representations of 3 nodes

Red Squirel Pelagic Figh

Coyote O Seal O
Lynx Orca
White Spruce Snowshoe Hasge Zooplankton Krill
Greund Squir enguin
Red Fox Baleen Whale

(3) _ £(3) (3)
fstruct(A)squirrel,coyote,lynx — fstruct(A)fish,seal,orca 2 fs,truct(A)fish,coyote,lynx
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Positional node representations = Structural representations



Averaging: Positional node representations = Structural PURDUE
representations

» Positional representations of k nodes are to most-expressive
k-node structural representations
as
Samples of a distribution are to sufficient statistics of the distribution

Statistical implications (an analogy)
» Suppose Z1, Z,, ... ~ Normal(u, o), sampled independently

» Assume f(Z4,Z,,...) Is @ most-expressive permutation-invariant representation
Then, f,6 & f(Z4,Z,,...), where i, & are sufficient statistic of Z;, Z, ...

» Using a single sample Z; we cannot estimate &

Same happens with positional node representations:

Single sample not good enough for some tasks
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Example: Inductive vs transductive classifiers on graphs R

Inductive & Transductive: Transductive @
GNNs, graph kernels, ... Matrix (Tensor) factoMzgtions,

SVD, node2vec, DeepWalk, LINE, TransE,
ComplEx, CP, Tucker ...

labels Inductive | Training labels
Training nodes tasks Training nodes

possible —
A w/multiple
Inductive Transductive

Training

: positional )
oot \_ classifier /‘ node classifier ’
embedding est

prediction samples prediction
Test nodes Test nodes Test nodes

Test nodes
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This theoretical framework explains results in the literature

» Use of unique node IDs as node features in GNNs breaks equivariance
> Make representations depend on node ID permutation (i.e., positional)

> With unique IDs, GNN node representation is positional and predicts links well

oqs Rethinking Graph Transformers with Spectral
On Positional and Structural Node Features g Grap Attention P

for Graph Neural Networks on Non-attributed Graphs

Variational Graph Auto-Encoders Position-aware Graph Neural Networks

_ Thomas N. Kipf Jiaxuan You' Rex Ying' Jure Leskovec'
University of Amsterdam Universi terdam

e | A e 12k 3 1t
T.N.Kipf@uva.nl Canadian Institute for Advanced Research (CIFAR) ' Hejie Cui'*, Zijie Lu®*, Pan Li’, and Carl Yang
M.Wellinguva.n) ——

A Generalization of Transformer Networks to Graphs

L

Benchmarking Graph Neural Networks

Vijay Prakash Dwivedi,! Xavier Bresson!

q . S . P srod 4
School of Computer Science and Engineering, Nanyang Technological University, Singapore vxfa‘;‘?,:é‘a‘ﬁ?,!?&'??&‘sg cha)tg:;:fljng:hlj(éﬁ'ﬂ;u,sg = Neural Bellman-Ford Networks: A General Graph
Neural Network Framework for Link Prediction

Zhaocheng Zhu"z, Zuobai Zhang"z, Loujs-Pascal Xhonneuxl'z, Jian Tang'*“

> Can also build more expressive equivariant representations
- Through positional = structural representations (via averaging positional representations)

A Collective Learning Framework to Boost GNN Expressiveness

Building powerful and equivariant graph neural foE Nide Clissificition 2 O 2 1

networks with structural message-passing

2 O 2 O Mengyue Hang ' Jennifer Neville! Bruno Ribero '

And many
more

Relational Pooling for Graph Representations 2 O 'I 9

Clément Vignac, Andreas Loukas, and Pascal Frossard

Ryan L. Murphy ! Balasubramaniam Srinivasan? Vinayak Rao! Bruno Ribeiro?

o . - . Can Graph Neural Networks Count Substructures?
How hard is to distinguish graphs
with graph neural networks? S—— 2 02 1 —
New York University New York University
zc1216@nyu.edu 1c3909@nyu. ed

Soledad Vil Joan Bruna
Johns Hopkins University New York Universit
Andreas Loukas soledad.villar@jhu.edu

ersity
bruna@cims.nyu.edu

Ecole Polytechnique Fédérale Lausanne
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Quest to build joint structural representations

Subgraph Pattern Neural Networks

Link Prediction Based on Graph Neural Networks for High-Order Graph Evolution Prediction
Muhan Zhang Yixin Chen Changping Meng, S Chandra Mouli, Bruno Ribeiro, Jennifer Neville
Department of CSE Department of CSE - S St
‘Washington University in St. Louis ‘Washington University in St. Louis

Weisfeiler and L.ehman Go Topological: Message Passing Simplicial Networks

Cristian Bodnar ! Fabrizio Frasca“2? Yu Guang Wang "43¢

Weisfeiler and Leman g0 sparse: Towards scalable Nina Otter” Guido Montiifar **’7 Pietro Lio ! Michael M. Bronstein 23
higher-order graph embeddings

Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks

Christopher Morris* Gaurav Rattan’ Petra Mutzel*
Christopher Morris,! Martin Ritzert,>2 Matthias Fey,! William L. Hamilton,
Jan Eric Lenssen,! Gaurav Rattan,” Martin Grohe?
Unsupervised Joint k-node Graph Representations On the Universality of Invariant Networks

with Compositional Energy-Based Models

Haggai Maron' Ethan Fetaya?® Nimrod Segol' Yaron Lipman '

Leonardo Cotta* Carlos H. C. Teixeira
Purdue University Universidade Federal de Minas Gerais, Brazil
cotta@purdue.edu carlos@dcc.ufmg.br
Neural Higher-order Pattern (Motif) Prediction
Ananthram Swami Bruno Ribeiro in Temporal Networks
United States Army Research Laboratory Purdue University
ananthram.swami.civ@mail.mil ribeiro@cs.purdue.edu

Yunyu Liu LIU3154@PURDUE.EDU
Purdue University

Jianzhu Ma MAJIANZHU @PKU.EDU.CN
Peking University

Pan Li PANLI@PURDUE.EDU
Purdue University
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Classifying Graph Neural Networks

» Positional or Structural?

- Positional or Structural is the most important characteristic of a graph representation
learning model

- Positional = Sensitive to node ID permutations

+ Can predict properties of any subset of nodes but prediction (actually, intermediate
representations) should be averaged over multiple samples

- Structural = Equivariant to node ID permutations
 Can only predict properties of a node or the entire graph, but nothing* in-between

o Everything else is less important to know:
+ Model expressiveness is not as important as type of node embedding
- If GNN is message-passing or not is not as important as type of node embedding

* In certain tasks, with large subset sizes, the reconstruction conjecture kicks in and it may be possible using smaller k-node representations
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Now that we understand node representation uses and limitations...
... are there other fundamental limitations in graph representation learning?
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Predicting the future of a temporal graph can be just observational

A Gao & R,, On the Equivalence Between Temporal and Static Equivariant Graph Representations for
L\ Observational Predictions, arXiv:2103.07016, 2021.
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Temporal Graph Representation Learning is Observational

(Gao & R, 2021) describes the theory of temporal graph representation learning

» Modeling time evolution unrelated to modeling cause and effect

» Classifies temporal graph representation learning:
1. Time-and-graph methods

2. Time-then-graph methods

In general, time-and-graph and time-then-graph are equally expressive

o Using standard GNNs, time-then-graph are more expressive than
time-and-graph
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Time-then-graph more expressive than Time-and-graph (when using GNNs)

» Time-and-graph » Time-then-graph

- Encodes how node embeddings evolve over > Embedding encodes time evolution of
nodes and edges independently

time : o :
. . o Impose permutation-equivariance via
> Majority of existing works final static graph
GNN3; Final (static) GNN
GNN, Embed temporal Embed temporal
Less More : :
exoressive < exDressive evolution of nodes evolution of edges
P P independently independently
GNN; I i

4
~

N
)

ST
L —~
‘s
|
/

|
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Example: COVID-19 Observational Predictions |

Task: Predict if a node will get infected

- Input: Temporal graph and epidemic evolution (discretized in time)
- Output: Probability a node gets infected in next step

EvolveGCN-O — I Exicti '
xisting time-then-graph
EvolveGON-H  HIEH } sting time-then-grap
GCRN-M2 HD -
_ WD-GCN I Existing ti
— Existing time-and-graph
o DySAT - sting time-and-grap
§ TGN - HO—
GRU-D-GCN n
GRU-D-GTC —E - : .
GRU-S-GCN s T Our fixed time-then-graph
GRU-S-GTC - BH
0.50 0.55 0.60 0.65

ROCAUC Wtd
Shows Temporal-GNNs predictions can be purely observational:
Predicts infections without modeling how virus spreads over the graph

Take-home: Temporal GNNs are not designed to learn causal models
(even if just Granger causality)
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The Ladder of Causality

Counter-factual
(imagining)
(counterfactual, what-if)

» Graph Representation Learning today is
designed for observational tasks

Interventional
» The hierarchy of causality: Lower-levels (doing)
. . (randomized trials,
methods incapable of higher-level tasks

reinforcement learning)
- Counterfactual methods can perform all tasks
Most of Graph

> Interventional methods can also perform Repregentation
observational tasks Learnjhg Today

- Observational methods can only perform
observational tasks

Harder

Observational
(correlations)

Method power
» Rest of the talk:
Counterfactual Graph Representation Learning
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Counterfactual Graph Representation Learning: Two Findings

1. Out-of-distribution generalization from single training environment is possible via G-invariances
> But counterfactual G-invariances are stronger (more invariant) than G-invariance

NEURAL NETWORKS FOR LEARNING COUNTERFAC-
TUAL G-INVARIANCES FROM SINGLE ENVIRONMENTS

S Chandra Mouli Bruno Ribeiro
Department of Computer Science Department of Computer Science
Purdue University Purdue University

2. Out-of-distribution generalization w.r.t. graph sizes without test examples
o Possible if GNN is coupled with a stable property as graphs grow

Size-Invariant Graph Representations for Graph Classification Extrapolations

Beatrice Bevilacqua“! Yangze Zhou*? Bruno Ribeiro !
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Counterfactual Graph Representation Learning: Two Findings

1. Out-of-distribution generalization from single training environment is possible via G-invariances
o But counterfactual G-invariances are stronger (more invariant) than G-invariance

NEURAL NETWORKS FOR LEARNING COUNTERFAC-
TUAL G-INVARIANCES FROM SINGLE ENVIRONMENTS

S Chandra Mouli Bruno Ribeiro
Department of Computer Science Department of Computer Science

Purdue University Purdue University

2. Out-of-distribution generalization w.r.t. graph sizes without test examples
o Possible if GNN is coupled with a stable property as graphs grow

Size-Invariant Graph Representations for Graph Classification Extrapolations

Beatrice Bevilacqua“! Yangze Zhou*? Bruno Ribeiro !
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Out-of-distribution Generalization w.r.t. Graph Sizes
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Setting: Graph Classification Task

c
Q
IS
-
0 :
O Predicted property:
o Schizophrenic
o person?
L
o
©
G)
Graph size from fMRI Graph Representation Downstream
IS a hyperparameter Learning classifier

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations



Current Graph Classification Approach
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Graph Representation Learning generally assumes:
Train distribution = Test distribution

Data

FS 8385

(Glr Yl) (GZJ YZ) (63; YB)

Shuffle

Train

Test

& Split

(G1, Y1) (G3,Y3)

(GZI YZ)

What if test data were out of distribution (OOD)?

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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Extrapolation to Different Graph Sizes

What if train has small graphs but test has large graphs?
Train (small graphs) Test (large graphs)

(61" Y1) (G37,Y7") (G1°,Y1%)

What if train has large graphs but test has small graphs?
Train (large graphs)  Test (small graphs)

Y1) (GFY) (G1° Y1°)

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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Size Extrapolation with GNNs?

Do Graph Neural Networks (GNNSs) extrapolate?
= GNNs can be applied to graphs of any size

= But may not extrapolate between small (train) and large (test) graphs:

Accuracy in Schizophrenia task

GIN (max) B In-distribution test
; ; B Qut-of-distribution test
Schizophrenia task T
GIN (sum) .
ST Tinaxi Large discrepancy
SENEsR) between
GCN (sum) in-distribution and
PNA (max) out-of-distribution
PNA (mean) test accuracies
PNA (sum)
0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations



How to Extrapolate in Graph Classification Tasks?

IIIIIIIII

How do we extrapolate beyond the training distribution?

If OOD examples available, data-driven methods work:
Domain Adaptation

Covariate Shift Adaptation

Few-shot Learning

Data Augmentation

Invariant Risk-Minimization (IRM)*

v

Train (small graphs)  OOD examples (large graphs)

(61" Y1) (G2, Y7") (G1%7) (G, ?)

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Test (large graphs)

(Grv1 Y1)




How to Extrapolate in Graph Classification Tasks?

PURDUE
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Data-driven methods:

Pros

Cons

>

>

Can use existing GNN methods

Don’'t assume a mechanism for
distribution shift

>

Must have OOD examples during
training

What if no access to OOD data?

>

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Must define a causal mechanism

Next: Observational vs Causal (Counterfactual) modeling




Differences between Observational and Counterfactual Tasks

PURDUE

Observational Task:

Predicting unseen examples of training distribution

Data

(Gl' Yl) (Gzr YZ) (Gg; YS)

Shuffle

Train

Test

& Split

(G1, Y1) (G3,Y3)

(Gz; YZ)

Planetary Motion
Equivalent

Kepler's law work
Epicycles work

Counterfactual Task (since we have no access to test data):
What would be the label of a graph if it were larger?

Train (small graphs)

é§§§>é%§3m

(G, Y1) (G5, Y;")

Test (large graphs)

(G, Y1°)

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

C%%UC% Oor vice-versa

Newton's laws
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What would be the labels if the graphs were larger?

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations



PURDUE

IIIIIIIIII ®

Assuming a Graph Mechanism

Q: What would be the label if the graph were infinitely large?

N — oo

Lovasz & Szegedy (2006) shows that for some graph
families (graphons) there are features invariant to size

Build GNN based on these features

Paper: https://proceedings.mlr.press/v139/bevilacqua2ia
Slides: https://www.cs.purdue.edu/homes/ribeirob/pdf/Bevilacqua_Zhou ICML2021_slides.pdf

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations


https://proceedings.mlr.press/v139/bevilacqua21a
https://www.cs.purdue.edu/homes/ribeirob/pdf/Bevilacqua_Zhou_ICML2021_slides.pdf

PURDUE

U NI V E

Assumes Causal Mechanism

» Structural Causal Model:

o Graph label Y is a function of the graph model W + some random noise
> Graph size N (N®®) is a function of “environment” E*" (E¢) only

- Train (test) graphs are generated by W and E*" (E*¢) with same random noises

Graphon
model

Test
environment

Train
environment

# vertices test

Nte

# vertices train

Ntr

v
@ u,v €{1,..,max(N,Nt®)}
U
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OQOD Error in Schizophrenia Task

PURDUE

UNTIVEIZRSIT Y.

» Can Lovasz & Szegedy's inspired GNN (I'cyn) extrapolate OOD?

GIN (max)
GIN (mean)
GIN (sum)
GCN (max)
GCN (mean)
GCN (sum)
PNA (max)
PNA (mean)
PNA (sum)

I'GNN

Accuracy in Schizophrenia task

B In-distribution test
B Qut-of-distribution test

0.0 0.2 0.4 0.6 0.8
Accuracy
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OQOD error same as
In-distribution error



IIIIIIIIII

Take-home

» Graph representation learning:
> Fundamental difference:
- Positional vs Structural node representation

o Structural representations have limitations in joint
predictions

o Positional representations rely on Monte Carlo
averaging for some tasks

» Graph representation learning methods are

observational not causal Graph CRigaFr)Qsentation
- OOD without test data examples requires a theory Leg .
counterfactual model 3¢ J

> There are no universal OOD graph representations

W @brunofmr

DK ribeiro@cs.purdue.edu 00D Graph
Extrapolations

Causalit

Thank you!



