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Social Graphs
Biological Graphs

Predict molecular 
properties The Web Ecological Graphs

Knowledge graph reasoning
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} Logical reasoning

C1 C2 C3

x y z

} Program synthesis

Source: IntelliCode.
e.g.: Learning to Represent Programs with Graphs ICLR'18
Miltiadis Allamanis, Marc Brockschmidt, Mahmoud Khademi

Credit: CLVR task 
dataset

} Graph generation (drug discovery)

} Natural 
language 
processing 
(Transformers)

} Scene understanding, 
world understanding 
(RL)
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} Self-attention is a type of graph neural network

Masked word Able to predict the 
masked word

Best edge 
weights for 
word 
importanc
e

Graph with edges 
weights 
representing 
important words in 
“I don’t like 
avocado”
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} Image/Video Tasks

} Text Recognition / Prediction
} The quick brown fox jumps over the lazy dog

} Speech Recognition

Img: NVIDIA

quick brown fox 
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} All training examples have
the same orientation

} Input can be represented as
a vector (ordered set)

The quick brown fox jumps over the lazy dog

D
ow

n 
→

U
p

Left → Right

Left → Right

Past → Future

Sound wave:
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} Example:

isomorphic graphs = same input

Consider two graphs
• Are these the same graph?

src: Wikipedia
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2

3
41

Symmetries in nature

Rotation symmetries

Mirror symmetries

Permutation symmetries 1

4
23

Rotation, mirror 
symmetries
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Adjacency Matrix

S.V.N. Vishwanathan: Graph Kernels, Page 3

1

2
3

4

5

6

7 8

vertices/nodes edges

Undirected Graph G(V, E)

A =

2

6666666664

0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0
1 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0

3

7777777775

sub-matrix of A = a subgraph of G

𝑨!⋅
𝑨⋅!𝑨⋅#

𝑨#⋅

𝝅 = (2,1,3,4,5,6,7,8)

Arbitrary node ids

𝜌$ 𝑨 =

𝑨 =

Elements of Graph matrices may be m-dimensional (for arbitrary m): 
• To encode node and edge attributes
• To encode multiple edges (for multiplex networks)
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} A GNN 𝑓𝑾 𝑨 is a neural network that learn graph 𝑨 representations that are 
equivariant to node permutations

Classifier

v

Node classification

Democrat (DEM)
Republican (GOP)

?

?

?

?
?

?
?

?

v

v’s feature vector

Application 
example

𝒁/

𝑨 =

v
v

…
𝒁 ∈ ℝ%×'

𝑓𝑾 𝑨 = 𝒁
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} A GNN 𝑓𝑾 𝑨 is a neural network that learn graph 𝑨 representations that are 
equivariant to node permutations

𝒁/

Democrat (DEM)
Republican (GOP)

?

?

?

?
?

?
?

?

v

𝑨 =

v
v

…
𝒁 ∈ ℝ%×'

𝑓𝑾 𝑨 = 𝒁

𝜌$ 𝑨 = 𝑓𝑾 𝜌$ 𝑨 = 𝜌$) (𝒁)
𝒁/

…
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Blooming ML graph 
applications

Blooming graph applications

Theoretical Foundations

This talk: What is lurking in the foundations?
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What about matrix factorization?
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} Node embeddings arguably first defined by the common factors of Spearman (1904) via 
Singular Value Decomposition (SVD)

} Hotelling (1933) and others defined Principal Component Analysis (PCA)

} 116+ years later, we essentially use the same methods
◦ They are very useful!

SVD output

SVD

Food Web Graph Singular 
Value 
Decomposition

Cluster 1 Cluster 2

But SVD node embeddings are NOT equivariant
𝑨 = 𝑨*+,-

𝑨./+

The node order matters 
on algorithm output

Colors = Left singular values
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What defines graph representation learning then?
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𝑓011 𝑨 2345 = 𝑓011 𝑨 6789

• Equivariant node representations are based on graph structure 
alone (isomorphic nodes → same representations)

• True for GNNs and true for all equivariant node representations

Food Web Graph Example 
(where land and sea have disconnected components)

(Srinivasan & R., ICLR 2020)
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What is the relationship between

} Equivariant node representations 
(e.g. GNNs)

and

} Permutation-sensitive node representations 
(e.g., SVD’s left singular vectors)

Structural node representations

Positional node representations
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(Srinivasan & R., ICLR 2020)
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See (Srinivasan & R., ICLR 2020) for details & notation

*Structural causal model (e.g. noise transfer theorem (Kallenberg 2006))
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See (Srinivasan & R., ICLR 2020) for details & notation
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Consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

} If equivariant representation 𝑓.0123 𝑨 4 is most-expressive, then:
◦ For any r.v. 𝑌4, ∃𝑔 s.t.

𝑌4|𝑨, 𝑣 = 𝑔 𝑓.0123 𝑨 4, 𝜖 ,*        𝜖 ∼ Uniform(0,1)

} Example:
◦ For the SVD’s left singular vector 𝑍4 for node v in adjacency matrix 𝑨, ∃𝑔 s.t.

𝑍4|𝑨, 𝑣 = 𝑔 𝑓.0123 𝑨 4, 𝜖

Structural node representations Positional node representations

𝑔 , 𝜖

Permutation sensitivity comes from randomness
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More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

} Note 𝑍4|𝑨, 𝑣 = 𝑔 𝑓.0123 𝑨 4, 𝜖 is a marginal distribution over the nodes

} The joint distribution 𝑍/, 𝑍< is harder to get:
𝑍/, 𝑍<|𝑨, 𝑣, 𝑢 ≠ 𝑔 𝑓=>7?8 𝑨 /, 𝑓=>7?8 𝑨 <, 𝜖

Structural node representations

𝑔 , , 𝜖
1. We will not be able 
to jointly obtain singular 
vectors from g

2. We will not be able 
to accurately predict links
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More consequences of Theorems 1 & 2 of (Srinivasan & R., ICLR 2020)

} Predictions over multiple nodes require a joint structural representation of those 
nodes

} Consequence: 
◦ To predict a hidden edge 𝑌45 we need a JOINT representation
� Pairwise node representation equivariant over edges, not nodes

𝑌/<|𝑨, 𝑣, 𝑢 = 𝑔@ 𝑓=>7?8 𝑨, 𝑣, 𝑢 , 𝜖 ,     𝜖 ∼ Uniform(0,1)

𝑓!"#$% (𝑨, lynx,coyote)
≠ 𝑓!"#$%(𝑨, orca,coyote)

Joint k-node representations to predict properties of k nodes
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} Example: Structural representations of 3 nodes

𝑓<=>?@=
(A) (𝐴)<B?C>>DE,@FGF=D,EGHI = 𝑓<=>?@=

(A) (𝐴)JC<K,<DLE,F>@L ≠ 𝑓<=>?@=
(A) (𝐴)JC<K,@FGF=D,EGHI
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Statistical implications (an analogy)
} Suppose 𝑍!, 𝑍#, … ~ Normal(𝜇, 𝜎), sampled independently

} Assume 𝑓(𝑍!, 𝑍#, … ) is a most-expressive permutation-invariant representation
Then,  P𝜇, P𝜎 ⟺ 𝑓 𝑍!, 𝑍#, … , where P𝜇, P𝜎 are sufficient statistic of 𝑍!, 𝑍#, …

} Using a single sample 𝑍! we cannot estimate P𝜎

Ø Positional representations of k nodes are to most-expressive 
k-node structural representations

as
Samples of a distribution are to sufficient statistics of the distribution

Same happens with positional node representations: 
Single sample not good enough for some tasks
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Test

Training nodes
labels

Test nodes
prediction

Test nodes

Inductive 
classifier

Training

Training nodes
labels

Test nodes
prediction

Test nodes

Transductive
classifier

Training

Test

Transductive only:
Matrix (Tensor) factorizations,

SVD, node2vec, DeepWalk, LINE, TransE,
ComplEx, CP, Tucker …

Inductive & Transductive:
GNNs, graph kernels, …

Inductive 
tasks 

possible 
w/multiple 
positional

node 
embedding 

samples
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} Use of unique node IDs as node features in GNNs breaks equivariance 
◦ Make representations depend on node ID permutation (i.e., positional)

◦ With unique IDs, GNN node representation is positional and predicts links well

◦ Can also build more expressive equivariant representations 
� Through positional ⇒ structural representations (via averaging positional representations)

And many 
more

2019 2020

2021

2021

2020
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} Positional or Structural?

◦ Positional or Structural is the most important characteristic of a graph representation 
learning model

� Positional ⟹ Sensitive to node ID permutations
� Can predict properties of any subset of nodes but prediction (actually, intermediate 

representations) should be averaged over multiple samples

� Structural ⟹ Equivariant to node ID permutations
� Can only predict properties of a node or the entire graph, but nothing* in-between

◦ Everything else is less important to know:
� Model expressiveness is not as important as type of node embedding
� If GNN is message-passing or not is not as important as type of node embedding

* In certain tasks, with large subset sizes, the reconstruction conjecture kicks in and it may be possible using smaller k-node representations
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Gao & R., On the Equivalence Between Temporal and Static Equivariant Graph Representations for 
Observational Predictions, arXiv:2103.07016, 2021.
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(Gao & R., 2021) describes the theory of temporal graph representation learning

} Modeling time evolution unrelated to modeling cause and effect

} Classifies temporal graph representation learning:
1. Time-and-graph methods
2. Time-then-graph methods

◦ In general, time-and-graph and time-then-graph are equally expressive

◦ Using standard GNNs, time-then-graph are more expressive than 
time-and-graph
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} Time-and-graph
◦ Encodes how node embeddings evolve over 

time
◦ Majority of existing works

tim
e 

GNN1

GNN2

GNN3

} Time-then-graph
◦ Embedding encodes time evolution of 

nodes and edges independently
◦ Impose permutation-equivariance via 

final static graph

tim
e

Final (static) GNN

Embed temporal 
evolution of edges
independently

Embed temporal
evolution of nodes
independently<Less 

expressive
More 
expressive
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Existing time-then-graph

Existing time-and-graph

Our fixed time-then-graph

Task: Predict if a node will get infected
- Input: Temporal graph and epidemic evolution (discretized in time)
- Output: Probability a node gets infected in next step

Shows Temporal-GNNs predictions can be purely observational: 
Predicts infections without modeling how virus spreads over the graph
Take-home: Temporal GNNs are not designed to learn causal models 

(even if just Granger causality)
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} Graph Representation Learning today is 
designed for observational tasks

} The hierarchy of causality: Lower-levels 
methods incapable of higher-level tasks
◦ Counterfactual methods can perform all tasks
◦ Interventional methods can also perform 

observational tasks
◦ Observational methods can only perform 

observational tasks

} Rest of the talk:
Counterfactual Graph Representation Learning

Method power
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1.  Out-of-distribution generalization from single training environment is possible via  G-invariances
◦ But counterfactual G-invariances are stronger (more invariant) than G-invariance

2. Out-of-distribution generalization w.r.t. graph sizes without test examples
◦ Possible if GNN is coupled with a stable property as graphs grow
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1.  Out-of-distribution generalization from single training environment is possible via G-invariances
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fMRI

Predicted property:
Schizophrenic 
person?

Downstream 
classifier

𝜌Γ

Gr
ap

h 
Re

pr
es

en
ta

tio
n

Graph Representation 
Learning

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Graph size from fMRI 
is a hyperparameter
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Graph Representation Learning generally assumes:
Train distribution = Test distribution

...

What if test data were out of distribution (OOD)?

(𝐺&, 𝑌&) (𝐺', 𝑌') (𝐺(, 𝑌() (𝐺', 𝑌')(𝐺(, 𝑌()(𝐺&, 𝑌&)

... ...

Data Train Test

Shuffle 
& Split

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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What if train has small graphs but test has large graphs?

...

(𝐺&)* , Y&)*)

...

(𝐺')* , Y')*) (𝐺&)+ , Y&)+)

Train (small graphs)

What if train has large graphs but test has small graphs?

... ...

(𝐺&)* , Y&)*) (𝐺')* , Y')*) (𝐺&)+ , Y&)+)

Train (large graphs) Test (small graphs)

Test (large graphs)

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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Schizophrenia task

Large discrepancy 
between 
in-distribution and 
out-of-distribution
test accuracies

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Do Graph Neural Networks (GNNs) extrapolate?
⇒ GNNs can be applied to graphs of any size
⇒ But may not extrapolate between small (train) and large (test) graphs:
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How do we extrapolate beyond the training distribution?

If OOD examples available, data-driven methods work:
} Domain Adaptation
} Covariate Shift Adaptation
} Few-shot Learning
} Data Augmentation
} Invariant Risk-Minimization (IRM)*

(𝐺&)+ , ? )

...

(𝐺,-&)+ , Y,-&)+ )(𝐺,)+ , ? )

......

(𝐺&)* , Y&)*) (𝐺')* , Y')*)

+

Train (small graphs) OOD examples (large graphs) Test (large graphs)

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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What if no access to OOD data?
} Must define a causal mechanism

Data-driven methods:

} Can use existing GNN methods

} Don’t assume a mechanism for 
distribution shift

} Must have OOD examples during 
training

Pros Cons

Next: Observational vs Causal (Counterfactual) modeling

Bevilacqua, Zhou, R., ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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Observational Task: 
Predicting unseen examples of training distribution

Planetary Motion 
Equivalent

𝐹 = 𝐺
𝑚&𝑚'

𝑟'

...

(𝐺&, 𝑌&) (𝐺', 𝑌') (𝐺(, 𝑌() (𝐺', 𝑌')(𝐺(, 𝑌()(𝐺&, 𝑌&)

... ...

Data Train Test

Shuffle 
& Split

Counterfactual Task (since we have no access to test data): 
What would be the label of a graph if it were larger?

...

(𝐺&)* , Y&)*)

...

(𝐺')* , Y')*) (𝐺&)+ , Y&)+)

Train (small graphs) Test (large graphs)

or vice-versa

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Kepler’s law works
Epicycles work

Newton’s laws
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What would be the labels if the graphs were larger?

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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Q: What would be the label if the graph were infinitely large?

𝑁 → ∞

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations

Lovász & Szegedy (2006) shows that for some graph 
families (graphons) there are features invariant to size

Build GNN based on these features

Paper:  https://proceedings.mlr.press/v139/bevilacqua21a
Slides: https://www.cs.purdue.edu/homes/ribeirob/pdf/Bevilacqua_Zhou_ICML2021_slides.pdf

https://proceedings.mlr.press/v139/bevilacqua21a
https://www.cs.purdue.edu/homes/ribeirob/pdf/Bevilacqua_Zhou_ICML2021_slides.pdf
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} Structural Causal Model:
◦ Graph label 𝑌 is a function of the graph model 𝑊 + some random noise
◦ Graph size 𝑁UV 𝑁UW is a function of “environment” 𝐸UV 𝐸UW only
◦ Train (test) graphs are generated by 𝑊 and 𝐸UV 𝐸UW with same random noises

Graphon
model

Target
Label

Test 
environment

Train
environment

# vertices train # vertices test

Train Graph Test Graph

𝑊

𝑌

𝑍.

𝐸)* 𝐸)+

𝑁)* 𝑁)+

𝑈/

𝑈0

𝑍0,/

𝑋0)* 𝑋0)+𝐴0,/)* 𝐴0,/)+

𝑢, 𝑣 ∈ {1, . . , max(𝑁!" , 𝑁!# )}
𝑢 ≠ 𝑣

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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} Can Lovász & Szegedy’s inspired GNN (Γ011) extrapolate OOD?

OOD error same as
in-distribution error

Γ677

Bevilacqua, Zhou, Ribeiro, ICML 2021, Size-Invariant Graph Representations for Graph Classification Extrapolations
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} Graph representation learning:
◦ Fundamental difference:
� Positional vs Structural node representation
◦ Structural representations have limitations in joint 

predictions
◦ Positional representations rely on Monte Carlo 

averaging for some tasks
} Graph representation learning methods are 

observational not causal
◦ OOD without test data examples requires a 

counterfactual model
◦ There are no universal OOD graph representations

Thank you!

Graph
theory

Graph 
Representation 
Learning

Causality

OOD Graph 
Extrapolations

@brunofmr
ribeiro@cs.purdue.edu

v.s.


