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I ❤ Symmetries
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vs

In 2012 Google declared web 
search as “things, not strings”. 
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In 2022 OpenAI demoed ChatGPT, 
“strings-only” method.


Knowledge search: Strings (text) or things (graphs)?



Graph Learning: Graphs are “strings” + symmetries
• Is a graph a sequence (string) of edges?


• In graph learning, we assume graphs are sequences of edges with associated 
(permutation) symmetries since node ids are arbitrary [Murphy et al., 2019, Xu et al., 2019, 
Morris et al., 2019].


• In statistics this assumption is called exchangeability
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Graph “string” isomorphism: Graphs with distinct “strings” can be the same graph.
Permutation

 is the

action of  into  
that permutes 

π ∘ A
π A

A



Why are symmetries relevant?
ChatGPT fails at multi-hop reasoning [Dziri et al., 2023].
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• ChatGPT’s answers are sensitive to prompt order (order-sensitive model).

• Differently, models respecting symmetries must treat all paths identically.

Q: What is the number of nodes that can reach node 61 in exactly two hops?

But if we reorder the edges in the prompt the answer changes.

• Some tasks require symmetries but order-sensitive models give different 
answers based on the input order.



Defining Symmetries through Group Theory

• Closure holds i.e., 

• Associativity holds  

• Identity element exists i.e.,   

• Inverse exists for every element and  

∀a, b ∈ 𝒢, a ⋆ b ∈ G

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) ∀a, b, c ∈ G

∃e ∈ 𝒢 s.t.  a ⋆ e = e ⋆ a = a ∀a ∈ G

a ⋆ a−1 = a−1 ⋆ a = e ∀a ∈ G
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A group  is a set together with a binary operation  such that: G ⋆

Credit: Bala Srinivasan



(Left) Group Actions
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For a group  , binary operation , and with identity , and a set , a 
(left) group action is a function , such that

G ⋆ e X
∘ : G × X → X

•
•

e ∘ x = x, ∀x ∈ X

g ∘ (h ∘ x) = (g ⋆ h) ∘ x, ∀g, h ∈ 𝒢, ∀x ∈ X

Credit: Bala Srinivasan



Examples of Transformation Groups
• Permutation Group  - All  permutations of n objects 

E.g.: 

• Special Orthogonal Group  - Orthogonal  matrices  , such that  ,  

and . (Rotation Group in 3D)

(𝕊n) n!

𝕊3 = {(1,2,3), (2,3,1), (3,1,2), (1,3,2), (3,2,1), (2,1,3)}

(SO(3)) 3 × 3 M det(M) = 1

M1 ⋆ M2 = M1M2
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π1 ∘ ( ) =π1 = (3,2,1)Example:

Action of  on a sequenceπ1



Example: Equivariant Embedding Function

10

𝒁𝑣

Democrat (DEM)
Republican (GOP)

?

?

?

?
?

?
?

?

v

𝑨 =

v
v

…
𝒁 ∈ ℝ𝑛×𝑑

f(A) = Z

π ∘ A f(π ∘ A) = π ∘ Z

𝒁𝑣

…

• Permutation Group : A Graph Neural Network, , is a neural network 
that learns graph  embeddings, which are equivariant to  ,  

(𝕊n) GNN(A)
𝑨 π ∘ A π ∈ 𝕊n

A



Downstream Task — Node Classification
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f(A, u) ∈ ℝd

node u’s embedding 

Classifier
gθ : ℝd → {1,…, nclasses}

u

Node Classification 
(Downstream Task)

Example: 
Given a social network , 
predict the types of ads to 
serve user u

A

u

 
simplified tensor 

notation of the graph

A ∈ ℝn×n×(1+k+p)

  —   (Abstractly) A function that outputs node representations f f : ℝn×n×(1+k+p) → ℝn×d, d > 0

G-invariant embedding f(A, u) = f(π ∘ A, π ∘ u) ∈ ℝd



Causal Lifting: Origin Story
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Causal interpretations of matrix factorization 
for path-dependent graphs…

• In 1914 Woolley and Fischer’s observed that  
“boys are [innately] enormously superior [to girls] at spatial relations” 
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Bob

Alice
Paper folding tasks

Symbol coding tasks

Mental rotation tasks

Series completion tasks

3/5
2/5

5/5
4/5

1/5
3/5

5/5
4/5

• But Spearman (1927) disagreed with the conclusion: 
“evidence [of this difference being] innate [rather than acquired] is still dubious”.

• Matrix factorization derives from 
Spearman’s common factors of 
intelligence 
• Conjectures that latent factors of 

intelligence manifest as abilities to 
perform tasks



Path-dependent link formation…

14

Wikipedia

Bob

Alice
Paper folding tasks

Symbol coding tasks

Mental rotation tasks

Series completion tasks

3/5
2/5

5/5
4/5

1/5
3/5

5/5
4/5

Had Alice practiced spatial tasks, she would had been better at them

i.e., path-dependent link weights:



Matrix factorization: A graph formation story
(Innate)

latent 


factors

Latent factors

Latent factors

Links are manifestations 

of latent factors

Desire to buy 
keyboards

Defines graph learning 
through symmetries



End Origin Story
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I ❤ Causality
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The 3 rungs of the ladder of 
causation

1. Associational
2. Interventional
3. Counterfactual

Harder

18



Rung 1: Associational

• Standard graph machine learning tasks

Assume  
 

Task: Predict output Y from input X


Data: samples of (X,Y)

X /⊥⊥ Y

Most node & graph classification, link prediction tasks are 
associational

19

socratic.org



Rung 2: Interventional

• Tasks where we must predict the effect of an intervention

Assume 


Task: Predict output Y from acting on input X


Data: samples of (Y,do(X=x))

X /⊥⊥ Y
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Rung 2: Interventional (cont)

• changes  to a constant in data generationdo(𝑋 = 𝑥)  𝑓𝑥






𝑋 ≔ 𝑓𝑥(𝑈𝑥)
𝑌 ≔ 𝑓𝑦(𝑋, 𝑈𝑌 )


Y ≔ 𝑓𝑦(𝑈𝑥)
𝑋 ≔ 𝑓𝑥(𝑌, 𝑈𝑌 )

Imagine two hypothetical data generators for  
 same 𝑃(𝑋, 𝑌 )


𝑋 ≔ 𝑥
𝑌 ≔ 𝑓𝑦(𝑋, 𝑈𝑌 )


Y ≔ 𝑓𝑦(𝑈𝑥)
𝑋 ≔ 𝑥

𝑈𝑦, 𝑈𝑥 ∼ i.i.d. Uniform(0,1)
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Rung 3: Counterfactual

• Tasks where we must imagine the effect of an intervention at 
an event that has “already happened”

Assume 


Task: Predict output Y from acting on input X


Data:   or  

X /⊥⊥ Y

Y(X = x) |X = x′￼, Y = y′￼ Y(X = x) |X = x′￼
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Rung 3: Counterfactual

• Now assume we know  
This knowledge changes distribution of  and 

𝑋 = 𝑥’, 𝑌 = 𝑦′￼

𝑈𝑥 𝑈𝑦






𝑋 ≔ 𝑓𝑥(𝑈𝑥)
𝑌 ≔ 𝑓𝑦(𝑋, 𝑈𝑌 )


Y ≔ 𝑓𝑦(𝑈𝑥)
𝑋 ≔ 𝑓𝑥(𝑌, 𝑈𝑌 )

Imagine two hypothetical data generators for  
 same 𝑃(𝑋, 𝑌 )


𝑋 ≔ 𝑥
𝑌 ≔ 𝑓𝑦(𝑋, 𝑈𝑌 | (𝑋 = 𝑥′￼, 𝑌 = 𝑦′￼))


Y ≔ 𝑓𝑦(𝑈𝑥 | (𝑋 = 𝑥′￼, 𝑌 = 𝑦′￼))
𝑋 ≔ 𝑥

𝑈𝑦, 𝑈𝑥 ∼ i.i.d. Uniform(0,1)

23



Some graph tasks are causal

Recommendations as treatments 
Survey: (Joachims et al., AI Magazine 2021)


Link prediction for search & recommendations tends to be causal

    Accept = y | do(Show recommendation = x)
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Causal Lifting:  
Causality ❤ Symmetries
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(8,1)

(8,1)
(8,1)

Observed graph at time t0

Observation

Observe an intervention (recommendation):



Task
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(8,1)(3,9)

(3,9)

8139

Counterfactual query:



Challenge:
• Path-dependency in graph evolution

• Graph evolution may depend on current state of graph
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You

Let’s be friends

Chad

You

Let’s be friends

Chad
✅❌

Scenario 1 Scenario 2



Universal Structural Causal Model for Path-dependent Graphs

• Path-dependency = complex causal dependencies
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How Symmetries Can Help

• Consider two deserted islands

• Assume the same structural causal model generated the two social networks

• Also, for now, the social graphs of Islands A and B will be isomorphic


• Assume we suggest Alice to Carol and she accepts 
• In island B, we expect the suggestion of Ana to Curtis should have a similar 

outcome (in distribution)
31

Alice
Bob

Carol

Ana
Ben

Curtis

Island A Island B

GA GB

Isomorphic graphs

✅

✅



Can graph structure can help with 
the counterfactual query?


Given Alice — Carol was ✅,

what would have happened if we had probed Ana — Curtis instead?
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On Graph Learning
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Positional node embeddings (e.g. matrix factorization)
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Graph learning happens through graph embeddings


Positional node embeddings describe how nodes are positioned in the graph

• It does not preserve the symmetries in the graph


Consider positional node embeddings in the Arctic food web

• Similar colors = similar node embeddings



Positional Embeddings and Causal Link Predictions

• The positional nature of node embeddings means whatever we learn for Alice 
and Carol won’t transfer to Ana and Curtis
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Alice
Bob

Carol

Ana
Ben

Curtis

Island A Island B

GA GB

Isomorphic graphs



• Associational lifting: Let  be a group and  is the left action of  onto   
E.g., (Kimmig et al., 2014)


• Definition 3.2 (Interventional lifting):  
 

                           
 
                       

• Definition 3.3 (Counterfactual lifting): 
 

                             

𝒢 ∘ 𝒢 supp(X)

P(Y |do(X = x)) = P(Y |do(X = g ⋅ x))

P(Y(X = x)) = P(Y(X = g ⋅ x)) Imbens notation

P(Y(X = x) |X = x′￼) = P(Y(X = g ∘ x) |X = x′￼) Imbens notation

Causal Lifting

36

P(Y |X = x) = P(Y |X = g ∘ x) g ∈ 𝒢



Causal Lifting on Graphs
• The embeddings of two or more nodes must be structural, not 

depend on the ordering of the nodes 

• Structurally, Alice & Carol and isomorphic to Ana & Curtis 
before intervention 

• This is a structural symmetry
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Alice
Bob

Carol

Ana
Ben

Curtis

Island A

GA GB

Isomorphic graphs

✅



What are the assumptions needed in the 
Structural Causal Model (SCM)


to get transferability-through-symmetry?
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The Symmetry Assumptions in our SCM
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If Assumptions 1-4 hold, then…
• Theorem 4.6 (Invariances for interventional lifting in link prediction). 

• Under Assumptions 1-4 in our Universal SCM for path-dependent graphs,  

we can prove that causal lifting can be used to obtain an equivalent SCM 
using just the observed graph symmetries:


• Where  is a variable shared by all nodes structurally identical to the pair 
IJ

WOIJ
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Extra assumption (no spillover) needed 
for learning from multiple experiments


Future work: Redefine symmetries to 
account for spillover effects
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Example:

• Recommendations for Amazon purchases

• In training we consider the subgroup of 

male users in recommendations. 

• At test time, our counterfactual queries are 

about female users.
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Positional node embeddings Structural pairwise 
embeddings

Correctly encodes 

graph symmetries



Take-home
• Causal Lifting allow us to use observed symmetries (invariances) to predict  

the outcome of causal queries. 
• It lifts the interventions in one part of the graph to predict on other parts of the 

graph

• Relaxing Assumptions 1-4 create new symmetries in the SCM

• Causal lifting still applies, but we may need extra data for the new symmetries 

• Concept of clustering for containing spillover changes under causal lifting

• Spillover also could be accounted for under an expanded notion of symmetries 

(Causal lifting can account for spillovers)


Thank you!

43


