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Abstract—Developing simple distributed algorithms to allow
nodes to perform topology discovery and message routing using
incomplete topological information is a problem of great interest
in network science. Consider the following routing problem in the
context of a large power law network G. A small number of nodes
want to exchange messages over short paths on G. These nodes
do not have access to the topology of G but are allowed to crawl
the network subject to a budget constraint. Only crawlers whose
paths cross are allowed to exchange topological information. In
this work we study the use of random walks (RWs) to crawl
G. We show that RWs have the ability to find short paths and
that this bears no relation to the paths that they take. Instead, it
relies on two properties of RWs on power law networks:
• The RW ability to observe a sizable fraction of the network

edges;
• The near certainty that two distinct RW sample paths cross

after a small percentage of the nodes have been visited.
We show promising simulation results on several real world
networks.

I. INTRODUCTION

Developing simple distributed methods to allow nodes to
perform topology discovery and message routing using incom-
plete topological information is a problem of great interest in
network science. In this work we focus on network topolo-
gies characterized by highly variable node degrees and short
network diameters. Social and some technological networks
(e.g., peer-to-peer (P2P) overlay networks) commonly fulfill
these characteristics. Moreover, nodes ultimately need to find
short paths in the network by collecting limited topological
information.

Consider the following routing problem in the context of a
large network G. A small set of h nodes U = {u1, . . . , uh}
are looking for short paths on G over which to exchange
messages. Routing consists of two phases: Topology discovery
and shortest path calculation. During the topology discovery
phase each node must partially crawl the network in order
to partially discover the network topology. Nodes have a
limited crawling budget B and only crawlers whose paths
intersect are allowed to exchange topological information.
Upon finishing the topology discovery phase nodes in U find
short paths to other nodes in U using the sampled topology.
Our results do not assume a particular degree distribution
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Fig. 1. Illustration of a RW sample path. Green nodes are the starting nodes,
the blue nodes are nodes visited by the random walkers, and the purple edges
are the edges used by the walkers to explore the graph which is a subset of
E(B, i).

but they apply particularly to power law networks. Simple
topology discovery algorithms such as crawling the network
using breadth-first search (BFS) are ill suited for the task at
hand. The combination of short network diameter and large
degree nodes can quickly exhaust the sampling budget B when
BFS is used.

In this work each of the h nodes looking for short paths
initiate a random walk (RW) on G. We consider the main
cost of routing to be the cost of discovering a node, i.e., the
cost of querying a node, and that nodes store the identity of
all of their neighbors. We show RWs can find short paths,
especially when the degree distribution is highly skewed. Our
finding can be explained in the light of two RW properties
when the network has a highly skewed degree distribution and
high network conductance (network conductance is measured
by the graph’s Cheeger Constant [7]):

• The ability of a RW to observe a sizable fraction of the
network edges (an edge is observed when at least one of
its endpoints are visited by the RW); and

• The high probability that two RWs starting at different
nodes cross after visiting a small number of nodes.

We provide promising simulation results on several real world
networks. Applications of our work include the discovery of
short paths between online social network users and aiding
routing algorithms that use a social network to deliver mes-
sages between users (one such algorithm is Bubble Rap [5]).
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A. Framework

In what follows we formalize the model. Consider an
undirected graph G = (V,E) with n nodes and m edges. Start
h random walkers from nodes U = {u1, . . . , uh}. We assume
each walker takes B steps. Each walker leaves breadcrumbs
so that one can trace its path back towards the initial node.
Let X(t, i) = (X

(i)
1 , . . . , X

(i)
t ), i = 1, . . . , h, denote the

sequence of nodes seen by the i-th walker at step t. Let S(t, i),
i = 1, . . . , h, denote the set of nodes visited by the i-th walker
at time t. Let E(B, i) denote the set of edges that have at least
one of its endpoints in S(B, i). Upon exhausting its budget
RW, i outputs X(B, i), S(B, i), and E(B, i).

B. Naive Routing

Note that if two RWs i and j cross each other then
S(B, i) ∩ S(B, j) 6= ∅, i, j = 1, . . . , h (i.e., RW i must have
found RW j’s breadcrumbs or vice-versa). Without loss of
generality assume walker i found j’s breadcrumbs. A naive
way to construct a path between ui and uj is to route messages
retracing all RW steps using the breadcrumbs.

C. Drawbacks of Naive Routing

The naive algorithm presented above is quite inefficient.
Random walks are not particularly good at finding short paths
(as seen in Section V); unless there are few paths between
pairs of nodes, e.g., G is a tree. A random walk with erased
loops, also known as a loop-erased random walk, samples
all possible spanning trees of G with equal probability [13].
Although loop erased RW results in shorter paths between ui
and uj than Naive Routing, the improvement is unlikely to
have great impact on the end result.

D. The True Power of RWs in Finding Short Paths

The ability of RWs to find short paths bears no relation to
the paths that they take. Instead, it relies on RW properties
often present in power law networks, namely large degree
variability. We propose a model that allows us to obtain closed
form approximations of the number of edges and vertices
discovered by a RW. The main results found on Section II
are summarized here:
• |E(B, i)| ≈ 〈k

2〉−〈k〉
〈k〉 B, where B � n, i = 1, . . . , h, and

〈k〉 and 〈k2〉 are the first and second moment of the node
degrees in original graph G, respectively.

• Under mild conditions two RW sample paths cross, with
high probability.

These observations motivate our use of RWs to uncover short
paths on G.

E. Outline

The outline of this paper follows. Section II characterizes
the subgraph obtained by the i-th random walker and the prob-
ability that two RW sample paths cross. Section III presents
the Random Walk Short Path (RWSP) algorithm which uses
RWs to uncover short paths on G. Section IV presents our
results on the performance of RWSP on real world networks.
Finally, Section V presents the related work.

Network nodes edges 〈k〉 q

Flickr [10] 1.7M 31.1M 18.1 943.4
AS Net. [3] 26.5K 107K 4 279.24
Livejournal [10] 5.2M 9.8M 18.9 154
Enron [1] 37K 368K 10 140
Gnutella [12] 62.5K 296K 4.7 10.6
Power Grid [15] 5K 13K 2.7 2.9

TABLE I
SUMMARY OF NETWORKS

II. RW SUBGRAPH PROPERTIES

In this section we show that a random walk is able to collect
many edges from G by visiting a relatively small number of
nodes. Let n be the number of nodes and B = βn be the RW
budget. Let E(B, i) denote the set of edges that have at least
one of its endpoints visited by the i-th RW after B steps. We
will see that |E(B, i)| is much larger than B if node degrees
have large variance. In what follows we assume n � 1 and
B � n.

We avoid the intricacies of the interaction between the RW
and the graph topology by assuming that G is drawn uniformly
at random from the ensemble of all possible graphs with the
same degree sequence as G. This is the so-called configuration
model [8] and provides us with a simplified model of G
that has a simple topology structure. The configuration model
assumption is widely used in the network science literature.
It allows us to obtain closed form approximations of the
measures of interest that match well our simulations over real
world networks (as seen later in this section). These are the
main results of this section (for B � n):
• |S(B, ·)| ≈ B, i.e., the set of nodes visited by the RW

scales linearly with B. The RW tends to collect only new
nodes at the beginning of the walk.

• |E(B, i)| ≈ qB, where q = 〈k2〉−〈k〉
〈k〉 , and 〈k〉 and 〈k2〉

are the first and second moment of the node degrees in
original graph G, respectively.

• We provide conditions under which our algorithm (de-
noted RWSP) finds path between any pair of nodes
(ui, uj), ∀i, j, with high probability.

A network with large highly skewed degree distribution has
large q. For instance, in the Flickr social photo sharing website
q = 943.4, in the Enron email network this value is q =
140, and in the Livejournal blog posting social network this
value is q = 154. Table I presents values of q for several real
world networks. In such networks the edges in E(B, i) spans
a sizable fraction of the edges of G even when β = B/n is
small.

A. RW observes a sizable fraction of the edges of G.

In what follows we find a closed approximation formula for
the number of edges in E(t, i), t ≤ B. Some of the following
equations are valid for any RW starting at a node in U . Hence,
in what follows we drop parameter i from our notation when
there is no ambiguity, i.e., in equations that are valid for any
of the h RWs we write E(t) in place of E(t, i) and S(t) in
place of S(t, i). Let S(t) denote the set of nodes visited by



3

a RW at time step t. As we are interested in large graphs,
we assume n � 1. Let 〈k〉 and 〈k2〉 denote the first and
second moments of the degree distribution of G, respectively.
Let τ = t/n and ne(τ) = 〈|E(τn)|〉 be the average number of
edges with an endpoint in S(τn), where 〈·〉 is the expectation
operator. We provide a closed form mean field approximation
for ne(τ) when τ � 〈k〉2/〈k2〉 in Section II-C:

ne(τ) = 2m

(
1− exp

(
−〈k

2〉 − 〈k〉
〈k〉2

τ

))
. (1)

and

〈|S(τn)|〉 =
n〈k〉

〈k2〉 − 〈k〉

(
1− exp

(
−〈k

2〉 − 〈k〉
〈k〉2

τ

))
.

Figures 2 and 3 compare our mean field approximation
in (1) with simulation results for the Gnutella and Flickr
networks. The Gnutella network cannot be considered a power
law network as its maximum degree is quite small (one hun-
dred), but our approximation works for any degree distribution
not only for power law distributions. Please refer to Table I
for characteristics of these two networks.
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Fig. 2. ne(τ) in the Gnutella network. This graph shows the fraction
of edges in E(τn) predicted by our mean field approximation against real
simulation values. The simulation results of 10 runs are shown in a scatter
plot of green crosses. The mean field approximation in equation (1) is shown
as a blue line. In the Gnutella network q = 10.6, which is not as large as in
a “true power law” network.

To see how ne(β) grows with β = B/n let’s decompose (1)
into its Taylor series expansion

ne(β) = 2m

(
〈k2〉 − 〈k〉
〈k〉2

β +O(β2)

)
=
〈k2〉 − 〈k〉
〈k〉 βn+O(β2), (2)

as 〈k〉 = 2m/n. For β � 1, (2) yields

ne(β) ≈ 〈k
2〉 − 〈k〉
〈k〉 βn . (3)

In a power law network as n→∞, the probability that a node
has degree k satisfies

pk ∝ (α− 1)k−α. (4)
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Fig. 3. ne(τ) in the Flickr network. Same as Figure 2 over the Flickr
network. In the Flickr network q = 943.4.

For power law degree distributions the approximation in (3)
yields

ne(β) =

{
∞ if α ≤ 3

βn (α− 3)−1 if α > 3 .

While ne(β) < ∞ in any real world network, the above
equation provides an invaluable hint that ne(β) can be quite
large in real life. Indeed, in the Flickr network we observe

nflickr
e (β) ≈ 943.4× 1,700,000× β ,

which means that by the end a random walk, collects on
average 943.4βn distinct edges. Table I shows the value of q
for several real world networks. Before we proceed to derive
equation (1), we show that under certain conditions a RW
starting at ui, i = 1, . . . , h, visits a node that is also visited
by RW j, ∀j 6= i, with high probability.

B. Two RW sample paths cross with high probability.

In what follows we show that under certain conditions, RWs
starting at nodes ui and uj , ∀i, j, cross with high probability.
Assume, without loss of generality, that RW i completes
before we start RW j. The intuition behind our result is that
for sufficiently large |E(B, i)|/2m, S(B, i) functions as an
attractor for the j-th RW, such that with high probability RW
j hits the set S(B, i) before B steps. The above reasoning,
however, cannot be applied to a RW that has a long transient;
for instance a RW on a graph shaped like dumbbell likely will
not satisfy our conditions.

We are interested in the hitting time of RW j into the set
S(B, i). Let X(B, j) = {X(j)

1 , . . . , X
(j)
B } be the set of nodes

visited by RW j. Then

P [X ∩ S(B, i) = ∅]

denotes the probability that RW j and RW i do not meet.
Unfortunately obtaining hitting times to S(B, i) in closed

form is a hard problem. Hence, we provide the following
approximation, which assumes that exists ∆ � B such
that λ∆

2 � |E(B, i)|/2m, where λ2 is the second largest
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eigenvalue of the RW transition probability matrix (see Lo-
vasz [7]). A sufficient condition for small λ2 is for G to
have a large network conductance (more details about the
relationship between network conductance and λ2 can be
found in Lovasz [7]). The probability that RW j starts at node
u ∈ V and reaches node v ∈ S(βn, i) (with degree kv) in ∆
steps is [7]

P [X
(j)
w+∆ = v|X(j)

w = u] =
kv
2m

+O(λ∆n
2 ) .

Thus, the probability that RW j starts at some node X(j)
w and

reaches a node in the set S(βn, i) is approximately

P [X
(j)
w+∆ ∈ S(βn, i)|X(j)

w ] ≈ |E(B, i)|/2m, (5)

as we assume that the O(λ∆n
2 ) term is negligible in respect

to |E(B, i)|/2m. Note that the probability that RW j at steps
1,∆ + 1, 2∆ + 1, . . . does not hit S(B, i) is higher than this
probability considering all 1, 2, . . . , B steps. Thus,

P [X ∩ S(B, i) = ∅] ≤ P [{X1, X∆+1, . . . } ∩ S(B, i) = ∅] .

Application of (5) and the strong Markov property yields

P [X ∩ S(B, i) = ∅] ≤
(

1− cne(β)

2m

)bβn/∆c
. (6)

Substituting (2) into (6) yields

P [X∩S(B, i) = ∅] ≤
(

1− c
(
〈k2〉 − 〈k〉
〈k〉2

β +O(β2)

))bβn/∆c
.

As n� 1 and for 〈k2〉 <∞, (6) yields

P [X ∩ S(B, i) = ∅]� 1.

Hence, if the condition stated in (5) is satisfied then RWs i
and j must meet with high probability. In what follows we
provide a derivation of (1).

C. Mean field analysis of the number of edges in E(t).

Let τ = t/n � 〈k〉2/〈k2〉 and let ne(τ) = 〈|E(τn)|〉
be the average number of edges in S(τn). As G follows
a configuration model, by following an edge, a RW reaches
a node v with degree kv with probability proportional to kv .
Hence, node v has average degree larger than 〈k〉. This is a
classical case of the inspection paradox, which here means
that the probability of sampling a node v with degree kv is
proportional to kv and thus the average degree of a sampled
node is 〈kv〉 = 〈k2〉/〈k〉. If v 6∈ S(t) we are adding at most
kv − 1 edges to E(t), (the minus one is a consequence of the
need to remove the edge the RW followed to reach v which
was already in E(t)). If G was a random configuration graph,
as t � n and n � 1, the probability that any of the kv − 1
edges are already in E(t) is negligible. Thus, by adding v we
are adding q = 〈kv〉 − 1 edges to E(t).

Assume that the RW samples edges uniformly at random,
we can write the following expression for ne

ne(τ + 1/n)− ne(τ) = qP [v 6∈ S(t, i)] = q

(
1− ne(τ)

2m

)
,

where ne(τ)/2m is the probability that a randomly sampled
edge is in E(t). Multiplying both sides of the above equation
by n and letting n→∞ yields

ne(τ + 1/n)− ne(τ)

1/n
= nq

(
1− ne(τ)

2m

)
dne(τ)
dτ

=
q
〈k〉 (2m− ne(τ))

with the boundary condition ne(0) = 0. The solution to the
above differential equation is

ne(τ) = 2m(1− e−qτ/〈k〉),

concluding our derivation.
Noting that 〈|S(τn)|〉 = ne(τ)/q and following the above

steps one derives

〈|S(τn, i)|〉 =
n

〈k2〉 − 〈k〉

(
1− exp

(
−〈k

2〉 − 〈k〉
〈k〉2

τ

))
.

We omit the above derivation for conciseness as it closely
follows the one shown for (1).

III. THE RANDOM WALK SHORT PATH (RWSP)
ALGORITHM

The RWSP algorithm is as follows: Consider h independent
RWs, numbered from 1 to h. Let W (i) ⊆ {1, . . . , i − 1, i +
1, . . . , h}h−1 denote the indices of the set of RWs that have
crossed the path of RW i, i = 1, . . . , h. Let C(i) denote the
set of nodes that have been visited by RW i and at least one
other RW j 6= i. Initialize W (i) = ∅ and C(i) = ∅. For each
walker i = 1, . . . , h do:

• Start walker i at node ui ∈ U with budget B.
• At time step t update the “explored” nodes S(t, i) and

edges E(t, i) discovered by RW i.
• If the t-th visited node, xt, has already been visited by

RWs with indices W ′ and i 6= W ′ do:

1) W (i)←W (i) ∪W ′;
2) C(i)← C(i) ∪ {xt};
3) ∀w ∈W ′, W (w)←W (w) ∪ {i};
4) ∀w ∈W ′, C(w)← C(w) ∪ {xt}.

• Proceed to the next step t← t+ 1 until t = B.
• At the end of walk nodes that found each other trade the

topology each node discovered, G′. This exchange can be
facilitated by the contact nodes in the set C.

• Let G?(i) =
⋃
r∈W (i)∪{i}G

′(B, r) denote the union of all
subgraphs known to ui. Compute the minimum spanning
tree T (i) on G?(i) starting from ui.

Node ui uses T (i) to route its messages to nodes uj on G,
∀j ∈ W (i). Figure 1 shows a snapshot of the algorithm. In
what follows we present our simulation results.
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IV. RESULTS

This section presents our results when simulating RWSP on
real world networks. Table I summarizes the datasets used in
our simulations. Figure 4a show the fraction of RW shortest
path lengths on G? defined in Section III (X axis) between h =
4 nodes vs. the true shortest path lengths (Y axis) [blue/gray
matrix]. We choose h = 4 walkers because as we increase
k our results get better when B is kept constant. We also
evaluate different values of h, h ∈ {2, 6, 8, 16}, rescaling B
such that for a constant β > 0, B = βn/h. The results for
different values of h are similar to those presented here, thus
due to space constraints we omit them.

In Figure 4a the yellow bars next to the Y axis show the
true all pairs shortest path length distribution. For instance, in
LiveJournal’s most of the shortest paths are between 5 and 6
hops. The RW sampling budget is B = 2.5% of the nodes in
the graph. A total of 10, 000 runs were used to produce the
averages seen in the graph. The axis marking INF refers to
the fraction of times that a node could not reach another node
(due to disconnected components). In all runs the RWSP was
able to find nodes in the same component (we condition the
RWSP to start in the giant component). We also tested RWSP
over other networks with similar parameters.

Our results are very promising. For Livejournal (Figure 4a)
more than 60% of the RWSP paths of any given length are the
shortest paths. Moreover, more than 90% of the RWSP paths
of any given length are within one hop of the shortest paths.

We also test RWSP on Flickr, AS graph, a snapshot of the
Gnutella network, Enron email dataset with similar results.
On Flickr (Figure 4b) (B = 0.0125n) more than 85% of the
RWSP paths of any given length are the shortest paths; also,
all paths are within 2 hops of the shortest paths. On Gnutella
(Figure 4c) (B = 0.0125n) network we observe more than
60% of RWSP paths of all lengths to be within 2 hops of
the shortest paths. For the AS graph (Figure 4d) (RWSP with
B = 0.05n), more than 65% of RWSP paths of all lengths
are the shortest paths; the majority (> 95%) of RWSP paths
now counting over all lengths are the shortest paths. On Enron
(Figure 4e) (B = 0.05n) we have a result as good as the one
for the AS graph.

Figure 4f shows that the only graph in which the RWSP
does not perform well, the Power Grid network. The Power
Grid network is not a power law graph and has the largest
diameter of any of the previous networks, thus, we expected
RWSP to perform poorly. Consulting Table I we observe that
(〈k2〉 − 〈k〉)/(〈k〉) = 2.9 is small and thus G′ spans only a
small fraction of the original graph, making the task of finding
a long path close to impossible.

V. RELATED WORK

In the context of computer networking, random walks have
been used to deliver messages in ad-hoc wireless networks but
suffer from excessive delays due to long hitting times [14],
[9]. The social network structure has been explored to deliver
messages between users in Bubble Rap [5]. Wireless ad-hoc
and sensor networks are unlikely to benefit from RWSP as
we showed in our previous work [4]. In [4] we show that for
network topologies with node degrees concentrated around the
mean r, Hmax ≈ n logn

r2 . A corollary to the above is applicable
to random geometric networks at the critical radius [11]; in that
regime, r ≈ log n, and therefore, Hmax = O(n). Dumbbell
shaped networks also present a challenge to RWSP as the
worst case hitting times could have a O(n3) scaling law [6] .
However, the hitting time to a subgraph drops sharply when
the size of the subgraph increases in comparison to the hitting
time to a specific node [2], and thus RWSP can be applicable
even in some scenarios where the node-to-node hitting time is
large.
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(a) LiveJournal (h = 4, B = 0.025n)
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(b) Flickr (h = 4, B = 0.025n)
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(c) Gnutella (h = 4, B = 0.05n)
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(d) AS graph (h = 4, B = 0.0125n)
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(e) Enron (h = 16, B = 0.0125n)
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(f) Power Grid (h = 4, B = 0.05n)

Fig. 4. RWSP vs. Shortest Paths. h walkers and sampling budget B. Fraction of RW shortest path lengths (X axis) between nodes vs. true shortest path
lengths (Y axis) [blue/gray matrix]. Yellow bars next to Y axis show true shortest path lengths distribution. The axis marking INF refers the fraction of times
that a node could not reach another node (due to disconnected components).


