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1. INTRODUCTION
Most of the networks that pervade our lives are dynamic in

nature in the sense that their structural configuration (i.e.,
topology) is constantly changing over time. Some of these
networks are both very large and very dynamic, changing
at timescales that are relatively small. Thus, analyzing and
measuring such networks represents a challenge, as tradi-
tional techniques designed for static networks are rendered
unsuitable.
A commonly used technique for measuring and character-

izing static networks are random walks (RW), which have
been extensively studied and applied in the literature. For
example, the simple closed form solution of the distribu-
tion of the number of visits that stationary RW makes to a
node (which is proportional to the node degree) is the ba-
sis for many principled algorithms [3, 1]. In contrast, little
is known even about the stationary distribution of random
walks on dynamic networks.
In this paper we study the steady state behavior of continuous-

time random walks (CTRW) on Markov dynamic networks.
We consider two types of CTRWs: one that walks at a con-
stant rate (CTRW-C) and another that walks with a rate
proportional to the vertex degree (CTRW-D). We derive
closed-form analytical expressions for the steady state (SS)
distribution of these walkers. For CTRW-C we obtain the
approximate SS distribution for either a very fast or very
slow walker. We show that the behavior of CTRW-C and
CTRW-D is strikingly different. Surprisingly, the steady
state distribution of the fixed rate walker depends on the
walker rate, which is not the case for the degree propor-
tional walker. Such findings have direct implication on the
design of algorithms to measure dynamic networks.
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The dynamic network models we consider assume that
nodes are always present but that edges can come and go
over time, as follows. A Markov dynamic graph is a set of
graphs having the same vertex set and a Markov process
over them. In particular, let S = {G1, ..., Gm} be a set of
undirected graphs all having the same vertex set V , thus,
Gk = (V,Ek), where Ek denotes the set of edges of graph
Gk, for k = 1, . . . ,m. Let n = |V | denote the number of
vertices in a graph. Moreover, let Ak denote the adjacency
matrix of graph Gk. Thus, for all i, j ∈ V , Ak(i, j) = 1 if
(i, j) ∈ Ek and 0 otherwise. Finally, let deg(i, k) denote the
degree of vertex i ∈ V in graph Gk.
We introduce the dynamic graph process {G(t)} as a con-

tinuous-time stationary Markov process with state space S.
Let λkl ≥ 0 denote the transition rate from state (graph) Gk

to Gl. Note that the graph dynamics are fully determined
by the transition rates.

2.1 Random walks on dynamic graphs
Consider a continuous time random walk (CTRW) on a

general Markov dynamic graph. Intuitively, the walker can
only traverse edges that are incident to the vertex at which
the walker resides, choosing uniformly at random among
them. Let {W (t)} be the continuous time process represent-
ing the vertex where the walker resides, thus W (t) = i ∈ V ,
for any t. The time between two consecutive steps of the
random walk is exponentially distributed with rate γ. We
refer to γ as the walking rate and to this random walk as
CTRW-C (for constant walking rate).
Without loss of generality, assume that when the random

walk takes a step at time t, the Markov dynamic graph pro-
cess is in state Gk, that is G(t) = Gk and thatW (t) = i. Let
Ni,k denote the set of neighbors of vertex i in the graph Gk.
Thus, the probability the walker steps to vertex j ∈ Ni,k is
given by 1/|Ni,k|. Finally, if Ni,k is empty, the walker stays
at vertex i during that step.

2.2 Degree-dependent random walks
We now introduce a random walk where its walking rate

is not constant, but instead depends on the degree of the
vertex where the walker is located. Intuitively, our walker
will move faster when it finds itself at vertices with large
degrees and slower when located at vertices with small de-
grees. More precisely, the inter-step time of the random
walk is exponentially distributed with rate deg(i, k)γ, where
deg(i, k) is the degree of vertex i ∈ V in graph Gk ∈ S and
γ > 0. We refer to this random walk as CTRW-D (for
degree-proportional walking rates).
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Figure 1: Two different matrix arrangements for
CTRW on Markov dynamic graphs.

2.3 Joint graph and walker dynamics
The dynamic graph process and the random walk pro-

cess can be represented as a continuous-time Markov pro-
cess {R(t)} where R(t) ∈ V × S. Let si,k represent a state
of this process where i represents a vertex of V (i ∈ V ) and
k represents a graph in S (k ∈ [1, . . . ,m]). Let U = {si,k :
∀i ∈ V, k = 1, . . . ,m} denote the set of all vertex snapshots
(si,k represents vertex i at graph Gk). The infinitesimal
generator matrix of {R(t)}, denoted by Q, is determined by
combining the graph dynamics with the random walk.
Two specific arrangements of the state space into matrix

Q are of particular interest, as they have intuitive interpre-
tation and block representations. Moreover, such represen-
tations are fundamental in establishing the proof of the next
two theorems. Let Pw = {Pw

1 , . . . , P
w
m} be a partition of the

state space U , where each subset Pw
k consists of all random

walk states corresponding to the graph Gk. In particular,
Pw

k = {si,k|i ∈ V }. Thus, each partition corresponds to a
square matrix block of size n = |V |. Moreover, transitions
within a partition correspond to random walk dynamics and
transitions among blocks correspond to graph dynamics, as
illustrated in Figure 1(a).
We consider a second partition where states si,k ∈ U are

first grouped by i. We denote this second partition as P g =
{P g

1 , . . . , P
g
n}, where each subset P g

i consists of all graph
states corresponding to vertex i ∈ V . In particular, P g

i =
{si,k|k ∈ [1, . . . ,m]}. Thus, each partition corresponds to a
square matrix block of sizem . Thus, within a block we have
the graph dynamics and transitions among blocks represent
the walker dynamics, as illustrated in Figure 1(b).
We note that matrix Q representing each random walker

(CTRW-C and CTRW-D) can be written in block-form us-
ing closed-form equations in each of the two partitions de-
scribed above. Due to space constraints, we omit such equa-
tions (see [2]).

3. STEADY STATE DISTRIBUTIONS
We investigate the steady state distribution of CTRW on

Markov dynamic graphs. In particular, we are interested in
the fraction of time that the random walk spends at each
vertex i ∈ V . Clearly, this metric can be obtained from the
steady state probability distribution of {R(t)}. Let π(si,k)
denote the fraction of time in state si,k where i ∈ V and
k ∈ [1, . . . ,m]. In particular, assuming {R(t)} is ergodic,
we have π(si,k) = limt→∞ P [R(t) = si,k]. We denote vector
π = (π1, . . . , πn) in which the i-th component is the fraction
of time the random walk spends in vertice i of set V , where
n = |V |. Therefore, πi =

∑
k
π(si,k).

3.1 CTRW-C steady state distribution
We investigate the SS distribution of either a very fast or

a very slow CTRW-C. Consider a very fast walker, in par-
ticular, much faster than the timescale at which the graphs
change. Thus, every time the graph changes, the random
walk quickly steps through all vertices in this graph. Intu-
itively, the random walk converges to the SS distribution of
the static graph before the dynamic graph process changes
to a new graph. This intuition leads to the following theo-
rem (see [2] for proof).
Let Πk denote the steady state fraction of time spent in

graph Gk. Let π(Gk) = (π1(Gk), . . . , πn(Gk)) denote the
steady state distribution of a random walk on the static
graph Gk.

Theorem 3.1. For a sufficiently large γ,

π =
m∑

k=1

Πkπ(Gk)

Now consider a very slow walker, in particular, much
slower than the timescale at which the graphs change. Ev-
ery time the walker steps onto a vertex, the incident edges
of this vertex change many times before the walkers steps
off. Intuitively, when the walker steps off it will observe the
incident edges in “steady state”. Thus, the probability the
walker steps from vertex i to vertex j is proportional to the
steady state probability that edge (i, j) is present. The SS
distribution of the random walk is the solution of this new
random walk on a weighted static graph. This intuition
leads to the following theorem (see [2] for proof).

Theorem 3.2. For a sufficiently small γ, the steady state
distribution π is equivalent to the steady state of a continu-
ous time Markov chain with infinitesimal generator matrix
R = [ri,j ], ∀i, j ∈ V , where

ri,j =
{
γ
∑m

k=1 1((i, j) ∈ Ek) Πk 1/deg(i, k) if i 6= j

0 otherwise

and 1(·) is the indicator function and deg(i, k) is the degree
of vertex i in graph Gk.

3.2 CTRW-D steady state distribution
In a CTRW-D the walker spends a fraction of time that

is constant across the vertices of the graph. This observa-
tion is quite remarkable, since it means we can traverse the
graph at arbitrary speeds, independently of graph dynamics,
while being able to characterize the steady state distribution
that the walker will observe. This observation leads to the
following theorem (see [2] for proof).
Let si,k ∈ U be a vertex snapshot.

Theorem 3.3. In CTRW-D, π(si,k) = Πk/n, i ∈ V , k =
1, . . . ,m,

As a consequence, we have that πi = 1/n, for all i ∈ V .
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