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I. INTRODUCTION

Estimating the most influential nodes in a network is a
fundamental problem in network analysis. Influential nodes
may be important spreaders of diseases in biological networks,
key actors in terrorist networks, or marketing targets in social
networks. By identifying such central nodes, one can devise
efficient strategies for prevention of diseases or crime and
efficient marketing strategies.

The goal of this paper is to estimate the k most central
nodes in a network through parsimonious sampling. Centrality
determines the relative importance of a particular node within
the network. Conventional measures of node centrality include
degree, betweenness, and closeness [1].

For networks for which complete information is available,
there are exact and approximation algorithms that can ef-
ficiently obtain the k most central nodes. However, when
complete information is not available and networks need to
be sampled online in the wild, these algorithms are no longer
adequate for the task. In this paper we design and evaluate
algorithms that identify the k most central nodes of a network
in an online fashion, i.e., by examining only a small fraction
of the network nodes. We compare the performance of these
algorithms on real-world data (two collaboration networks, an
Internet autonomous system network and a social network)
through simulation. We identify two sources of error: (1) sam-
pling (collection) error and (2) identification error. Sampling
error occurs when a node in the k most central nodes is not
sampled by the sampling algorithm. Ideally a network crawler
should collect the most central nodes as early as possible
in the sampling process. We observe that in graphs with
highly skewed degree distribution, random walks achieve low
sampling errors early in the sampling process. Identification
error occurs when a sampled top k node is not identified as
such. Here, even if the most central nodes have been sampled
(collected) we still need to be able to identify them.
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For each of the three centrality metrics considered in this
paper we pose the following questions

1) How do we estimate the top k most central nodes, and
what is the impact of node degrees on our ability to identify
central nodes?

2) What are the contributions of sampling (collection) error
and identification error on the effectiveness of sampling and
identifying the k top central nodes?

3) How can we take advantage of the ability to obtain node
degrees while sampling nodes in a network?

We give the following (partial) answers to the questions
above:

1) We observe that random walk sampling can effectively
collect a significant fraction (more than 80%) of the k largest
degree nodes in all the considered networks, once 5% of the
nodes are sampled;

2) We discover that sampling error is larger in networks that
have less skewed degrees whereas estimation error is larger in
networks in which betweenness and closeness centrality are
weakly correlated to degree centrality;

3) We observe that degree centrality acts as a good alias for
other centrality metrics for a number of networks, and show
that a simple random walk based algorithm outperforms com-
plex strategies recently proposed in the literature in identifying
the k most central nodes (for betweenness and closeness).
Future work consists of devising methods to take advantage
of collected information about node degrees, even when the
latter is not a good alias for other centrality metrics.

II. DATA SETS

A. Data Set Description

Our data sets are real world traces of representative graphs,
which we classify into three categories: collaboration, device,
and social networks. Let n and m be the number of nodes
and edges in the network. In this paper we study four traces,
referred to as CA-CONDMAT, CA-HEPPH, AS-SNAPSHOT

and EMAIL-ENRON:
1) Collaboration networks: the CA-CONDMAT and

CA-HEPPH traces are collaboration networks from ArXiv
Condensed Matter (n = 23, 133 and m = 186, 936) and
ArXiv High Energy Physics (n = 12, 008 and m = 237, 010),
respectively. The data covers papers published in the period
January 1993 to April 2003 [2];

2) Device networks: the AS-SNAPSHOT is a snapshot of
the structure of the Internet at the level of autonomous systems,
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reconstructed from BGP tables posted by the University of
Oregon Route Views Project (n = 22, 963 and m = 48, 436).
This snapshot was created by Mark Newman from data of July
22, 2006 [3];

3) Social networks: the EMAIL-ENRON trace corresponds
to an email communication network from Enron (n = 36, 692

and m = 367, 662) [4].
Note that each of the above networks consists of one

connected component or one of the connected components is
substantially larger than the others, in which case we restrict
ourselves to the largest connected component.

B. Data Set Characteristics
In this section we report, for each of our four traces, 1)

the skewness of degree distributions, and 2) the correlation
between degree and other centrality metrics. As we will show
in §IV, these two characteristics are important factors in
determining the performance of sampling and identification
strategies, respectively.

a) Skewness: Given the degree distributions, we seek a
metric which correlates to how fast a random walk collects the
top k nodes with highest degrees in such networks. To this
goal, we consider the skewness s of the degree distribution
(see Table I). In §IV we will show that the skewness is indeed
correlated to how fast a random walk can collect the top k

most central (degree, betweenness and closeness) nodes.
b) Correlation: In many networks, betweenness and

closeness centralitity are known to be correlated with node
degree [5]. To investigate the extent that this correlation occurs
in our traces, Table I reports the Pearson correlation coefficient
[6] between ranks by node degree and other centralities.

Note that the Pearson correlation coefficient characterizes
the extent of linear relationship that exists between two ranks,
over all nodes. Using all nodes, not only the top k nodes,
prevents problems that arise when correlating sequences of
elements composed of different elements. For a simple exam-
ple, the Pearson correlation between sequences (1, 2, 3) and
(4, 5, 6) equals 1, even though the two sequences are disjoint.

Table I shows that betweenness and closeness centrality
have a positive correlation with degrees in all considered
networks. Such correlation suggests that node degree can be
used as an alias to identify the most central nodes according
to other centrality metrics. In §IV we experimentally validate
this observation through simulations, which indicate that this
simple strategy in most cases outperforms more sophisticated
strategies.

TABLE I
DEGREE DISTRIBUTION CHARACTERISTICS AND CORRELATION

BETWEEN DEGREE, BETWEENNESS, AND CLOSENESS CENTRALITY

Network r Degree Skewness, s [7]Betweenness Closeness
AS-SNAPSHOT 0.7067 0.4757 43.6
EMAIL-ENRON 0.6951 0.4849 15.6
CA-CONDMAT 0.7142 0.6741 5.6
CA-HEPPH 0.6004 0.7020 4.8

III. SAMPLING AND IDENTIFICATION METHODS

A. Sampling Methods

In this paper we consider six sampling methods (see Table
II): 1) random-walk sampling (RW) [8]; 2) random-walk
sampling with uniform restarts (RWJ and RWU) [8]; 3)
frontier sampling (FS) [9]; 4) expansion sampling (XS) [10];
5) adjusted expansion sampling (AXS); and 6) randomized ex-
pansion sampling (RXS). The first four methods are described
in [8], [9], [10]. For convenience, in what follows we briefly
describe XS. Then we suggest a subtle adjustment to XS in
§III-A2 and propose RXS in §III-A3.

1) Expansion sampling (XS): Given a graph G(V,E), let
N(M) be the neighborhood of a given set of vertices M ∈ V .
Starting from an arbitrary node, XS iteratively adds nodes from
N(M) to M , prioritizing those that have the largest number
of neighbors in V \ (N(M) ∪M).

It is often the case that, in order to retrieve the degrees
of the nodes in N(M), a crawler has to visit such nodes.
Nevertheless, the original description of XS [10] does not
account for the cost of visiting these nodes. In what follows
we describe a subtle variation of expansion sampling, which
allows us to 1) fairly compare XS against other methods, by
charging XS for exploring N(M) and 2) use the information
obtained about N(M) to estimate the most central nodes.

2) Adjusted Expansion Sampling (AXS): To adjust XS so as
to account for the need to visit each node (in N(M)) before
learning its degree, AXS maintains two sets: the set of marked
nodes and the set of sampled nodes. The set of marked nodes,
M , is equivalent to the one used by expansion sampling. The
set of sampled nodes S equals M along with the nodes in
N(M) that have been visited by the crawler. Then, the top
k most central nodes are identified among M , incurring cost
|S|. Refer to [11] for the precise description of AXS.

3) Randomized Expansion Sampling (RXS): Next, we
propose a randomized version of expansion sampling. Let
u(v), v ∈ S be the number of edges from v to V \S. The aim of
RXS is to avoid the cost of visiting all neighbors of the sampled
set S before selecting the next node in N(S) to be added to
S. To this goal, RXS selects a node v ∈ S with the largest
u(v) and proceed to sample one of its neighbors at random,
adding it to S. The rationale behind RXS is to heuristically
assume that the network has positive degree assortativity and
that a neighbor w of the node with largest u(v), v ∈ S, is
likely to have the largest u(w) among all vertices in N(S).
Refer to [11] for the precise description of RXS

B. Identification Methods

Given a sampled network, how do we select the top k

nodes with largest centrality? The selection of the top k
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TABLE II
TABLE OF NOTATION

method parameter = RW when...
random walk [8]
random walk fixed restart [8] p, prob. restart p = 0
random walk restart [8] α, uniformity level α = 0
frontier sampling [9] h, # of walkers h = 1
(adjusted) expansion sampling (§III-A2)
randomized expansion sampling (§III-A3)

nodes with largest degree centrality is straightforward, once we
assume that crawlers can sample node degrees when traversing
the network. For betweenness and closeness centrality, we
consider the following two approaches:

1) Degree Centrality as Alias to Betweenness and Closeness
Centrality: Traversed nodes are sorted according to their
queried degrees. The top k nodes in the sorted list are taken
as the top k nodes with highest betweenness and closeness
centrality.

2) Re-calculation of Centrality Metrics in the Sampled
Network: Given the subgraph induced by the sampled nodes,
closeness and betweenness centralities are computed for each
of the nodes in the subgraph. Nodes are sorted based on the
computed values and the top k are selected.

IV. EXPERIMENTAL RESULTS

In this section we report the results of our experiments on
the impact of the system parameters on the different methods
to find the top k nodes in the network. Our experimental goals
are to show that random walk sampling coupled with degrees
used as an alias to other centrality metrics, suffice in order to
find the top k nodes in the four networks described in §II.

We performed fifty simulation runs for each network topol-
ogy and set of parameters. We report the averages as well as
the standard deviation of the performance metric of interest.
When evaluating the performance of the sampling strategies,
the metric of interest is the fraction of top k nodes that are con-
tained in the sampled set. When evaluating the performance of
the identification strategy, the metric of interest is the overlap
ratio between the identified nodes and the actual top k nodes.
Note that as k is fixed, both false positives and false negatives
follow from our metrics.

A. Sampling Strategy: When Does a Random Walk Suffice?

In this section we compare RW against the other sampling
strategies described in §III, where the goal is to collect the top
10 largest degree nodes. Results concerning other centrality
metrics exhibit similar trends.

1) RWJ and RWU: Figure 1(a) and 1(b) compare RW
against RWJ and RWU, respectively, for EMAIL-ENRON. (Fig-
ure 1(e) and (f) are for CA-CONDMAT). Recall that RWJ
and RWU with parameters p = 0 and α = 0, respectively,
degenerate to RW. As shown in Figure 1, the performance of

RWJ and RWU monotonically decreases with respect to p and
α, i.e., RW outperforms the other strategies.

2) FS: Figure 1(c) and 1(g) compares RW against FS. FS
leverages multiple random-walkers which is specially useful in
order to sample graphs with multiple connected components.
As shown in Figure 1, we observed no gains in using FS
instead of RW, which might be explained in part by the fact
that we focus only on the largest connected component of each
network.

3) XS: Figure 1(d) and 1(h) compares RW against XS and
its variants, AXS and RXS. Since XS utilize only part of the
samples it collects in order to identify the top k nodes, its
performance is the poorest among the four considered strate-
gies. In EMAIL-ENRON, RW is the most efficient approach
for collecting the 10 largest degree nodes. In CA-CONDMAT,
however, XS and its variants outperform RW. In particular,
RXS outperforms AXS even though RXS does not visit all the
neighborhood of the marked nodes before deciding which node
to subsequently mark (see §III-A1).

In order to compare the performance of the four sampling
methods across the four considered traces, we present prelimi-
nary observations on the relationship between degree skewness
and the performance of the different methods. Due to space
constraints, here we present results for EMAIL-ENRON and
CA-CONDMAT. Refer to [11] for the results of other traces.

The traces that present larger values of s, AS-SNAPSHOT

and EMAIL-ENRON, are also those at which RW outperforms
the other approaches. As s decreases (see Table I), the per-
formance of AXS and RXS increases (see Figures 1(d) and
1(h)) and the one of RW decreases. The degree skewness, s,
appears to be an important predictor of the performance of
different sampling techniques. Future work consists of further
investigating such relationship.

B. Identification Strategy: Degree as alias for closeness and
betweeness Centralities?

We now focus on identifying the top k central nodes out
of the sampled network. In this section we consider two
strategies: a) RW with degree as an alias to other metrics
and b) AXS with recomputation of centralities in the sampled
network.

1) Betweenness Centrality: Figures 2(a)-(d) exhibit the
overlap ratio of the top 10 most central betweenness nodes as
a function of the sampled fraction of nodes. Note that the max-
imum overlap ratio that can be achieved at the identification
step corresponds to the sampled fraction of top k nodes in the
sample set (dotted lines in Figure 2). The degree alias strategy
identifies more than 70% of the top k central nodes from a
sample of no more than 5% of the network. The recalculation
strategy, in contrast, only identifies 25% of the nodes with the
same sample size. Interestingly, using the degree as an alias to
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Fig. 1. Performance of RW against other sampling methods

betweenness centrality is not only more effective but also more
efficient than calculating betweenness centrality values for the
subgraph induced by the samples. Let n′ and m′ be the number
of nodes and edges in the sampled network. The worst-case
complexity of the former is O(n′ log n′) whereas of the later
is O(n′m′ + n′2 log n′) using state of the art algorithms [12].

Using degree as an alias to betweenness centrality yields
better results in AS-SNAPSHOT and EMAIL-ENRON as op-
posed to CA-HEPPH and CA-CONDMAT. This suggest that
skewness, s (see Table I) might affect not only the performance
of the sampling strategy but also that of the identification
strategy. Note that the degree alias strategy fails to estimate the
correct top k nodes in CA-HEPPH. This might be explained,
in part, by the fact that the rank correlation between node
degree and betweenness in CA-HEPPH is the lowest, 0.6004.
However, this observation requires further investigation, since
as discussed in §II-B, rank correlation as reported in Table I
accounts for the ranks of all nodes and not only for the ranks
of top nodes.

2) Closeness Centrality: Figures 2(e)-(h) show the overlap
ratio of the top 10 most central closeness nodes as a function of
the sampled fraction of nodes. The degree alias strategy when
used to find nodes with high closeness centrality yields poorer
performance when compared to betweenness centrality. For
small values of sampled fraction of nodes, the alias strategy
still performs better than recomputing betweenness centrality
at the graph induced by the samples.

Note that the recalculation strategy yields relatively con-
sistent performance regardless of the trace, outperforming the
degree alias strategy when the fraction of sampled nodes is
large. However, the recalculation of closeness centrality yields
the same worst-case time complexity as the one of between-
ness [13]. Devising an improved identification strategy, which

leverages information about node degrees collected during the
sample phase, and tailored for closeness centrality, is subject
for future work.

V. RELATED WORK

There is a vast literature on approximations and heuristics
for estimating node centralities [12], [14], [15]. However, to
the best of our knowledge, our work is the first to study
the problem of estimating the top k most central nodes in a
network, comparing multiple centrality metrics under different
network topologies and accounting for both sampling and
identification errors.

Chan et al. [14] introduce a framework to approximate node
centralities in real-world networks that are known to exhibit
modularity. Bader et al. [12] propose a betweenness centrality
approximation algorithm based on an adaptive sampling tech-
nique. Our goal, in contrast, is to rank nodes according to their
centralities rather than approximating the centrality values.

Okamoto et al. [15] propose an algorithm to rank the
top k nodes with highest closeness centrality. They used the
approximation algorithm presented in [13], which samples l

vertices uniformly at random and computes the average of l

shortest-path distances from each node to the l sampled nodes
to estimate closeness centrality. In contrast, we show that the
use of random-walk sampling, leveraging the fact that node
degrees are visible while sampling the network, in many cases
suffices to get the top k nodes with highest centrality.

Borgatti et al. [16] present the effect of sampling on
centrality measures. Their results indicate that the accuracy
of centrality measures degrades gracefully as the sample size
decreases. In this paper, we extend such conclusion to the
problem of estimating the top k most central nodes.

Maiya and Berger-Wolf [10] proposed Expansion Sampling
(XS). The authors show that XS collects high central nodes
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Fig. 2. Overlap ratio of top 10 central nodes and their estimates (dotted lines show the fraction of top 10 nodes in the sample set). The top is for betweenness
centrality and the bottom is for closeness centrality.

sampling a small fraction of the network. In this paper,
we adjust the costs incurred by XS and show that simpler
strategies, such as random walk sampling, when leveraging
degree information collected during the sampling process,
yield estimates that are as accurate as the ones obtained
through XS or other competing methods.

Avrachenkov et al. [17] present the advantages of the use
of random walks to estimate page ranks, and study multiple
variations over the standard random walk strategy. In a related
paper [18], the authors discuss the use of random walks to
estimate the top k nodes with highest page rank. In this paper,
in contrast, we are interested in degree centrality, as well as
other centrality metrics. In addition, while [17] and [18] focus
on the web graph, in this paper we consider a more diverse
set of topologies.

VI. CONCLUSION

A well known way to find the most central nodes in a
network consists of coupling random walk sampling (or one
of its variants) with a method to identify the most central
nodes in the subgraph induced by the samples. Although it is
commonly assumed that degree information is collected during
the sampling step, in previous works this information has not
been used at the identification step [10], [18]. In this paper,
we showed that using degree information at the identification
step in a very naive way, namely setting the degree as an alias
to other centrality metrics, yields promising results.
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