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Exploring statistics of locally connected subgraph patterns (also known as network motifs) has helped researchers better
understand the structure and function of biological and online social networks (OSNs). Nowadays the massive size of some
critical networks – often stored in already overloaded relational databases – effectively limits the rate at which nodes and
edges can be explored, making it a challenge to accurately discover subgraph statistics. In this work, we propose sampling
methods to accurately estimate subgraph statistics from as few queried nodes as possible. We present sampling algorithms
that efficiently and accurately estimate subgraph properties of massive networks. Our algorithms require no pre-computation
or complete network topology information. At the same time, we provide theoretical guarantees of convergence. We perform
experiments using widely known data sets, and show that for the same accuracy, our algorithms require an order of magnitude
less queries (samples) than the current state-of-the-art algorithms.
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1. INTRODUCTION
Understanding the structure and function of complex systems is of wide interest across many fields
of science and technology, from sociology to physics and biology. Networks with similar topolog-
ical features such as degree distribution or graph diameter can exhibit significantly different local
structure. Thus, there is much interest in exploring small connected subgraph patterns in networks,
which are often shaped during their growth and have been used to characterize communication
and evolution patterns in OSNs [Chun et al. 2008; Kunegis et al. 2009; Zhao et al. 2011; Ugander
et al. 2013]. For example, simple 3-node subgraph classes such as “the enemy of my enemy is my
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friend” and “the friend of my friend is my friend” are well known evolution patterns in social net-
works. Kunegis et al. [Kunegis et al. 2009] considered the significance of these subgraph patterns
in Slashdot Zoo1 evaluating the stability of signed friend/foe subgraphs. Other examples include
counting relative frequencies of closed triangle (i.e., three users connected with each other), which
are probably more prevalent in Facebook than Twitter, since Twitter serves more as a news media
than an OSN service [Kwak et al. 2010]. More complex examples of k-node subgraph frequencies,
k > 3, include Milo et al. [Milo et al. 2002] defined network motifs (or local subgraph patterns) as
small subgraph classes occurring in networks at numbers that are significantly larger than found in
random networks. Network motifs have been used for pattern recognition in gene expression pro-
filing [Shen-Orr et al. 2002], protein-protein interaction predication [Albert and Albert 2004], and
coarse-grained topology generation [Itzkovitz et al. 2005].

Unfortunately, characterizing the frequencies of subgraph patterns by searching and counting
subgraphs is computationally intensive since the number of possible k-node combinations in the
original graph increases exponentially with k. To address this problem, Kashtan et al. [Kashtan
et al. 2004] proposes to sample subgraphs using random edge sampling but this method scales
poorly with the subgraph size and the results can be heavily biased. Wernicke [Wernicke 2006]
proposes another approach (FANMOD) based on enumerating subgraph trees. The latter relies on
random node sampling, which is either not supported by most OSN APIs or is too resource intensive
to be practical (with respect to cache misses and vacant user ID space [Ribeiro et al. 2012]).
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Fig. 1. An example of G, and CIS relationship graphs G(2), G(3), and G(4).

Thus, it is paramount for such algorithms to query the graph on-the-fly without knowledge of the
complete topology. Moreover, such algorithms should output accurate high accuracy estimates of
subgraph concentrations with as few queries as possible. Recently, Bhuiyan et al. [Bhuiyan et al.

1www.slashdot.org
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2012] proposed a Metropolis-Hastings-based algorithm (henceforth denoted GUISE) that jointly es-
timates concentrations of 3-node, 4-node, and 5-node connected induced subgraphs (CISes). How-
ever, the rejection sampling procedure of the Metropolis-Hastings random walk (MHRW) used in
GUISE has received much criticism lately in the precise context of graph sampling [Gjoka et al.
2011; Ribeiro and Towsley 2012]. Rejecting a sample incurs the cost of sampling without gathering
information in exchange. And, information-wise, the rejected samples may contain more informa-
tion about the statistic of interest than the accepted samples. Recently, Ribeiro and Towsley [Ribeiro
and Towsley 2012] shows that MHRW rejects information-rich samples when trying to estimate the
degree distribution of a graph. The end result is a sampling method that exhibits large estimation
errors. A new estimation method that does not suffer from the above mentioned problems is needed.

In this work we propose two algorithms to accurately estimate subgraph concentrations. The first
one, denoted PSRW, significantly improves upon GUISE in two fronts: (a) PSRW can estimate
statistics of CISes of any size, in contrast to GUISE that is limited to jointly estimating 3-node,
4-node, and 5-node CISes; and (b) through careful design PSRW does not reject samples, making
the estimation errors of PSRW significantly lower than those of GUISE. Most importantly, PSRW
is not an incremental improvement over GUISE but rather a different type of random walk that is
designed without the need to reject samples, using the Horvitz-Thompson estimator [Ribeiro and
Towsley 2010] to unbias the observations. The second algorithm we propose, denoted Mix Subgraph
Sampling or MSS, can jointly estimate CISes of sizes k − 1, k, and k + 1 for any k ≥ 4, not only
generalizing GUISE (GUISE 3-node, 4-node, and 5-node CISes is the special case k = 4) but also
achieving lower estimation errors. One of the main differences between GUISE and PSRW or MSS
is that our random walk is designed to sample nodes that are important for the CIS estimation and
use all of the gathered samples in the estimation phase.

Through simulations we show that both of our methods (PSRW and MSS) are significantly more
accurate than GUISE for either the same number queried nodes or the same walk clock time (using
a modern computer). The walk clock time is measured under the assumptions of access to a local
database or a remote database (assuming 100 milliseconds of query response delay). Our methods
represent the network as a CIS relationship graph, whose nodes are connected and induced sub-
graphs (CISes) of the original network. Fig. 1 illustrates a CIS relationship graph for subgraphs
of two, three, and four node subgraphs. Our algorithms consist of running a random walk (RW)
on the CIS relationship graph. Besides its accuracy, our algorithms are lightweight. They require
little memory (more precisely, O(k2 + B) space where k is the subgraph size and B is the num-
ber of queried nodes) and, more importantly, significantly fewer queries than the state-of-the-art
methods to achieve the same accuracy. Note that building the completely CIS relationship graph is
prohibitively expensive, both in terms of queries and memory. Thus, our RW methods do not require
the CIS relationship graph and there is no need to know the complete graph topology in advance,
only the parts of the network already queried. We also prove that a RW on the CIS relationship graph
achieves asymptotically unbiased concentration estimates of the distinct subgraphs on the original
network.

This paper is organized as follows. The problem formulation is presented in Section 2. Section 3
presents methods for estimating subgraph class concentrations. The performance evaluation and
testing results are presented in Section 4. Section 5 presents applications of our methods to two real
OSN websites. Section 6 summarizes related work. Concluding remarks then follow.

2. PROBLEM FORMULATION
Let G = (V,E, L) be a labeled undirected graph where V is the set of nodes, E be a set of pairs of
V (edges), and L is a set of labels li,j associated with edges (i, j) ∈ E. If G represents a directed
network, then we attach a label to each edge that indicates the direction of the edge (→, ←, ↔).
Edges may have other labels too, for instance, in a signed network, edges have positive or negative
labels.

An induced subgraph of G, G′ = (V ′, E′, L′), V ′ ⊂ V , E′ ⊂ E and L′ ⊂ L, is a subgraph
whose edges and associated labels are all in G, i.e. E′ = {(i, j) : i, j ∈ V ′, (i, j) ∈ E}, L′ = {li,j :
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i, j ∈ V ′, (i, j) ∈ E}. We define C(k) as the set of all connected and induced subgraphs (CISes)
with k nodes in G. Then we partition C(k) into Tk equivalence classes C(k)

1 , . . . , C
(k)
Tk

where CISes

within C
(k)
i are isomorphic and any pair of CISes from C

(k)
i , C(k)

j , i ̸= j are not isomorphic. To
illustrate our notation, in what follows we present some simple examples. Fig. 2 (a) shows all three-
node motifs of any unlabeled undirected network. When G is an unlabeled undirected network, then
the number of three-node motifs is T3 = 2, and C

(3)
1 and C

(3)
2 are the sets of CISes in G isomorphic

to motifs 1 and 2 in Fig. 2 (a) respectively. Fig. 2 (b) shows all four-node motifs of any unlabeled
undirected network, in this case T4 = 6. Fig. 3 shows all three-node motifs of any directed network,
in this case T3 = 13. Fig. 4 shows all motifs when G is of any signed network, in this case T3 = 7.
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Fig. 2. All classes of three-node and four-node undirected and connected subgraphs (The numbers are the subgraph class
IDs).
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Fig. 3. All classes of three-node directed and connected subgraphs.
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Fig. 4. All classes of three-node signed and undirected subgraphs.

The concentration of C(k)
i is

ω
(k)
i =

|C(k)
i |
|C(k)|

, 1 ≤ i ≤ Tk,

where |C(k)
i | is the number of CISes in C

(k)
i . For example, we have |C(3)| = 7 for G in Fig. 1, and

C
(3)
1 includes three CISes: 1) CIS consisting of a, b, and e; 2) CIS consisting of a, c, and e; 3) CIS

consisting of a, d, and e. Then we have ω
(3)
1 = 3/7. In this work we are interested in accurately

estimating ω
(k)
i by querying a small number of nodes. Note that the network topology is unknown
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to us and we are only given one initial connected subgraph of size k > 1 in G to bootstrap our
algorithm.

3. CONNECTED AND INDUCED SUBGRAPH SAMPLING METHODS
In this section we first introduce the notion of a “CIS relationship graph”. Then we propose two
subgraph sampling methods based on random walks (RWs) on CIS relationship graphs to estimate
the concentrations of subgraph classes of a specific size k. Finally, we propose a sampling method
to solve the problem of measuring the concentrations of subgraph classes of sizes k − 1, k, and
k+ 1 simultaneously, where the special case k = 4 is equivalent to the problem studied in Bhuiyan
et al. [Bhuiyan et al. 2012]. A list of notations used is shown in Table I.

Table I. Table of notations

G = (V,E, L) graph under study
d(v), v ∈ V degree of node v in G

G(k) = (C(k), R(k)) k-node CIS relationship graph
V (s), s ∈ C(k) set of nodes for the k-node CIS s

E(s), s ∈ C(k) set of edges for the k-node CIS s

N(s), s ∈ C(k) N(s) ⊂ V , set of nodes in V \V (s) which are connected to nodes in the k-node CIS s

X(s), s ∈ C(k) X(s) ⊂ C(k), neighbors of k-node CIS s in graph G(k)

d(k)(s), s ∈ C(k) degree of the k-node CIS s in G(k)

C(s) subgraph class of the CIS s

C
(k)
i the i-th k-node subgraph class in G
Tk number of k-node subgraph classes
ω
(k)
i concentration of subgraph class C(k)

i

I(k)(x), x ∈ C(k+1) number of k-node CISes contained in (k + 1)-node CIS x

C(k−1)(s), s ∈ C(k) the set of (k − 1)-node CISes contained in the CIS s

O(k)(s′), s′ ∈ C(k−1) the set of k-node CISes that contain the CIS s′

B number of sampled CISes
B∗ number of queries

3.1. CIS relationship graph
Let C(k) (2 ≤ k < |V |) denote the set of all k-node CISes in G. Two different k-node CISes s1
and s2 in C(k) are connected if and only if they have exactly k−1 nodes in common. Formally, the
undirected graph G(k) = (C(k), R(k)) represents the CIS relationships between all k-node CISes
in G, where C(k) and R(k) are the node and edge sets for graph G(k) respectively. When two k-
node CISes si and sj in C(k) differ in one and only one node, there exists an edge (si, sj) in graph
G(k). We say that two k-node CISes si and sj are reachable if and only if there is at least one path
between them in graph G(k), and G(k) is connected if and only if every pair of subgraphs in C(k) is
reachable. Fig. 1 shows an example of an original unlabeled graph G and its associated CIS graphs
G(2), G(3), and G(4). Then we have the following theorems.

THEOREM 3.1. If the graph G is connected, then the k-node CIS graph G(k) is connected,
2 ≤ k < |V |. �

THEOREM 3.2. If the graph G is connected and either non-bipartite, or contains a node with
degree larger than two, all k-node CIS graphs G(k) are non-bipartite, where 2 ≤ k < |V |. �
The proofs of all Theorems in this section are included in the Appendix for completeness.
Remark: Theorems 3.2 states that G(k) is non-bipartite for most connected graph G. Connectedness
is critical for removing biases from RW sampling of G(k). Biases introduced through sampling
a bipartite graph using a lazy RW are easily removed. Biases introduced though sampling via a
classical RW can only be removed if the graph is non-bipartite.
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3.2. Subgraph random walk (SRW)
In this subsection, we propose a sampling method, subgraph random walk (SRW), and apply it over
graph G(k), 2 ≤ k < |V | to estimate concentrations of subgraph classes. SRW can be viewed as a
regular RW over graph G(k). We define X(s) ⊂ C(k) as the set of neighbors of the current k-node
CIS s sampled in G(k). From an initial k-node CIS, SRW randomly selects a CIS from X(s) as the
next-hop CIS. SRW moves to this neighbor CIS and repeats the process. Clearly X(s) cannot be
directly obtained since G(k) is not available in advance. In what follows we first discuss the number
of queries required to compute X(s) at each step. We observe that X(s) can be obtained using at
most k queries, which makes SRW both practical and efficient. We then show in detail how to apply
SRW to sample k-node CISes from the original graph G in detail. Finally we present our method
for estimating concentrations of subgraph classes based on sampled CISes.

First, we present a critical observation for analyzing the performance of the SRW: Querying
nodes in a k-node CIS s is suffices to obtain X(s), i.e., the neighbors of s in G(k). Denote by
V (s) the set of nodes in s and E(s) the set of edges in s. Denote by N(s) the set of nodes in
V \V (s) connected to nodes in V (s). Let E(N)(s) denote the set of edges between nodes in N(s)
and nodes in V (s). For example, when s is the 3-node CIS consisting of nodes b, c, d shown in
Fig. 1 (c), we have d(3)(s) = 3, V (s) = {b, c, d}, E(s) = {(b, c), (b, d), (c, d)}, N(s) = {a},
E(N)(s) = {(a, b), (a, c), (a, d)}, and X(s) includes three CISes: the CIS consisting of nodes 1)
a, b, and c; 2) a, b, and d; as well as 3) a, c, and d. Clearly a neighbor of s in G(k) corresponds
to a subgraph that includes k − 1 nodes in s and one node in N(s). For each (k − 1)-node set
{v1, . . . , vk−1} ⊂ V (s) and each node u ∈ N(s), the induced subgraph s′ = (V (s′), E(s′)) of
these k nodes, i.e., V (s′) = {v1, . . . , vk−1, u} and E(s′) = {(u, v) : u, v ∈ V (s′) and (u, v) ∈ E},
is a neighbor of s in G(k) when s′ is a connected graph. Note that we can obtain E(s′) without
querying any node in N(s), since E(s′) = {(u, v) : u, v ∈ V (s′) and (u, v) ∈ E} = {(u, v) :
u, v ∈ V (s′) and (u, v) ∈ E(s) ∪ E(N)(s)}. Therefore X(s) can be computed based on V (s),
N(s), E(s), E(N)(s), which are all obtained by querying nodes in s.
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Fig. 5. An example of applying a SRW to graph G(3).

The SRW algorithm proceeds in steps. Consider the i-th step, i ≥ 1, and the current node is
si∈C(k). SRW first computes X(si), and then selects a CIS randomly from X(si) as the next CIS
to visit. For example, as shown in Fig. 5, suppose that the current sampled CIS si consists of nodes
a, b, and c. After querying a, b, and c, we obtain N(si) = {e, d} and the edges between nodes in
N(si) and nodes in si. Then our SRW algorithm computes X(si) (i.e., the five CISes connecting
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Algorithm 1: The pseudo-code of computing X(s).

/* s ∈ C(k). N(s) is the set of nodes in V \V (s) connected to nodes in V (s). E(N)(s)
is the set of edges between nodes in N(s) and nodes in V (s). */

input : k-node CIS s = (V (s), E(s)), N(s), E(N)(s)
/* X(s) ⊂ C(k) is the set of neighbors of s in G(k). */
output: X(s)

X(s) = {};
foreach {v1, . . . , vk−1} ⊂ V (s) do

foreach u ∈ N(s) do
/* generateGraph({v1, . . . , vk−1}, u, E(s), E(N)(s)) returns a graph s′ = (V (s′), E(s′)),

whose node set V (s′) = {v1, . . . , vk−1, u}, and edge set
E(s′) = {(u, v) : u, v ∈ V (s′) and (u, v) ∈ E(s) ∪ E(N)(s)} */

s′ = generateGraph(v1, . . . , vk−1, u, E(s), E(N)(s));
/* connectedGraph(s′) returns "True" when s′ is a connected graph, and

"False" otherwise. */
if connectedGraph(s′) then

X(s) = X(s) ∪ {s′}
end

end
end

to si shown in Fig. 5), and randomly select a new CIS from X(si) as the next CIS si+1 to sample.
The pseudo-code of computing X(si) is shown in Algorithm 1. As mentioned earlier, X(si) is
computed without querying any node in N(si). Moreover, since V (si+1) differs from V (si) in one
and only one node, SRW only needs to query one node in the original graph G at each step. Let
d(k)(s) be the degree of a k-node CIS s in graph G(k), that is the number of k-node CISes connected
to s. Formally, SRW then can be modeled as a Markov chain with transition matrix P (k) = [P

(k)
x,y ],

x, y ∈ C(k), where P
(k)
x,y is defined as the probability that CIS y is selected as the next sampled

k-node CIS given that the current k-node CIS is x. P (k)
x,y is computed as

P (k)
x,y =

{
1

d(k)(x)
, x ∈ C(k), y ∈ X(x),

0, otherwise.

The stationary distribution π(k) =
(
π(k)(s) : s ∈ C(k)

)
of this Markov chain is

π(k)(s) =
d(k)(s)∑

t∈C(k) d(k)(t)
.

SRW is a regular RW over the undirected graph G(k), and we have the following theorem
from [Lovász 1993; Ribeiro and Towsley 2010].

THEOREM 3.3. If graph G(k) (2 ≤ k < |V |) is non-bipartite and connected, the stationary
distribution for the SRW to be at a k-node CIS s ∈ C(k) converges to π(k) =

(
π(k)(s) : s ∈ C(k)

)
.

The probabilities of a SRW sampling edges in E(k) are equal when the SRW reaches the steady
state. �
Remark: As mentioned earlier, in most practical applications the connected non-bipartite assump-
tion over G(k) only implies that the original graph G must have at least one node with degree three
or larger and be connected.

Let C(s) denote the subgraph class of a CIS s. C(s) can be easily obtained by using the NAUTY
algorithm [McKay 1981; 2009]. Define 1(P) as the indicator function that equals one when the
predicate P is true, and zero otherwise. Let sj , j > 0, be the k-node CIS sampled by the SRW
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at step j. Using the CISes visited by a SRW after B > 1 steps, we use the Horvitz-Thompson
estimator [Ribeiro and Towsley 2010] to estimate the concentration of subgraph class C(k)

i as:

ω̂
(k)
i =

1

L

B∑
j=1

1(C(sj) = C
(k)
i )

d(k)(sj)
, 1 ≤ i ≤ Tk, (1)

where L =
∑B

j=1
1

d(k)(sj)
.

THEOREM 3.4. If G(k) (2 ≤ k < |V |) is non-bipartite and connected, then ω̂
(k)
i (1 ≤ i ≤ Tk)

in Eq. (1) is an asymptotically unbiased estimator of ω(k)
i . �

Remark: Theorem 3.4 provides the theoretical basis for producing unbiased estimates of the con-
centration of each CIS class in the graph under study. Proof is found in the appendix.

3.3. Pairwise subgraph random walk (PSRW)
In this subsection, we use SRW as a building block for our next subgraph statistics method. Instead
of sampling over graph G(k), we apply SRW to G(k−1), and observe that two adjacent sampled
(k − 1)-node CISes (i.e., an edge in G(k−1)) contains exactly k distinct nodes. Thus, we show
how to obtain k-node CISes by sampling edges from G(k−1). Using this property we propose a
better sampling method than SRW, which we denote pairwise subgraph random walk (PSRW).
PSRW samples k-node CISes by applying SRW to G(k−1), 2 < k ≤ |V |. In what follows we show
that PSRW produces more accurate estimates than SRW as observed from experimental results in
Section 4. It remains an open theoretical problem why PSRW significantly outperforms SRW. Our
conjecture is that it is due to the fact that a RW on G(k−1) converges to its stationary behavior
more quickly than G(k). Let sj (1 ≤ j ≤ B) be the j-th (k − 1)-node CIS sampled by applying a
SRW to G(k−1). Consider the edge (sj , sj+1) in G(k−1). This edge is associated with a k-node CIS
consisting all nodes contained in sj and sj+1. Therefore we obtain k-node CISes s∗j (1 ≤ j < B),
where s∗j is the k-node CIS generated by (sj , sj+1). Fig. 6 shows an example of applying a PSRW
to sample 3-node CISes s∗1, s∗2, . . . from G. We can see that s∗1, s∗2, . . . are generated based on 2-
node CISes s1, s2 sampled by applying a SRW to G(2), where G and G(2) are shown in Fig. 1.
For any k-node CIS x ∈ C(k), let I(k−1)(x) denote the number of (k − 1)-node CISes contained
by x. For example, 3-node CIS s∗1 in Fig. 1 contains two 2-node CISes: 1) the CIS consisting of
nodes A and B, and 2) the CIS consisting of nodes A and E. Thus, I(2)(s∗1) = 2. Similarly we

have I(2)(s∗3) = 3. It is easy to show that a k-node CIS x associates with (I(k−1)(x))(I(k−1)(x)−1)
2

edges in graph G(k−1) and x is sampled by PSRW if and only if at least one of its associated edges
in G(k−1) is sampled. For example, as shown in Fig. 7 where k = 3, s∗3 is sampled when PSRW

samples at least one of its associated edges in G(2), i.e., the (I(2)(s∗3))(I
(2)(s∗3)−1)

2 = 3 red edges in
Fig. 7. From Theorem 3.3, we know that SRW samples each edge in G(k−1) with equal probability
at steady state, therefore k-node CIS x is sampled with the following probability

π
(k)
E (x) =

I(k−1)(x)
(
I(k−1)(x)− 1

)∑
y∈C(k) I(k−1)(y)

(
I(k−1)(y)− 1

) .
Thus, using the Horvitz-Thompson estimator, we estimate the concentration of subgraph class C(k)

i
as follows,

ω̃
(k)
i =

1

H

B−1∑
j=1

1(C(s∗j ) = C
(k)
i )

I(k−1)(s∗j )
(
I(k−1)(s∗j )− 1

) , 1 ≤ i ≤ Tk, (2)
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where H =
∑B−1

j=1

[
I(k−1)(s∗j )

(
I(k−1)(s∗j )− 1

)]−1
.

ba ea ca dc

ae

b

ae

c

da

c

…

s1 s2 s3 s4 s5

s1
* s2

* s3
* s4

*

…

ca

da

c

Fig. 6. An example of applying a PSRW to sample 3-node CISes from G. s1, s2, . . . , are 2-node CISes sampled by
applying a SRW to G(2). s∗1 , s∗2 , . . . , are 3-node CISes generated based on s1, s2, . . . . G and G(2) are graphs shown in
Fig. 1.

ea

ba

ca

da

cb

db

dc

da

c

s3
*

G(2)

Fig. 7. 3-node CIS s∗3 can be generated by each of the three red edges in G(2).

THEOREM 3.5. If G(k) (2≤k≤|V |) is non-bipartite and connected, then ω̃
(k)
i (1≤ i≤Tk) in

Eq. (2) is an asymptotically unbiased estimator of ω(k)
i . �

Remark: We find that PSRW cannot be easily further extended, that is, we cannot sample k-node
CISes based on applying a SRW to graph G(k′), where k′ < k − 1. This is because it is difficult
to analyze and remove sampling errors when we generate a k-node CIS using k − k′ + 1 CISes
consequently sampled by a SRW over G(k′). Note that k − k′ + 1 consequently sampled k′-node
CISes might contain less than k different nodes.

3.4. Mix Subgraph Sampling (MSS)
The previous two subsections focus on subgraph classes of a specific size k. Motivated by [Bhuiyan
et al. 2012], we study the problem of estimating the concentrations of subgraph classes of sizes
k − 1, k, and k + 1 simultaneously. Clearly we can naively solve this problem by applying three
independent PRSWs to calculate the concentrations of subgraph classes of sizes k−1, k, and k+1.
However, this naive approach is inefficient. Next, we propose a more efficient sampling method, mix
subgraph sampling (MSS), which requires fewer queries to achieve the same estimation accuracy.
MSS samples k-node CISes by applying a SRW to G(k).
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Let sj , j > 0, be the k-node CIS sampled by the SRW at step j. Using the CISes visited by a
SRW after B > 1 steps, MSS estimates the concentrations of k-node subgraph classes using Eq. (1).
Similar to PSRW, MSS uses sj (1 ≤ j ≤ B) to generate (k+1)-node CISes, and then estimates the
concentrations of (k + 1)-node subgraph classes using Eq. (2). Last, we show how MSS estimates
the concentrations of (k− 1)-node subgraph classes based on sj , 1 ≤ j ≤ B. Let C(k−1)(s) denote
the set of (k − 1)-node CISes contained in a CIS s. For example, if s is the 4-node CIS consisting
of nodes a, b, c, and e shown in Fig. 1, then S(3)(s) consists of three 3-node CISes: 1) the CIS
consisting of nodes a, b, and c; 2) the CIS consisting of nodes a, b, and e; 3) the CIS consisting of
nodes b, c, and e. Define O(k)(s′) as the set of k-node CISes that contain a CIS s′. For example, if
s′ is the 3-node CIS consisting of nodes a, c, and e shown in Fig. 1, then O(4)(s′) consists of two
4-node CISes: 1) the CIS consisting of nodes a, b, c, and e; 2) the CIS consisting of nodes a, c, d,
and e. Finally MSS estimates the concentration of subgraph class C(k−1)

i as follows,

ω̆
(k−1)
i =

1

Q

B∑
j=1

1

d(k)(sj)

∑
s′∈C(k−1)(sj)

1(C(k−1)(s′) = C
(k−1)
i )

|O(k)(s′)|
, 1 ≤ i ≤ Tk−1, (3)

where Q =
∑B

j=1
1

d(k)(sj)

∑
s′∈C(k−1)(sj)

1
|O(k)(s′)| .

THEOREM 3.6. If G(k) (3≤k≤|V |) is non-bipartite and connected, then ω̆
(k−1)
i (1≤ i≤Tk−1)

in Eq. (3) is an asymptotically unbiased estimator of ω(k−1)
i . �

4. DATA EVALUATION
In this section, we first introduce our experimental datasets and a comparison model, which is used
to evaluate the performance of our methods for characterizing CIS classes of a specific size k in
comparison with state-of-the-art methods. Then we present the experimental results of PSRW for
k ∈ {3, . . . , 6}. Last, we compare the special case MSS k = 3, 4, 5 against GUISE [Bhuiyan et al.
2012]. Our experiments are conducted on a Dell Precision T1650 workstation with an Intel Core
i7-3770 CPU 3.40 GHz processor and 8 GB DRAM memory.

4.1. Datasets
Our experiments are performed on a variety of publicly available datasets taken from the Stan-
ford Network Analysis Platform (SNAP)2. We start by evaluating the performance of our meth-
ods in characterizing 3-node CISes over four million-node graphs: Flickr, Pokec, LiveJournal, and
YouTube, contrasting our results with ground truth computed through brute force. Since it is com-
putationally intensive to calculate the ground-truth of k-node CIS classes for k≥4 in large graphs,
the experiments for k-CISes, k ≥ 4, are performed on three relatively small graphs Epinions, Slash-
dot, and Gnutella, where computing the ground-truth by brute force is feasible. We also specifically
evaluate the performance of our methods for characterizing signed CIS classes in the Epinions and
Slashdot signed graphs. Flickr, LiverJournal, and YouTube are popular photo, blog, and video shar-
ing websites respectively, where a user can subscribe to other user updates such as photos, blogs,
and videos. Pokec is the most popular on-line social network in Slovakia, and has been in existence
for more than ten years. These four networks can be represented by directed graphs, where nodes
representing users and a directed edge from u to v represents that user u subscribes to user v or u
tags user v as a friend. Epinions is a who-trust-whom OSN providing consumer reviews, where a
directed edge from u to v represents that user u trusts user v. Slashdot is a technology-related news
website for its specific user community, where a directed edge from u to v represents that user u
tags user v as a friend or foe. Epinions and Slashdot networks can be represented by signed graphs,
where a positive edge from u to v indicates that u trusts v or u tags user v a friend, and a negative

2www.snap.stanford.edu
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edge from u to v indicates that u distrusts v or u tags user v a foe. Gnutella is a peer-to-peer file
sharing network. Nodes represent users in the Gnutella network and edges represent connections
between the Gnutella users. In the following experiments, we evaluate our proposed methods on the
largest connected component (LCC) of these graphs (summarized in Table II).

Table II. Overview of graph datasets used in our simulations.

Graph LCC
nodes edges directed-edges

Flickr [Mislove et al. 2007] 1,624,992 15,476,835 22,477,014
Pokec [Takac and Zabovsky 2012] 1,632,805 22,301,964 30,622,564
LiveJournal [Mislove et al. 2007] 5,284,459 48,688,097 76,901,758

YouTube [Mislove et al. 2007] 1,134,890 2,987,624 4,942,035
Epinions [Richardson et al. 2003] 119,130 704,267 833,390
Slashdot [Leskovec et al. 2009] 77,350 416,695 516,575
Gnutella [Leskovec et al. 2009] 6,299 20,776 20,776

Note: “directed-edges” refers to the number of directed edges in a directed graph,
“edges” refers to the number of edges in an undirected graph, and “LCC” refers to
the largest connected component of a given graph.

4.2. Comparison model
First we introduce the error metric used to compare the different sampling methods. Mean square
error (MSE) is a common measure to quantify the error of an estimate ω̂ with respect to its true
value ω > 0. It is defined as MSE(ω̂) = E[(ω̂ − ω)2] = var(ω̂) + (E[ω̂]− ω)

2. We can see that
MSE(ω̂) decomposes into a sum of the variance and bias of the estimator ω̂, both quantities are
important and need to be as small as possible to achieve good estimation performance. When ω̂ is
an unbiased estimator of ω, then MSE(ω̂) = var(ω̂). In our experiments, we study the normalized
root mean square error (NRMSE) to measure the relative error of the estimator ω̂i of the subgraph
class concentration ωi, i = 1, 2, . . . . NRMSE(ω̂i) is defined as:

NRMSE(ω̂i) =

√
MSE(ω̂i)

ωi
, i = 1, 2, . . . .

When ω̂i is an unbiased estimator of ωi, then NRMSE(ω̂i) is equivalent to the normalized stan-
dard error of ω̂i, i.e., NRMSE(ω̂i) =

√
var(ω̂i)/ωi. Note that our metric uses the relative error.

Thus, when ωi is small, we consider values as large as NRMSE(ω̂i) to be acceptable. In all our
experiments, we average the estimates and calculate their NRMSEs over 1,000 runs.

We compute the NRMSE of our methods for estimating concentrations of CIS classes of specific
size k, in comparison with that of two state-of-the-art algorithms FANMOD [Wernicke 2006] and
GUISE in [Bhuiyan et al. 2012] under the constraint that the number of queries cannot exceed B∗.
As mentioned earlier, issues arise when comparing our methods of estimating concentrations of CIS
classes of a specific size k to that of the method in [Bhuiyan et al. 2012], as the latter wastes most
queries to sample CISes of size not equal to k. To address this problem, we use adapt the MHRW of
GUISE [Bhuiyan et al. 2012] to focus on subgraphs of size k, which we name metropolis-Hastings
subgraph random walk (MHSRW). Later we compare MSS k = 3, 4, 5 directly to GUISE [Bhuiyan
et al. 2012] showing that MSS is significantly more accurate than GUISE.

To sample k-node CISes, MHSRW works as follows: At each step, MHSRW randomly selects
a k-node CIS y from X(x), the set of neighbors of the current k-node CIS x on CIS relationship

graph G(k), and accepts the move with probability min
{
1, d(k)(y)

d(k)(x)

}
. Otherwise, it remains at x.

MHSRW samples k-node CISes uniformly when it reaches the steady state. Based on CIS samples
sj (1 ≤ j ≤ B), MHSRW estimates the concentration of subgraph class C

(k)
i for graph Gd as
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follows,

ω̆
(k)
i =

1

B

B∑
j=1

1(C(sj) = C
(k)
i ), 1 ≤ i ≤ Tk.

4.3. Results of estimating 3-node CIS class concentrations
In this subsection we show results of estimating 3-node CIS class concentrations for undirected,
directed, and signed graphs respectively.

1) 3-node undirected CIS classes: Fig. 8 shows the results of estimating ω
(3)
2 , the concentration

of the 3-node undirected CIS class 2 (or the triangle as shown in Fig. 2 (a)) for Flickr, Pokec, Live-
Journal, and YouTube graphs, where B∗ is the number of queries, i.e., the number of distinct nodes
required to query in the original graph G. The true value of ω(3)

2 for Flickr, Pokec, LiveJournal, and
YouTube are 0.0404, 0.0161, 0.0451, and 0.0021 respectively. The results show that PSRW exhibits
the smallest errors, which are almost an order of magnitude less than errors of MHSRW and FAN-
MOD for Flickr and Pokec graphs. SRW is more accurate than MHSRW and FANMOD but less
accurate than PSRW. Note that PSRW uses only B∗ = 3 × 103 queries and still exhibits smaller
errors than the other methods that use one order of magnitude more queries B∗> 3 × 104. Hence,
PSRW reduces more than 10-fold the number of queries required to achieve the same estimation
accuracy. Meanwhile we observe that an order of magnitude increase in B∗ roughly decreases the
error by 1/

√
10 for all methods studied. Fig. 9 plots the evolution of ω(3)

2 estimates as a function of
B (the number of sampling steps) for one run. We observe that PSRW converges to the value of ω(3)

2
when 103, 103, 2 × 105, and 104 CISes are sampled for Flickr, Pokec, LiveJournal, and YouTube
respectively, and is much more quickly than the other methods. To compare the performances of
these methods after the random walks have entered the stationary regime, Fig. 10 shows the results
of estimating ω

(3)
2 based on 104 CISes sampled after 106 steps. We can see that PSRW outperforms

the other methods at steady state.
2) 3-node directed CIS classes: Fig. 11 shows the concentrations of 3-node directed CIS classes

for Flickr, Pokec, LiveJournal, and YouTube graphs, and the subgraph classes and their associated
IDs are listed in Fig. 3. The total numbers of 3-node CISes are 1.4 × 1010, 2.0 × 109, 6.9 × 109,
and 1.5 × 109 for Flickr, Pokec, LiveJournal, and YouTube respectively. Fig. 12 compares con-
centrations estimates of 3-node directed CIS classes for different methods under the same number
of queries B∗ = 10, 000. The results show that subgraph classes with smaller concentrations have
larger NRMSEs. PSRW is significantly more accurate than the other methods for most subgraph
classes. SRW is not shown in the plots but its performance lies again somewhere between MHSRW
and FANMOD.

3) 3-node signed and undirected CIS classes: Figure 13 shows the concentrations of 3-node
signed and undirected CIS classes (as listed in Fig. 4) for Epinions and Slashdot graphs. Epinions
and Slashdot graphs have 1.7 × 108 and 6.7 × 107 signed and undirected 3-node CISes respec-
tively. Fig. 14 shows the estimated concentrations of signed and undirected 3-node CIS classes for
different methods under B∗ = 2, 000 queries. The results show that subgraph classes with smaller
concentrations have larger NRMSEs. All NRMSEs given by PSRW are much smaller than one
for all subgraph classes. PSRW is almost four times more accurate than MHSRW and FANMOD.
MHSRW exhibits slightly smaller errors than FANMOD for most subgraph classes.

4.4. Results of estimating 4-node CIS class concentrations
Figure 15 shows the concentrations of 4-node undirected CIS classes (as listed in Fig. 2 (b)) for
Epinions, Slashdot, and Gnutella graphs. Epinions, Slashdot, and Gnutella graphs have 2.5× 1010,
2.1 × 1010, and 1.0 × 107 undirected four-node CISes respectively. Fig. 16 shows the estimated
concentrations of undirected four-node CIS classes for different methods under B∗=2, 000 queries.
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Fig. 8. (Flickr, Pokec, LiveJournal, and YouTube) Compared NRMSEs of concentration estimates of 3-node undirected
CIS classes for different methods.

The results show that all NRMSEs given by PSRW are smaller than 0.4 for subgraph classes 1 to 5.
PSRW is significantly more accurate than the other methods.

4.5. Results of estimating 5-node and 6-node CIS class concentrations
Because the number of k-node CISes exponentially increases with k, it is computationally intensive
to calculate the ground-truth of k-node CIS classes’ when k ≥ 5. Nevertheless, we proceed to
evaluate our methods based on a relatively small graph Gnutella which has 6,299 nodes and 20,776
edges for k = 5 and k = 6. Gnutella has 3.9 × 108 five-node CISes and 1.7 × 1010 six-node
CISes. It takes almost one day to obtain all these subgraphs using the software provided in Kashtan
et al. [Kashtan et al. 2004]. Fig. 17 shows NRMSEs of concentration estimates of one five-node
undirected CIS class and one five-node undirected CIS class for Gnutella graph. The five-node
undirected CIS class we studied is topologically equivalent to a five-node tree with depth one. The
true value of its concentration is 0.183 for Gnutella graph. The results show that PSRW is nearly four
times more accurate than MHSRW and FANMOD. The six-node undirected CIS class we studied
is topologically equivalent to a six-node tree with depth one. The true value of its concentration is
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(c) LiveJournal, ω(3)
2 = 0.0451.
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2 = 0.0021.

Fig. 9. (Flickr, Pokec, LiveJournal, and YouTube) Compared ω
(3)
2 estimates of 3-node undirected CIS classes for different

methods.

0.0589 for the Gnutella graph. The results show that PSRW is nearly twice as accurate as MHSRW
and FANMOD.

4.6. Time cost of sampling CISes
The time cost of sampling a k-node CIS consists of two parts: 1) computational time, and 2) the
query response time. We observe that the computation times increase with k for PSRW, MHSRW,
and FANMOD, and the computation times are smaller than 0.1 second for k ≤ 5, which is usually
smaller than the query rate limits for querying a node imposed by OSNs. Thus, we can easily find
that PSRW is computationally more efficient than MHSRW, since PSRW samples k-node CISes
from graph G(k−1), while MHSRW samples k-node CISes from graph G(k). We compare the per-
formances of different methods under the same time budget T . We do simulations to evaluate the
performance of different methods for two cases: 1) the graph is stored in a local database with near
zero query delay, and 2) the graph is stored in a remote database with 100 milliseconds query delay.
Fig. 18 shows the NRMSEs of estimates of ω(3)

2 under T=200, 400, 600, 800, and 1,000 seconds for
the Flickr graph. The results show that PSRW is four and five times as accurate as the other methods
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Fig. 10. (Flickr, Pokec, LiveJournal, and YouTube) Compared NRMSEs of concentration estimates of 3-node undirected
CIS classes for different methods at the stationary state.
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Fig. 11. (Flickr, Pokec, LiveJournal, and YouTube) Concentrations of 3-node directed CIS classes.

for the same time budget T for the local and remote databases respectively. The results for other
graphs are similar, so we omit them here.

4.7. Comparison with GUISE
Next, we evaluate the performance of our method MSS for the special case of simultaneous es-
timation of CISes k = 3, 4, 5 concentrations as in GUISE [Bhuiyan et al. 2012]. Let ω(k) =

(ω
(k)
1 , . . . , ω

(k)
Tk

) and ω̂(k) = (ω̂
(k)
1 , . . . , ω̂

(k)
Tk

), where ω
(k)
i is the concentration of subgraph class

C
(k)
i and ω̂

(k)
i is an estimate of ω(k)

i . We define the root mean square error (RMSE) as:

RMSE(ω̂(k)) =

√√√√E[
Tk∑
i=1

(ω̂
(k)
i − ω

(k)
i )2], k = 3, 4, and 5,
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(c) LiveJournal
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Fig. 12. (Flickr, Pokec, LiveJournal, and YouTube) Compared NRMSEs of concentration estimates of 3-node directed CIS
classes for different methods under the same number of queries B∗ = 10, 000.
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Fig. 13. (Epinons and Slashdot) Concentrations of 3-node signed and undirected CIS classes.
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(b) Slashdot

Fig. 14. (Epinons and Slashdot) Compared NRMSEs of concentration estimates of 3-node signed and undirected CIS
classes for different methods under the same number of queries B∗ = 2, 000.
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Fig. 15. (Epinons, Slashdot, and Gnutella) Concentrations of the 4-node undirected CIS classes.

which measures the error of the estimate ω̂(k) with respect to its true value ω(k). Note here the
variable ω̂(k) of function RMSE(ω̂(k)) is a vector. In our experiments, we average the estimates
and calculate their RMSEs over 1,000 runs. Fig. 19 shows RMSEs of estimates of ω(3), ω(4), and
ω(5) for different methods under B∗=3, 000 queries. Besides MSS and GUISE, we also use PSRW
to estimate ω(3), ω(4), and ω(5) respectively. For simplicity, we provide PSRW a budget of 1,000
queries for each value of k, since it is hard to determine the optimal budget allocation for PSRW to
jointly estimate ω(3), ω(4), and ω(5), The results show that MSS is more accurate than PSRW, and
is nearly three times more accurate than GUISE.
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Fig. 16. (Epinons and Slashdot) Compared NRMSEs of concentration estimates of 4-node undirected CIS classes for
different methods under the same number of queries B∗ = 2, 000.

5. APPLICATIONS
In this section, we apply our methods to understand intrinsic properties of some large OSNs. We
conduct experiments on Chinese OSNs Sina microblog3 and Douban4. Sina microblog is the most
popular Chinese microblog service, and has many features similar to Twitter. It has more than 300
million registered users as of February 2012. Douban provides an exchange platform for reviews and
recommendations on movies, books, and music albums. It has approximately 6 million registered
users as of 2009 [Zhao et al. 2011]. Douban and Sina microblog can be both modeled as directed
graphs, where edges are formed by users’ following and follower relationships. We conducted ex-
periments in September 2012 on Sina microblog and Douban. By using PSRW, we sampled approx-
imately 500,000 3-node CISes from Sina microblog and Douban respectively. Fig. 20 (a) shows
the estimated concentrations of 3-node directed CIS classes. It shows that closed subgraph classes
(classes 8–13) have much lower concentrations than unclosed subgraph classes (classes 1–6), which
indicates that Douban and Sina microblog have a small fraction of closed triangles, and thus they
have small clustering coefficients, unlike the friendship relationship based OSNs such as Facebook.

3www.weibo.com
4www.douban.com
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(a) 5-node tree with depth one

1000 2000 3000 4000 5000
0.1

0.15

0.2

0.25

0.3

0.35

number of queries B*

E
rr

or
: N

R
M

S
E

 

 
PSRW (proposed)
MHSRW [Bhuiyan et al. 2012]*
FANMOD [Wernicke 2006]

(b) 6-node tree with depth one

Fig. 17. (Gnutella) Compared NRMSEs of concentration estimates of one 5-node undirected CIS class and one 6-node
undirected CIS class for different methods.
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(a) Local database (near zero query delay)

200 400 600 800 1,000

10
−1

10
0

10
1

total time T (seconds)

E
rr

or
: N

R
M

S
E

(ω
2(3

) )

 

 
PSRW (proposed)
MHSRW [Bhuiyan et al. 2012]*
FANMOD [Wernicke 2006]

(b) Remote database (100 milliseconds of query delay)

Fig. 18. (Flickr) NRMSEs of error estimates of ω(3)
2 under for computer time T .

We observe that the concentration of subgraph class 7 is almost zero, and is omitted from the con-
centration results shown in Fig. 20. From Fig. 3, we observe that subgraph class 7 is a directed
circle of three nodes, which corresponds to three persons A, B, C, with A following B, B following
C, and C following A. A concentration of zero might be explained by the asymmetry of following
relationships, where a following edge usually indicates statuses of the two end users, e.g., an edge
from a low-status user to high-status user such as a celebrity. Therefore, three users with different
statuses are unlikely to form a closed circle.

Next, we study the Z-scores of these subgraph classes. The Z-score of each subgraph class C(k)
i ,

k > 1, is defined as

Z
(k)
i =

ω
(k)
i − µ

(k)
i

σ
(k)
i

, 1 ≤ i ≤ Tk, (4)
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Fig. 19. (Gnutella) Compared errors of characterizing 3-node, 4-node, and 5-node undirected CIS classes simultaneously
for different methods under the same number of queries B∗ = 3, 000.

where µ(k)
i and σ

(k)
i are the mean and the standard deviation of the concentration of C(k)

i for random
graphs with the same in-degree and out-degree sequence as Gd. Clearly the Z-score of C(k)

i is a
qualitative measure on the significance of C(k)

i [Milo et al. 2002].
We propose a method to estimate µ

(k)
i and σ

(k)
i as follows: First, we use graph sample methods

such as RW to estimate the joint in-degree and out-degree distribution ϕ = (ϕ(i, j) : i, j ≥ 0),
where ϕ(i, j) is the fraction of nodes in Gd with in degree i and out degree j. In essence, this is
similar to the problem of estimating node label densities as studied in our previous work [Ribeiro
and Towsley 2010]. We use the configuration model [Molloy and Reed 1995] to generate random
networks according to the estimated joint in-degree and out-degree distribution ϕ̂(i, j). To generate
a random graph, we first generate |V | nodes, and the in-degree and out-degree of each node are
randomly selected according to ϕ̂(i, j), where the graph size |V | can be estimated by sampling
methods proposed in [Katzir et al. 2011]. We then use the configuration model [Molloy and Reed
1995] to generate a group of random graphs. Algorithm 2 describes the pseudo-code of our method
for generating a random graph. Finally, we compute the mean and standard deviation of the subgraph
class concentration based on randomly generated graphs.

Algorithm 2: Pseudo-code of random graph generation algorithm.
1: Step 1: Assign each node v with dI(v) incoming edge stubs (in-stubs) and dO(v) outgoing edge stubs

(out-stubs).
2: Step 2: Pick an unconnected in-stub randomly from all nodes’ in-stubs. Denote the associated node of

selected in-stub as vi.
3: Step 3: Pick an unconnected out-stub randomly from all nodes’ out-stubs. Denote the associated node of

selected out-stub as vo. Repeat this step when vo = vi or there already exists an edge from vi to vj .
4: Step 4: Connect the selected in-stub and out-stub.
5: Repeat Step 2 to Step 4 until no unconnected in-stub or out-stub remains.

Using the above method, we estimate the joint degree distribution based on nearly one million
unique nodes sampled by RW for Sina microblog and Douban respectively, and then generate 1,000
random graphs to compute the mean and the standard deviation of 3-node subgraph classes’ con-
centrations, which are used for estimating Z-scores shown in Eq. (4). Fig. 20 (b) shows estimated
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Z-scores of 3-node directed CISes. We find that subgraph classes 1 and 3 have higher Z-scores in
Sina microblog than Douban, where subgraph class 1 can be viewed as a listening type, i.e., users
follow many celebrities, and subgraph class 3 can be viewed as a broadcast type, i.e., celebrities
have many fans. This indicates that Sina microblog acts more like a news media than an OSN,
which is similar to Twitter as observed in [Kwak et al. 2010]. Subgraph class 6 has a higher Z-score
in Douban than Sina microblog. It may be because Douban is an interest-based network, where an
edge between two users with many common interests is more likely to be symmetric than asymmet-
ric.
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Fig. 20. Results of real applications for all 3-node directed CISes.

6. RELATED WORK
In this paper we aim to characterize small subgraphs in a single large graph, which is a very different
problem than that of estimating the number of subgraph patterns appearing in a large set of graphs
studied in [Hasan and Zaki 2009]. Our problem can be directly solved by methods of enumerating
all subgraphs of a specific size and type, such as triangle listing [Chu and Cheng 2012] and maxi-
mal clique enumeration [Cheng et al. 2011]. There are several subgraph concentration computation
methods for motif discovery using different subgraph enumeration and counting methods [Chen
et al. 2006; Kashani et al. 2009]. However these methods need to process the whole graph and are
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computationally hard for large graphs. Meanwhile most of these methods are difficult to combine
with sampling techniques. OmidiGenes et al. [Omidi et al. 2009] proposed a subgraph enumeration
and counting method using sampling. However this method suffers from unknown sampling bias. To
estimate subgraph class concentrations, Kashtan et al. [Kashtan et al. 2004] proposed a connected
subgraph sampling method using random edge sampling. However their method is computationally
expensive when calculating the weight of each sampled subgraph, which is used for correcting bias
introduced by edge sampling. To address this drawback, Wernicke [Wernicke 2006] proposed a new
method named FANMOD based on enumerating subgraph trees to detect network motifs. To sample
a k-node CIS, their method needs to explore more than k nodes, which is expensive when exploring
graph topology via crawling. Neither the method proposed in [Kashtan et al. 2004] nor [Wernicke
2006] can be applied to detect motifs in OSNs without the complete knowledge of the graph topol-
ogy, since they rely on uniform edge sampling and uniform node sampling techniques respectively,
which may not be feasible because these sampling functions are not supported by most OSNs.

Similar to estimate subgraph class concentrations, Bhuiyan et al. [Bhuiyan et al. 2012] propose
a method GUISE for estimating 3-node, 4-node, and 5-node subgraph frequency distribution, that
is, (nx

N : x is a 3-node, 4-node, or 5-node undirected and connected subgraph class), where nx be
the number of undirected CISes in subgraph class x, and N is the total number of 3-node, 4-node,
and 5-node undirected CISes. GUISE builds a new graph Gmix, whose node set consists of all 3-
node, 4-node, and 5-node CISes. For a 3-node CIS, all 3-node and 4-node CISes having 2 and 3
nodes in common respectively are its neighbors in Gmix. For a 4-node CIS, all 3-node, 4-node, and
5-node CISes having 3, 3, and 4 nodes in common respectively are its neighbors in Gmix. For a
5-node CIS all 4-node and 5-node CISes with 4 nodes in common are its neighbors in Gmix. To
estimate subgraph frequency distribution, GUISE performs a Metropolis-Hastings based sampling
method over Gmix. Hardiman and Katzir [Hardiman and Katzir 2013] propose random walk based
sampling methods for estimating the network average and global clustering coefficients. Gjoka et
al. [Gjoka et al. 2013] propose a uniform node sampling based method for estimating the clique
(i.e., complete subgraph) size distribution. The methods in [Hardiman and Katzir 2013; Gjoka et al.
2013] are difficult to extend to measure concentrations of subgraph classes.

7. CONCLUSIONS
In this paper we propose two random walk based sampling methods to estimate subgraph class
concentrations when the complete graph topology is not available. The experimental results show
that our methods PSRW and SRW only need to sample a very small fraction of subgraphs to obtain
an accurate and unbias estimate, and significant reduces the number of samples required to achieve
the same estimation accuracy of state-of-the-art methods such as FANMOD. Also, simulation results
show that PSRW is much more accurate and computational efficient than SRW.

Appendix
LEMMA 7.1. When a graph G = (V,E) is connected, for each node v ∈ V , we can generate a

(k + 1)-node tree with a root v that contains min{d(v), k} neighbors, where d(v) is the degree of
v in graph G, and 1 ≤ k ≤ |V | − 1.

PROOF. One can use breadth-first search (BFS) to traverse G starting from v, then build a tree
from the first k nodes visited by BFS, where 2 ≤ k ≤ |V |. This tree clearly contains min{d(v), k}
neighbors of v and the root node is v.

LEMMA 7.2 ([ROBERTS AND ROSENTHAL 2004; JONES 2004; LEE ET AL. 2012]). Let
G = (V,E) be connected and non-bipartite. Let uj be the j-th node sampled by a RW on G,
where 1 ≤ j ≤ B and B be the number of samples. Denote by π = (πv, v ∈ V ) the stationary
distribution, where πv = dv

2|E| . Then, for any function f(v) : V → R, where
∑

∀v∈V f(v) <∞, we
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have

lim
B→∞

1

B

B∑
j=1

f(uj)
a.s.−−→ 1

|V |
∑
∀v∈V

f(v)πv.

LEMMA 7.3 ([MEYN AND TWEEDIE 2009; RIBEIRO AND TOWSLEY 2010]). Let G =
(V,E) be an undirected graph which is connected and non-bipartite. Let (uj , vj) (1 ≤ j ≤ B)
be the j-th edge sampled by a RW, where B is the number of sampled edges. Denote function
f(u, v) :V ×V →R. Then, we have

lim
B→∞

1

B

B∑
j=1

f(uj , vj)
a.s.−−→ 1

|E|
∑

∀(u,v)∈E

f(u, v),

for any function f with
∑

∀(u,v)∈E f(u, v) <∞. �

7.1. Proof of Theorem 3.1
We use induction to prove G(k) is connected.

Initial Step. Since G is connected, clearly there exists a path (edge sequence) between any two
disconnected edges. Therefore G(2) is connected. Inductive Step. Our inductive assumption is that
G(k) is connected, 2 ≤ k ≤ |V | − 2. We now prove that G(k+1) is also connected. For any two
different CISes x(k+1) and y(k+1) in C(k+1), from Lemma 7.1 we can easily show that there exists a
k-node CIS x(k) contained by x(k+1), and a k-node CIS y(k) contained by y(k+1). When x(k+1) and
y(k+1) are not connected, our inductive assumption shows that there exists a k-node CIS sequence
s
(k)
i (1 ≤ i ≤ l) in graph G(k), where s

(k)
1 connects to x(k), s(k)l connects to y(k), and two adjacent

k-node CIS s
(k)
i and s

(k)
i+1 are connected, where 2 ≤ i < l. Denote by s

(k+1)
1 the (k + 1)-node CIS

consisting of k+1 different nodes appearing in s
(k)
1 and x(k), s(k+1)

l+1 the (k+1)-node CIS consisting

of k + 1 different nodes appearing in s
(k)
l and y(k), and s

(k+1)
i the (k + 1)-node CIS consisting of

k + 1 different nodes appearing in s
(k)
i and s

(k)
i+1, where 2 ≤ i < l. In graph G(k+1), we can easily

find that s(k+1)
1 connects to x(k+1), s(k+1)

l+1 connects to y(k+1), and two adjacent (k+1)-node CISes

s
(k+1)
i and s

(k+1)
i+1 (1 ≤ i ≤ l) are connected. This shows that there exists a path between any two

disconnected nodes ((k + 1)-node CISes) in G(k+1). Therefore graph G(k+1) is connected.

7.2. Proof of Theorem 3.2
Denote by v the node with degree larger than two. Lemma 7.1 indicates that there exists a k-node
tree t with root v which contains at least three neighbors of v, where 4 ≤ k ≤ |V |. We easily find
that t has at least three leaves. Since t is still connected after we remove any leaf, there exist at least
three different (k − 1)-node CISes consisting of k − 1 nodes in t obtained by removing one leaf of
t, and these CISes are connected to each other in graph G(k−1). Similarly there exist at least three
(k−2)-node CISes consisting of k−2 nodes in t by excluding two leaves of t, which are connected
to each other in G(k−2). Therefore, each G(k) (2 ≤ k < |V |) is non-bipartite since it has at least
one odd length loop. When G has no node with degree larger than two, since G is connected and
non-bipartite, we can easily show that G is a |V |-node circle and |V | is odd. For each node v ∈ V ,
we can generate a k-node CIS consisting of v and k − 1 nodes close to v in clockwise direction,
where 2 ≤ k < |V |. Finally there are |V | different k-node CISes, and they form an odd length loop
in graph G(k). Therefore G(k) is non-bipartite.

7.3. Proof of Theorem 3.4
SRW can be viewed as a regular RW over graph G(k), 2 ≤ k < |V |. For each ω

(k)
i , 1 ≤ i ≤ Tk, we

then obtain following equations from Lemma 7.2 and Theorem 3.3 for non-bipartite and connected
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G(k),

lim
B→∞

1

B

B∑
j=1

1(C(sj) = C
(k)
i )

d(k)(sj)

a.s.−−→ 1

|C(k)|
∑

∀s∈C(k)

1(C(s) = C
(k)
i )

d(k)(s)
π(k)(s)

=
1

|C(k)|
∑

t∈C(k) d(k)(t)

∑
∀s∈C(k)

1(C(s) = C
(k)
i )

=
ω
(k)
i∑

t∈C(k) d(k)(t)
.

Similarly, we have

lim
B→∞

1

B

B∑
j=1

1

d(k)(sj)

a.s.−−→ 1∑
t∈C(k) d(k)(t)

.

Thus, we can easily find that ω̂(k)
i (1 ≤ i ≤ Tk) is an asymptotically unbiased estimator of ω(k)

i .

7.4. Proof of Theorem 3.5
To estimate ω̃

(k)
i , 1 ≤ i ≤ Tk, 2 ≤ k < |V |, PSRW can be viewed as a regular RW over the

graph G(k−1). Denote s∗(u,v) as the k-node CIS generated by (u, v) ∈ R(k−1), an edge in G(k−1),

where u, v ∈ C(k−1) are (k − 1)-node CISes. For each ω
(k)
i , 1 ≤ i ≤ Tk, we then obtain following

equations from Lemma 7.3,

lim
B→∞

1

B − 1

B−1∑
j=1

1(C(s∗j ) = C
(k)
i )

I(k−1)(s∗j )
(
I(k−1)(s∗j )− 1

)
a.s.−−→ 1

|R(k−1)|
∑

∀(u,v)∈R(k−1)

1(C(s∗(u,v)) = C
(k)
i )

I(k−1)(s∗(u,v))
(
I(k−1)(s∗(u,v))− 1

)
=

1

2|R(k−1)|
∑

∀s∈C(k)

1(C(s) = C
(k)
i )

=
ω
(k)
i |C(k)|
2|R(k−1)|

.

The last equation holds because the k-node CIS s is generated by (I(k−1)(s))(I(k−1)(s)−1)
2 edges in

R(k−1). Similarly, we have

lim
B→∞

∑B−1
j=1

1

I(k−1)(s∗j )(I(k−1)(s∗j )−1)

B − 1

a.s.−−→ |C(k)|
2|R(k−1)|

.

Thus, we can easily find that ω̃(k)
i (1 ≤ i ≤ Tk) is an asymptotically unbiased estimator of ω(k)

i .
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7.5. Proof of Theorem 3.6
For each ω

(k−1)
i , 1 ≤ i ≤ Tk−1, we obtain following equations from Lemma 7.2 and Theorem 3.3

for non-bipartite and connected G(k),

lim
B→∞

1

B

B∑
j=1

1

d(k)(sj)

∑
s′∈C(k−1)(sj)

1(C(k−1)(s′) = C
(k−1)
i )

|O(k)(s′)|

a.s.−−→ 1

|C(k)|
∑

∀s∈C(k)

π(k)(s)

d(k)(s)

∑
s′∈C(k−1)(s)

1(C(k−1)(s′) = C
(k−1)
i )

|O(k)(s′)|

=
1

|C(k)|
∑

t∈C(k) d(k)(t)

∑
∀s∈C(k)

∑
s′∈C(k−1)(s)

1(C(k−1)(s′) = C
(k−1)
i )

|O(k)(s′)|

=
1

|C(k)|
∑

t∈C(k) d(k)(t)

∑
∀s′∈C(k−1)

∑
s∈O(k)(s′)

1(C(k−1)(s′) = C
(k−1)
i )

|O(k)(s′)|

=
ω
(k−1)
i |C(k−1)|

|C(k)|
∑

t∈C(k) d(k)(t)
.

Similarly, we have

lim
B→∞

∑B
j=1

1
d(k)(sj)

∑
s′∈C(k−1)(sj)

1
|O(k)(s′)|

B

a.s.−−→ |C(k−1)|
|C(k)|

∑
t∈C(k) d(k)(t)

.

Thus, we can easily find that ω̆(k−1)
i (1 ≤ i ≤ Tk−1) is an asymptotically unbiased estimator of

ω
(k−1)
i .
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