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References 1. INTRODUCTION

The study of algebraic solutions of foliations on the
complex projective plane goes back to G. Darboux
[1878]. One of its main contributors in the nine-
teenth century was H. Poincare; at the beginning of
[Poincare 1891], he says:

To find out if an equation of the first order and
of the first degree is algebraically integrable,
it is enough to find an upper bound for the
degree of the integral; after this one need only
perform some purely algebraic calculations.

A more recent milestone in the subject was J. P.
Jouanolou's lecture notes [1979]. An often quoted
result from these notes states that the set of holo-
morphic foliations of the complex projective plane
P2 that do not have an algebraic solution is dense
in the space that parametrizes the foliations; see
[Jouanolou 1979, Chapter 4, p. 157 ff.]. In order
to prove this result, Jouanolou had to construct a
particular example of a foliation of P2 without al-
gebraic solutions. However, both Jouanolou's and
later proofs of this fact depend on the many special
properties possessed by this example; see [Jouanolou
1979, p. 160 ff.; Lins Neto 1988, p. 219 ff.; Cerveau
and Lins Neto 1991, p. 90]. Moreover, all the other
explicit examples of holomorphic foliations of P2

AMS Subject Classification: Primary, 13P10, 34A05, 34C05; . , , , , , . , , . ,, , , n

Secondar 58F18 without algebraic solutions that nave been construc-
Keywords: Grobner bases, holomorphic foliation, algebraic t e d a r e essentially Variations On Jouanolou's. See
solution Section 4 for more details.

© A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 10:4, page 529



530 Experimental Mathematics, Vol. 10 (2001), No. 4

The purpose of this paper is to use the methods field Pid/dxi + P2d/dx2 there corresponds the 1-
of computer algebra to search for new examples of form a = P2dx\ — P\dx2 in the open set UG. Denote
foliations without algebraic solutions. The strategy b y 7 r : C 3 \ { z 0

 = 0}—>t/0 the map
consists in using the Grobner bases method to auto-
mate Poincare's 'purely algebraic calculations'. In n^zuz2) = {z1/z0,z2/z0) = {xux2).

this way we can write down an example of a folia- The pullback n*a is a form in C3 with poles in z0 =
tion that may be expected to have no solutions and Q. NOW choose d so that UJ = z$7r*a is a 1-form that
check whether that is so using the algorithm. is n o t divisible by z0. It is easily checked that u

Of course, Poincare's strategy depends on one be- satisfies all the requirements of the first paragraph,
ing able to find an upper bound for the degree of s o it determines a foliation of P2 . Moreover, it is
the algebraic solution of a given foliation. Although n o t difficult to show that all foliations of P2 can be
such a bound does not always exist, a sharp bound is defined in this way.
known for foliations with no positive rational expo- Of course there is nothing special about Uo, and
nents — see Section 2 for the definition. So we must the same construction holds equally well for both Ux

first check whether a foliation is of this type, before a n d JJ2. However, for the sake of consistency we will
we try to find an algebraic solution. Luckily the foli- assume that the foliations in this paper are always
ations that satisfy this condition form a dense set in defined by vector fields on Uo.
the space that parametrizes holomorphic foliations

r p2 Convention. Let $ be a foliation of P2 . Throughout
In Section 2 we describe the strategy behind the the PaPer the notation ? = 7(PU P2) means that:

algorithm, and use results from the theory of holo- (i) p^p2 are polynomials ofC[xux2] with no com-
morphic foliations to explain why it works. The part mon factors and
of the algorithm that checks that the foliation does (2) 7 is defined in Uo by the vector field P1d/dx1 +
not have positive rational exponents is discussed in P2d/dx2.
Section 3. Finally, in Section 4 we give new exam-
ples of foliations of P2 without algebraic solutions. W e m u s t d e f i n e w h a t [t m e a n s f o r a n algebraic curve
Unlike most other examples these are quite differ- S o f P ' t o b e invariant under 9. Without loss of
ent from Jouanolou's foliation. To check that the generality we may assume that S n Uo ̂  0 , and
examples satisfy the required properties we use an t h a t [t i s t h e s e t o f z e r o e s i n U° o f a Polynomial / G
implementation of our algorithms in the computer C[xux2]. Let 9 = ?(PUP2). Then S is invariant
algebra system Singular [Greuel et al. 1998]. under ? w h e n t h e r e e x i s t s a Polynomial g G C [xx, x2]

such that

2. HOLOMORPHIC FOLIATIONS P1df/dx1 + P2df/dx2 = gf. (2-1)

Let [z0 : z\ : z2] be homogeneous coordinates in the In this case we also say that S is an algebraic solution
complex projective plane P2 . A holomorphic folia- of JF.
tion 9 in P2 is given by a 1-form u = X^Lo Mdzi Now let z G P2 be a singular point of 9. As in
where Ao, Ai, A2 are homogeneous polynomials in the previous paragraph, we can assume that z G Uo

ZQ, ZijZ2 of degree k + 1 such that J]Lo ziAi i s i d e n " a n d t h a t $ = ^(pu ^2). Then P^z) = P2(z) = 0.
tically zero. The singular set of 7 is the algebraic Denote by J?(z) the jacobian of (Pi,P2) in z. If the
variety with equations A{ — 0 for 0 < % < 2. It will eigenvalues of J<j(z) are nonzero then 7 is said to
be denoted by SingJ. be nondegenerate at 2, and we can compute their

Let Ui be the open set of P2 defined by z{ ^ 0. ratios. Following Poincare's terminology [1891] we
Since Uo = C2, a vector field on C2 gives rise to a call these ratios the exponents of the singularity. A
1-form on J70, and thus to another way of defining a nondegenerate foliation is one which is nondegener-
foliation of P2 . For let xx — ZI/ZQ and x2 = z2/z0 be ate at all of its singular points. The set of all expo-
coordinates in Uo and let Pi and P2 be polynomials nents of a nondegenerate foliation JF will be denoted
in C[xi,x2] with no common factors. To the vector by Exp(9r).
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We retain, for the moment, the notation of the Suppose first that Ao is a nonzero polynomial,
previous paragraph. Denote by k(3r) the greater of Then A0(l,y2) is also nonzero, because Ao is ho-
degPi and degP2, and by Pt

U) the homogeneous mogeneous in xi and x2. In particular, y1 does not
components of degree j of the polynomial P{. If divide y2P1 - A- Thus J is defined in Ux by the
k = fc(J), let vector field y1P1d/dy1 + (y2P1 - P2)d/dy2, so that

yi = 0 is invariant under 9\
Ai(2) = a^Pj*"0 - XiP2

(fc"°. On the other hand, if Ao = 0 then we can cancel
yi from (2-2) so that JF is represented in U\ by the

These polynomials play a key role in the next theo- , & \A
rem, which is at the core of the algorithms we pro-
pose. We will denote the line z0 = 0 of P2 by L^. Pidjdyx + (Ai(l, y2) + y1S)d/dy2. (2-3)
Theorem. Let JF be a nondegenerate foliation of P2 . Now the coefficient of A °f degree zero in yx is

m TJ. /• r • • • * A qr •/ A i •/ A ^ ^ i f e ) . But y2P[k) = P^k) + 0, so that A is
(1) The line L^ is invariant under J if and only if , \. . ' u ij n • * i . •v y

 A / r_ . , . , not divisible by j/i. Hence yx — 0 is not a solution
AofJ) zs a nonzero 'polynomial. £ ~ , . , T , ,, - - /1N/«\ r r \ /n~\ • JJ.II J T̂  /r^\^^+ ^ o f ̂  which completes the proof of (1).

(2) / /A 0 (y) is identically zero anrfExp(y)nQ+ = 0 „ , , \ /oX T^ A ,~, v y
nv y / v ; . , . , , , , . /TTT.9 • • We now turn to (2). If Ao(3) = 0 then 7 is a

men am/ irreducible algebraic curve otF mvan- r ,. ,. r , 7 i , rT. AT . . r . o o T; ^ 7 7 , / , foliation of degree k — 1 by [Lins Neto 1988, Lemma
ant under J must nave deqree less than or equal n orkOl T ^ n , . , ., , , T

. v 2, p. 203J. Let o be an irreducible algebraic curve
t0 k(J>' of P2 invariant under 7. Since Exp(^) n Q + = 0 , it

The proof of this theorem follows by collating a num- follows from [Soares 1993, Lemma 5.1, p. 156] that if
ber of known results in the theory of holomorphic S is not smooth then all its singularities are normal
foliations. We give a proof here both for the sake crossings. Finally, by [Cerveau and Lins Neto 1991,
of completeness, and because some of the formulae theorem 1, p. 891] we have that the degree of such a
will be required for our algorithm. For a proof with curve 5 must be smaller than or equal to the degree
a more algebraic-geometric bent, see [Bernstein and of the foliation plus 1. Hence deg£ < k and the
Lunts 1988, Appendix, theorem 4, p. 241]. proof is complete. •

In the proof of the theorem we use the degree of a C o r o | | a r y > We retain the notatlon and hypotheses of
foliation; its definition and properties can be found ^ main ^ ^ g ^ A ( g r ) = Q Then.
in [Lins Neto 1988, Section 1.4]. v J

(1) both Pi and P2 have degree exactly fc(5F);
Proof. Let 2t = 5(PU P2). In order to simplify the ( 2 ) the singuiarities of finL^n Ux are given by
notation we will write k for k(3) and Aj for Aj(£F)
throughout the proof. -Pi^C1.2/2) = Ai(l ,y2) = 0;

Let yi = zo/Zl and y2 = z2/Zl in U,. In these ( 3 ) 7%e tmce md ^ determinant of the jacobian of

coordinates the line Lx has equation Vl = 0. More- y af Q poinf ^ ^ £ ^ n Sing7 are givm by

over, in Un fl U\ we have X\ = 1 V\ and x2 — v2 V\. , /-t \ J J /i \ ±- ? L
> . ° } x Z^1 . 2 wjyi t i ( l ,y2) and rfi(l,y2), respectively, where

Performing this change of variables in the 1-form
P\dx2 — P2dxi and multiplying the resulting form ^1(^1,^2) = A2 + dP{k~1*/dx2,
by ykS2 to cancel the pole, we obtain d^x^x^ - A2dP[k)/dx2 - P^'1)dA1/dx2.

ViP\dy2 — (y2Pi — P2)dyi, (2-2) (4) [0 :0 :1 ] is a singular point of "5 if and only if
P2

(A° (0,1) = Ai (0,1) = 0. Moreover, if [0:0:1] €
where Pi(yi,y2) = tfPi(l/yi,y2/Vi). The coefficient S i n g j then the tmce and the determinant of the

of degree j of P( considered as^a polynomial in y1 jacobian at this point are given by t2(0,1) and
with coefficients in C[y2] is Pz

{ 3){l,y2). Thus ^2(0 ,1), respectively, where

y2Pi -P2 = A0(l ,y2) + yiA1(l,y2) + y\S, h(Xl,x2) = dA1/dx1 - Pf"1*,

for some polynomial S G C ^ , ^ ] . d2{xux2) = A2dP^/dXl - P^d^/dx,.
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Proof. Let k(5) — max{degPi,degP2}- Clearly if Output: the degree of an algebraic solution of the
Ao = x2P[k) - XiP^ is identically zero then both foliation $(Pu P2), or 0 if £F does not have a solution
Pi and P2 must have degree fc, thus proving (1). of degree less than or equal to fc(5F).
Since Ao = 0, it follows from equation (2-3) that ^ L e t k = m a x { d p d p } a n d c o m p u t e A Q =

a smgular pomt of 7 in L^ n ft must satisfy the w _ (fc)

equations x 2 '
^ 2. Let / = E H < *

 w*aa a n d 9 = E|/3|<fc-i v /9^ a n d

A (1? 2/2) — Ai(l, 2/2) — 0, construct the ideal J generated by the polynomi-
, . , /o\ rr,i r i • /o\ r ii r a l s m the us a n d ^ s that are the coefficients of

which proves (2). The formulae in (3) follow from . . , n . ^ n , , ~ , ^ or/-> j.
, , . , , , ,. , , . \ . - 5 , the monomials xa m P1df/dx1 + P2df/dx2-gf.

the computation of the partial derivatives of Px and
Ai(l,y2) + yxS at (0,y2). Note that except possi- 3 ' L e t U = ^ : lal ^ fc}*
bly for [0:0:1], all the singular points of 3" at L^ 4. Choose the element xa of highest order in IX, and
belong to U^ Finally, (4) follows from an argument let Ju be the ideal generated by / and ua - 1.
analogous to the above, applied to [0 : 0 :1] G U2. • 5. If 1 ̂  Ju then return |a| and stop.

The main theorem suggests the following strategy 6- A d d ua to the generators of / , remove xa from It
for checking whether a given foliation has invariant a n d §° back to step 4.

algebraic curves: T w Q i m p o r t a n t points about the algorithm should
First stage: Check whether JF is a nondegenerate fo- be observed. First, we can make ua = 1 in step 4
liation with no positive rational exponents. If it is because equation (2-1) is homogeneous in the us.
not, then we cannot be certain that the third stage Second, since / represents a constant polynomial
will work properly. when IX = {1}, it follows that Ju ^ (1) in this case.
Second stage: Check whether A0(J) is zero. If it is I n Particular the algorithm always stops,
nonzero, L^ is invariant under J; if zero, proceed O f c o u r s e t h e algorithm merely searchs for an al-
to the third stage gebraic solution with degree less than or equal to

the degree of the foliation. However, if the foliation
Third stage: Let 7 = ?(PX, P2). Check whether there h a g p o s i t i y e m t i o n a l e x p o n e n t s t h e n t h e s e m a y n o t

is a nonconstant polynomial / of degree d where 0 < e x h a u g t ^ ^ p o s g i b l e s o l u t i o n s .
d < k(n and a polynomial g of degree k{S)-l such S i n c e w e a r e u g i n g Q r 5 b n e r b a g e s Q n l y t Q c h e c k

that equation (2-1) holds. If no such polynomials w h e t h e r & g i y e n i d e & 1 ig t r i y i a l Q r n Q t j w g c a n c h o o g e

exist then 7 has no invariant curves. a n y t e r m Q r d e r w e w a n t for t h i g a l g o r i t h m . I n t h e

The second stage is completely straightforward, n e x t section we show how Grobner bases can be used
and the third stage is also easy to implement. We t o handle the first stage of the strategy sketched
use the naive approach which is already found in above.
[Darboux 1878, Section 2, p. 71 ff.]. It consists in Finally, it has been shown in [Carnicer 1994] that
choosing generic polynomials for / and g, and equat- a n upper bound on the degree of an algebraic so-
ing coefficients on both sides of (2-1). Grobner bases l u t i o n i n t e r m s o f t h e degree of the foliation also
can then be used to check whether the system of e x i s t s f o r t h e m o r e general case of a nondicritical
equations admits a solution. foliation. It would be very interesting to find a way

For the next algorithm it will be necessary to o f u s i n S Grobner bases to check nondicriticalness.
choose a term order in the set of monomials in xx

 F o r t h e definition see [Carnicer 1994; Cano 1988];
and x2 for which the constants have degree zero. We b e warned that this is not quite the same as the
will make use of the usual multi-index notation, so 'classical' nondicritical condition,
that if a = (ax, a2) G N2 then xa = x^x?.

3. RATIONAL EXPONENTS
Solution Algorithm . .

The purpose of this section is to show how Grobner
Input: polynomials Pi and P2 of C ^ i , ^ ] . bases can be used to implement the first stage of
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the strategy sketched in Section 2. We will sum up tive rational exponents at those of its singularities
the various steps by which this is achieved in the that belong to £/0-
algorithm at the end of the section. This settles the problem so far as singularities in

Let xi = zi/zo and x2 = z2/z0 be coordinates f/0 are concerned. But, of course, SF could have sin-
in the open set Uo of P2, and let 3 — 5F(Pi,P2) as gularities in L^. One way to deal with these is to
in the conventions of Section 2. Let k = fc(jF) = repeat all the above for the vector fields that repre-
max{degPi,degP2} and Ao = A0(9

r) = x2P[h) - sent 7 in U± and in U2. However, since the compu-
x1P^k). As in Section 2, we will denote by J? the tations of a Grobner bases under the lexicographical
jacobian matrix of (Pi, P2). Thus trJ? and det J? order can be rather slow it is convenient to use the
are both polynomials in C[xux2]. We will consider formulae in the corollary of Section 2 to speed up
separately the singularities in C/o, and those in L^. the calculations.

Suppose first that u e Uo is a singularity of J. First note that, by the corollary, J has singu-
The worst case occurs when u is a degenerate sin- larities in L^ n Ux if and only if the polynomials
gular point; that is, when one of the eigenvalues of P[k){^ 2/2) and Ai(l, y2) have a common root. Since
J<r(u) is zero. To find out if there are any degenerate these are polynomials in one variable, we can check
singular points it is enough to compute a Grobner whether they are coprime using the Euclidean algo-
basis for the ideal generated by P1? P2 and det Jj. rithm.
If the basis is not equal to {1}, then 7 has degener- Assuming that the polynomials have a common
ate singularities, and some of its exponents will not root, we must find whether 3 has degenerate singu-
even be well-defined. larities on L^HUx and, if not, whether there are any

So we may assume, from now on, that 3" has no de- positive rational exponents. The general strategy is
generate singular points in Uo. Let X1 and A2 be the the same as the one used for singularities in Uo, and
eigenvalues of J<j(u) at some singular point u G Uo

 m o r e details can be found in the description of the
of 3r. Since we are assuming that both eigenvalues algorithm given below. The role of 0O is played, in
are nonzero, it follows that the exponent rj = X1/X2 this case, by the polynomial
is a well-defined complex number. Now Q (V S\

tr(J?{u))2
 = (A! + X2f = 1 =rfi(l,y2)5

2 + (2rfi(l,y2)-ti(l,y2)2)3 + rfi(l,y2),

det J?(u) XiX2 77 where £i(#i,x2) and di(xi,x2) are defined in (3) of
r™ .p the corollary of Section 2. Finally, we must deter-

mine whether [0 : 0 : 1] is a singularity of J, and
60(xux2,s) compute its exponent if it is nondegenerate. To do

= (det J?)s2 + (2 det J^ - (tr J?)2)s + det Jy , t h i s w e u s e (4) o f t h e corollary of Section 2 just as
we used (2) and (3) for the singularities in L^ fl U\.

and u — (ui,u2), then #0(^1, ^2, ??) = 0. Next we translate these ideas into an algorithm
The calculations above suggest that we should which determines whether a given foliation has any

compute a Grobner basis G of the ideal generated positive rational exponents,
by the polynomials Pi, P2 and 60 with respect to the
lexicographical order that has s < x1 < x2. Since Rational Exponents Algorithm

the polynomials P1 and P2 have no common factor, | n p u t : polynomials P1 and P2 of C[xux2}.
the system P1 = P2 = 0 has only finitely many so- ^ x x , -rrr/r> n \ u •*.• J.- 1

J
 T i 1 i i r Vi Output: true 11 J{Jr^ P2) has no positive rational ex-

lutions. Hence the same must hold for Px = P2 = , 1^7 ,1
\~ ponents and false otherwise.

00 — 0. By [Adams and Loustaunau 1994, Corollary
2.2.11, p. 65] there must be a polynomial eo(s) in G 1- U s e Grobner bases to check whether the ideal
that contains only the variable s. In particular, if a generated by Pi, P2 and det J^ contains 1. If it
complex number is an exponent of a singular point d°es not return false and stop,
of jF in Uo then it is a root of eo(s). Thus if eo(s) 2. Define #0(̂ 1? x2,s) as above; then use Grobner
has no positive rational roots, then $ has no posi- bases with respect to the lexicographical order
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s < xi < x2 to find a polynomial eo(s) in the 4. THE EXAMPLES
variable s alone, that belongs to the ideal gener- AU , , ., . , ,, , ,, , - - r ,. -TO2

Although it is known that the set of foliations of F
°' without algebraic solutions is dense, a search of the

3. Check whether eo(s) has a positive rational root. literature reveals a dearth of concrete examples. In
If it does, return false. faĉ  a n examples are variations of the Jouanolou

4. Compute g(y2) = gcd(Pik\l,y2),A1(l,y2)). foliation [1979, p. 160 ff.]. A very interesting fam-
5. If s = 1 return true] otherwise compute n y o f foliations of this sort is the one discovered

by Zol§,dek [1998]. Unlike the foliations considered
gcd(g(y2)jdi(l,y2)) in this paper, the foliations in Zol^dek's family can

. have degenerate singularities for some choice of pa-
(see the corollary of section 2 for the definition ,
of di). If it is not 1, return false. TT , ,, T i ? r v x- j xi

1J ' J However, both Jouanolou s foliation and the non-
6. Define 0i(y2, s) as above, and use Grobner bases, degenerate foliations in the examples of Zol§dek are

with respect to the lexicographical order s < y2, of Poincare type', that is, none of their exponents are
to compute a polynomial e^s) on the variable s positive real numbers. In fact, in all these exam-
alone, that belongs to the ideal generated by pl e s the exponents of the nondegenerate foliations

p(fc)/., ^ A n ^ ( \ are not even real numbers. For the relevance of the
Fx (1, y2), Ax(1, y2) and ^[y2, s). P o i n c a r e - hypothesis to this problem, see [Lins Neto

7. Check whether ei(s) has a positive rational root; 1988] or [Cerveau and Lins Neto 1991].
if it does, return false. I n this section we give an example of a simple fo-

o ^ J. r>(fc)(c\ i\ J A (r\ i\ Tr f , i liation that we have shown to have no algebraic so-
8. Compute P2

 ;(0,1) and AWO, 1). If one of them &,
i j. TT- xi i lutions using our implementation of the algorithms

is nonzero, return true; but if both are zero and 7 f . ; . to

, / n i x n , . 7 solution and rational exponents in the computer al-a2f0,1) = 0, return /a/se. , ; _ ,..,
gebra system bmgular. It turns out that, unlike the

Compute previously known examples, this foliation has expo-
Q / \ nents that are positive real numbers; so they are not

= d2(0, l)s2 + (2d2(0,1) - t2(0,1)2)5 + rf2(0,1). o f poincare type.
Let

If 82{s) has a positive rational root, return false; P1 = 2x^ + 3x^x2 + ax\ + 1,
otherwise, return true. ^ = 2a;2a.2 + 3;ria,2 + fea;2 + ^

When implementing this algorithm it is a good idea w h e r e ab^Qand 8a+27b # 0 U s i n g G r 6 b n e r b a s e s

to check first whether the system Pi = P2 = 0 has , ,, X U J T J X - J J X I - X
J it anc^ ̂ g m e thod of undetermined coefficients one

dimension zero or not. Of course if it does not, then g h o w s ^ ^ _ ̂  [g &n i r r e d u d b l e p o l y n o m i a l

the polynomials do not determine a foliation in the o f d e g r e e 3 i f a ^ 6. I n p a r t i c u l a r gcd{Pl, p2) = 1,
sense of Section 2. and we get a family of foliations 3r(Pi,P2). Since

Our implementation of this algorithm using the ^ family ig p a r a m e t r i z e d b y fl a n d b w e w i l l d e .
computer algebra system Singular has two pecu- n o t e i t b y y ( ft) for g h o r t Q n e r e a d i l y c h e c k s ^
hanties that should be mentioned. First, to check A (c~, , u n -, ,, , A (r^( w\ 3 u 3 T

, n , I, 1 / \ / x Ao (J(a, 6)) = 0 and that Ai (Jfa, 6)) == a^o — tof. In
whether the one variable polynomials eo(5) and ei (5) ,. T ,1 v , . n ., . , . . , -,

, J / particular, the line at infinity is not invariant under
have a positive rational root we first factorize them ^ M ,, ,

f _. _ jr. Moreover, the system
using the Singular command fac to r ize . Second,
when computing Grobner basis with respect to the P[k\l,y2) — 2 + 3y2 = 0,
lexicographical order we use the Singular command A (1 "I— 3 — h — 0
stdf glm to speed up the calculations; see [Greuel
et al. 1998, p. 236] and [Adams and Loustaunau does not have a solution because 8a + 27b ^ 0. Since
1994, pp. 67 and 68, exercises 2.2.7 and 2.2.8] for we also have that Ai(0,1) — a ̂  0, we conclude that
the algorithm behind this command. Sing? C UQ.
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