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ABSTRACT
In this paper we study the behavior of a continuous time ran-
dom walk (CTRW) on a stationary and ergodic time varying
dynamic graph. We establish conditions under which the
CTRW is a stationary and ergodic process. In general, the
stationary distribution of the walker depends on the walker
rate and is difficult to characterize. However, we character-
ize the stationary distribution in the following cases: i) the
walker rate is significantly larger or smaller than the rate
in which the graph changes (time-scale separation), ii) the
walker rate is proportional to the degree of the node that it
resides on (coupled dynamics), and iii) the degrees of node
belonging to the same connected component are identical
(structural constraints). We provide examples that illus-
trate our theoretical findings.
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1. INTRODUCTION
During the last decade, there has been a wide interest

in characterizing and modeling the structure of various net-
works, from neural networks, to the web, to Facebook friends.
Real networks are inherently dynamic in the sense that both
nodes and edges come and go over some time-scale. How-
ever, most efforts consider the network as either a single
static graph or as a pre-defined sequence of graph configu-
rations.

Random walks are an important building blocks for char-
acterizing networks. Their simple behavior on static net-
works has been explored to devise algorithms for various
purposes, from ranking to searching (details in Section 5).
However, very little is known about the long-term behavior
of random walks on dynamic networks.

In this paper, we study continuous time random walks
(CTRWs) on stationary and ergodic dynamic graphs. We
make the following contributions towards this goal:

• We consider stationary and ergodic dynamic graphs
where nodes are always present in the network but
edges are allowed to come and go over time, including
the cases where the network consists of several con-
nected components. We introduce the notion of T-
connectivity and show that if the dynamic graph is
stationary, ergodic and T-connected then the CTRW
is also stationary and ergodic. In the full generality
of our framework, the stationary distribution of the
walker depends on the walker rate and is difficult to
characterize. However,

• we characterize the stationary distribution of the ran-
dom walk for several cases: (i) Time-scale separa-
tion: the walker rate is significantly larger or smaller
than the rate in which the graph changes; (ii) Cou-
pled dynamics: the walker rate is proportional to the
degree of the node that it resides on; (iii) Structural
constraints: the degrees of nodes within any con-
nected components are identical (but can vary among
different components).

• We evaluate numerically several examples to support
our theoretical results and illustrate their applicability.
We also present a simple illustrative DTN application.



The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed modeling framework together
with some definitions and properties. Section 3 presents the
stationary distribution of CTRW when the walker rate (for
being too fast or too slow in respect to the speed the graph
changes) allows a time scale decomposition of the combined
walker and graph processes; we also present conditions under
which the CTRW stationary distribution is invariant under
time scale changes. Section 4 presents the numerical exam-
ples and applications. In Section 5 we discuss the related
work. Finally, Section 6 concludes the paper.

2. MODEL FORMULATION
In this section we define important concepts that will be

used throughout this paper. We define a dynamic graph as
a simple marked point process. A continuous time random
walk (CTRW) over a dynamic graph is also a marked point
process. We define the concept of T-connectivity to express
the ability of nodes to be connected in time. We also de-
fine conditions for stationarity of the graph process and the
CTRW process. We start by defining the graph dynamics.

Definition 2.1 (Dynamic Graph). The time evolu-
tion of the graph under consideration is given by the (possibly
simultaneous) addition and deletion of edges. Let V denote
a finite set of n nodes and let A denote a finite set of m
adjacency matrices A = {Ak}mk=1, where Ak is an n × n
unweighted symmetric adjacency matrix. A dynamic graph
is a simple Random Marked Point Process (RMPP) Ψ =
{(Xi, Si)}i∈Z, where Z is the set of all integers, Xi ∈ A
denotes the i-th graph configuration and Si is the time that
the network spends in that configuration.

Because Ψ is simple, P (Si = 0) = 0 for all i. More-
over, we assume 0 < E[Si] < ∞, i ∈ Z. We use Gk to
denote the graph configuration that has adjacency matrix
Ak, k = 1, . . . ,m. Throughout this work we use Ak and Gk
interchangeably. To simplify our analysis we focus on un-
weighted adjacency matrices. However, edge weights can be
easily accounted for in the walker rates and thus our results
are also applicable to weighted dynamic graphs. We define
the process {A(t)}t∈R, as

A(t) =
∑
i∈Z

Xi1{Ti≤t<Ti+1} , (1)

where by convention · · · < T−1 < T0 ≤ 0 < T1 < · · · are
the successive times at which the graph switches to another
configuration with Si := Ti+1 − Ti, i ∈ Z, i.e., A(t) denotes
the adjacency matrix of the graph at time t; A(t) is right-
continuous.

Assumption 2.1. The graph process Ψ is stationary and
ergodic.

Throughout this paper we assume that Assumption 2.1 holds.
The following proposition shows that the ergodicity and sta-
tionarity of Ψ = {Xi, Si}i∈Z implies {A(t)}t∈R is also sta-
tionary and ergodic.

Proposition 2.1. Under Assumption 2.1, {A(t)}t∈R is
stationary and ergodic.

In what follows we provide a result that will be useful in our
proofs:

Theorem 2.1. Under Assumption 2.1,

lim
t→∞

1

t

∫ t

0

1{A(x)=Ak}dx = σk , P-a.s., (2)

where σk > 0.

The proofs of Proposition 2.1 and Theorem 2.1 are found
in our technical report [5]. We refer to σ = (σ1, . . . , σm) as
the stationary distribution of {A(t)}t≥0. We note in pass-
ing that under Birkhoff’s ergodic theorem (Shiryaev [19, pg.
409, Theorem 1]), σk = E[1{Xi=Ak}Si]/E[Si], for all i.

Another important property of Ψ that we use throughout
this work is the uniform convergence of the time average
regardless of the initial conditions if Ψ is stationary and
ergodic.

Proposition 2.2 (Uniform mixing). Under Assump-
tion 2.1,

lim
t→∞

1

t

∫ t

0

P (A(x) = Ak|B)dx = σk , k = 1, . . . ,m , (3)

for any Borel set B such that P (B) > 0. Furthermore, the
convergence is uniform with respect to any B.

Proof. A short proof is presented. An extended proof can
be found in our technical report [5]. Stationarity and ergod-
icity imply (2). Integrating both sides of (2) w.r.t. dP (ω)
for ω ∈ B and using the bounded convergence theorem, Fu-
bini’s theorem and Egorov’s theorem [11, pg. 290, Theorem
12] gives (3) uniformly in B for any Borel set B such that
P (B) > 0. �

It is possible for one or more graph configurations to con-
sist of two or more disconnected components, in which case
we have to be concerned about whether a walker can move
from any node to any other node over time. In what follows
we introduce the concept of connectivity over time between
two nodes (denoted as T-connectivity).

Definition 2.2 (T-connectivity). Two nodes u and
v are said to be T-connected in Ψ, if they are connected in
the graph induced by adjacency matrix A = ∨kAk.

T-connectivity can also be stated as a graph property.

Definition 2.3 (T-connected graph). A dynamic
graph is said to be T-connected if all pairs of nodes are T-
connected.

We now define a Continuous Time Random Walk (CTRW)
over the dynamic graph, starting at time t = 0.

Definition 2.4 (CTRW). A continuous time random
walk (CTRW) on a dynamic graph {A(t)}t∈R associated with
RMPP Ψ, is a process {(A(t), U(t))}t≥0, where U(t) ∈ V is
the position (node) of the walker at time t. The times be-
tween CTRW steps are independent and exponentially dis-
tributed. The rate at which the walker makes a step at node
U(t) = v when A(t) = Ak is γk,v. At the time the walker
leaves v, it chooses one of its currently connected neighbors
in Ak (if any) uniformly at random. When v has no neigh-
bors in Ak the walker stays at v until the next step event.

Let Γ = {γk,v} denote the set of walker rates associated
with {A(t)}t≥0. We will find it useful to express γk,v as
γk,v = βk,vγ, k = 1, . . . ,m and v ∈ V . Walker rates of
interest to us include βk,v = 1 (denoted CTRW with constant



walker rate) and βk,v = dk,v, where dk,v is the degree of
v given adjacency matrix Ak (denoted CTRW with degree
dependent walker rate).

The above framework is general enough to describe sev-
eral more particular dynamic graph models, such as renewal
processes and Markovian processes. In a Markovian pro-
cess Si is exponentially distributed and P [Xi = xi|Xi−1 =
xi−1, Xi−2 = xi−2, . . . ] = P [Xi = xi|Xi−1 = xi−1], xi ∈ V ,
i = 0, 1, . . . .

Notation Summary

Ψ = {(Xi, Si)}i∈Z dynamic graph process (in events)
{A(t)}t∈R dynamic graph process (in time)
{(A(t), U(t))}t≥0 CTRW process
σ = (σ1, . . . , σm) stationary distribution of {A(t)}t≥0

γk,v = βk,vγ walker rate of the CTRW at node
v at configuration Ak

3. CHARACTERIZING RWS: STATIONARY
BEHAVIOR

In this section we focus on the stationary behavior of a RW
on a dynamic graph, in particular the steady state fraction
of time the walker spends in each node of the network: π =
(π1, . . . , πn).

The steady state distribution π is trivial if the graph is
static and T-connected, i.e., A(t) = A′, ∀t ≥ 0, where A′ is
a symmetric (0, 1)-adjacency matrix of a connected graph.
The stationary distribution is unique and given by

πv =
dv/γv∑
w dw/γw

, v ∈ V,

where dv denotes the degree of node v and γv is the walker
rate at node v. Characterization on a dynamic graph is much
more challenging. How can we characterize π on dynamic
graphs? When does π converge for dynamic graphs? When
can we give an expression for π? We focus on three cases
where we are able to characterize this behavior.

We begin our study of the stationary behavior of the pro-
cess {U(t)} with the following.

Theorem 3.1. If the RMPP Ψ is T-connected, station-
ary, and ergodic, then the process {(A(t), U(t))}t≥0 is sta-
tionary, and the stationary distribution is unique.

Proof. We create a new marked point process, {(X ′i, S′i)}∞0
that is a superposition of the graph process {(Xj , Sj)}∞0
and a Poisson process having rate γmax = maxr∈Γ r (re-
call that Γ is the set of walker rates). To simplify our
proof we shall assume P [T0 = 0] = 1, where T0 is as de-
fined in (1), although the proof is valid for any T0 ≤ 0.
We associate the mark “0” with each point of the Poisson
process, Hence X ′i ∈ {0} ∪ {A1, . . . , Am}. As both the
graph and Poisson processes are event stationary, the new
merged process is also event stationary [6, Section 1.3.5].
Let t′0 < t′1 < · · · < t′i ≤ · · · denote the times associated
with this new process, {(X ′i, S′i)}∞0 . Consider the process
{(A′i, Ui)}∞0 where Ui denotes the walker position at time
t′i and A′i denotes the adjacency matrix during the period
[t′i, t

′
i+1). Note that (A′i, Ui) ∈ A × V takes values from a

finite set. {(A′i, Ui)} is described by a stochastic recursion
of the form (A′i, Ui) = φ(Ui−1, X

′
i, Ri) where

A′i = φa(U ′i−1, X
′
i, Ri) = 1{X ′i = 0}A′i−1 + 1{X ′i 6= 0}X ′i,

Ui = φb(U
′
i−1, X

′
i, Ri),

for all i = 0, . . .. Here X ′i, S
′
i are as previously defined and

{Ri} is an iid sequence of uniformly distributed rvs in [0, 1]
independent of {(X ′i, S′i)}. These auxiliary rvs are used to
choose the neighbor to which the walker goes or to remain
stationed at its current node. Note that {(X ′i, S′i, Ri)} is
stationary. φb is defined so that when X ′i 6= 0, the walker
does not move (Ui = Ui−1) but the graph changes to con-
figuration X ′i. If X ′i = 0, the walker moves from Ui with
probability γX′i,Ui

/γmax, moving to one of its neighbors (in

configuration A′i−1) chosen uniformly at random (using Ri).
Theorem 1 in [13] states that if there exists a random

subset, B ⊆ A × V such that a sample path monotonicity
condition ((5) in [13]) holds and the existence of a finite non-
empty sample path absorbing set ((9) in [13]) exists, then it
is possible to construct process {X ′i, S′i, A′i, Ui} that is event
stationary as is {Ui}. In our case, because our state space is
finite, these conditions trivially hold by taking B = A× V .
Since {X ′i, S′i, A′i, Ui} is event stationary, {A′(t), U(t)} is also
stationary. It follows from our construction that {A(t)} =
{A′(t)}; hence {A(t), U(t)} is also stationary.

We now address the question of uniqueness through a cou-
pling argument. Consider two random walks {{U1(t)}t≥0

and {U2(t)}}t≥0 that differ in their starting locations at
time t = 0, U1(0) = u1 and U2(0) = u2. We are inter-
ested in establishing that the time, T at which they meet,
is finite a.s.. After time T the processes couple, i.e., for
t > T , U1(t) = U2(t). This is possible because the times be-
tween steps are exponentially distributed random variables.
Thus, when T is finite, the above coupling argument implies
that {U1(t)} and {U2(t)}, which we have shown to be time
asymptotic stationary, have the same stationary distribu-
tion.

It is left to show is that T is finite. We sketch the argument
here and relegate the details to the our technical report [5].
The basic idea is to identify intervals of time of length T ′ <
∞ starting at times iT ′ ≥ 0, i = 0, 1, . . ., and based on
the ergodicity and time stationarity of the graph process to
establish a lower bound, p0, on the probability of two walkers
coupling during interval [iT ′, (i+1)T ′]. The probability that
the walkers do not couple within the interval [0, jT0) is upper
bounded by (1−p0)j . Thus the walkers couple in finite time
a.s.. �

Note that if the graph process is not T-connected, then
it is possible for the system to exhibit multiple stationary
regimes that depend on the initial position of the walker.
Next we characterize π when there is a time-scale separation
of the walker and graph dynamics.

3.1 Stationary Behavior under Time-scale
Separation

Consider a scenario where the walker is either much faster
or much slower relative to the rate that the graph changes
configurations. In this case, we have a time-scale separation
between the two processes that allows us to characterize π.

3.1.1 The Fast Walker
Let us first assume that the walker rate is much larger

than the rate at which the graph changes. For a sufficiently
large γ, the steady state probabilities of the random walk π
is a linear combination of the corresponding probabilities of
the adjacency matrices A1, . . . , Am. Theorem 3.2 formalizes
this argument for the case that every adjacency matrix in



A is connected. We will describe, under certain conditions,
how to relax this assumption later.

In preparation, let γk,v = βk,vγ and let π(k)(γ) = (π
(k)
1 (γ),

. . . , π
(k)
n (γ)) denote the steady state distribution of a ran-

dom walk on the undirected graph with adjacency matrix
Ak as a function of γ > 0. It is given by

π(k)
v (γ) ≡ π(k) =

dk,v/βk,v∑
j∈V dk,j/βk,j

, v ∈ V ; k = 1, . . . ,m.

(4)
independent of γ. Let

π(k)(γ, t, w) = (π
(k)
1 (γ, t, w), . . . , π(k)

n (γ, t, w))

denote the distribution of the CTRW on Ak at time t ≥
0 starting from node w. Assume Ak is irreducible, k =
1, . . . ,m, i.e., the graph with adjacency matrix Ak is con-
nected. Because the random walk with adjacency matrix Ak
is described by a time-reversible Markov chain, π(k)(γ, t, w)
can be expressed as

π(k)(γ, t, w) = π(k) +

n∑
j=2

c
(k)
j,we

λkjγt, w ∈ V, t > 0 , (5)

where 0 = λk1 > λk2 ≥ · · · ≥ λkm are the eigenvalues
associated with Qk(γ)/γ where Qk(γ) is the infinitesimal
generator associated with the random walk with parameter

γ on the graph with adjacency matrix Ak, and {c(k)
j,w} are

vectors related to the j-th eigenvector of the random walk
and the initial condition that the walker begins at node w.

Theorem 3.2. If the graph process Ψ is T-connected, sta-
tionary, ergodic, and the configurations are always connected,
then in the limit as γ →∞, the stationary distribution π of
the random walk is given by

π =

m∑
k=1

σkπ
(k). (6)

Proof. We show that the walker steady state distribution
π(γ)→ π as γ →∞ where π is given in (6).

We focus on the i-th graph configuration, Xi, i ≥ 0. To
simplify our proof we shall assume P [T0 = 0] = 1, where

T0 is as defined in (1). Let F
(k)
i (x) = P (Si ≤ x|Xi = Ak)

and define η
(k)
i (γ) to be the stationary distribution of the

CTRW while the graph is in state Xi = Ak. Let Pi,w(γ)
denote the initial walker distribution when the process first

enters graph configuration Xi. η
(k)
i (γ) is defined as

η
(k)
i (γ)

=
∑
w∈V

Pi,w(γ)

∫ ∞
0

1

t

∫ t

0

π(k)(γ, x, w)dx dF
(k)
i

= π(k) +
∑
w∈V

Pi,w(γ)

∫ ∞
0

1

t

∫ t

0

n∑
j=2

c(k)
w eλkjγxdx dF

(k)
i ,

where the second equality follows from (5). We focus on the
second term, henceforth denoted as Cγ , which we show goes
to zero as γ → ∞. We focus first on the singularity of the
1/t term due to the first integral starting from zero,

|Cγ | < F
(k)
i (γ−1/4)e

+
∑
w∈V

Pi,w(γ)

∫ ∞
γ−1/4

1

t

∫ t

0

n∑
j=2

|c(k)
w |eλkjγxdx dF

(k)
i ,

where |c| is the vector whose components are the absolute
values of the components of c and e is a vector of all ones.
Evaluating the second integral and recognizing that 1/t ≤
γ1/4 for t ≥ γ−1/4 yields

|Cγ | < F
(k)
i (γ−1/4)e

+ γ1/4
∑
w∈V

Pi,w(γ)

n∑
j=2

∫ ∞
γ−1/4

|c(k)
w |

λkjγ
(eλkjγt − 1)dF

(k)
i

≤ F
(k)
i (γ−1/4)e

+
1

γ3/4

∑
w∈V

Pi,w(γ)

n∑
j=2

∫ ∞
γ−1/4

|c(k)
w |

(−λkj)
dF

(k)
i

≤ F
(k)
i (γ−1/4)e

+
1

γ3/4

∑
w∈V

Pi,w(γ)

n∑
j=2

−|c
(k)
w |
λkj

(1− F (k)
i (γ−1/4)) .

Both terms go to zero as γ →∞. Consequently Cγ → 0 and

lim
γ→∞

η
(k)
i (γ) = π(k), ∀k

This holds for all i; therefore it holds when the graph is in
steady state and removal of the conditioning on the graph
configuration yields (6). �

We now focus on the case where one or more of the graph
configurations consists of disconnected components. We re-
label the nodes in each graph configuration in order to easily
identify the disconnected components. For each of the origi-
nal m adjacency matrices, Ak, we rearrange the n nodes into
subsets of connected components. In other words, consider
graph configuration Gk associated with adjacency matrix
Ak. Partition the set of nodes in Gk into ok sets, each con-
taining only connected nodes. The ok sets correspond to ok
adjacency matrices, {Ak,1, . . . , Ak,ok} and graph configura-
tions {Gk,1, . . . , Gk,ok}. Let Vk,l denote the set of nodes in
configuration Gk,l.

Let ψ(γ) = (ψ1,1(γ), . . . , ψm,om(γ)) denote the vector of
stationary probabilities that the walker is in the different
components of all of the configurations when the rate pa-
rameter is γ. Because the CTRW process is ergodic, this
vector exists and is given by

ψk,l(γ) = lim
t→∞

1

t

∫ t

0

∑
v∈Vk,l

1{A(s)=Ak,U(s)=v}ds, ∀k, l .

Define

ψ = lim
γ→∞

ψ(γ) . (7)

We will describe conditions under which ψ can be computed
later. In what follows we show that ifψ exists then we obtain
the stationary distribution π of the random walk in the limit
as γ →∞.

Let π(k,l) be the steady state distribution of a random
walk on the undirected graph with adjacency matrix Ak,l.
Similar to equation (4)1,

π(k,l)
v =

dk,v/βk,v∑
j∈Vk,l

dk,j/βk,j
, v ∈ Vk,l,

and k = 1, . . . ,m, l = 1, . . . , ok.

1If the denominator is zero (i.e., there are isolated nodes)
we simplify our notation assuming the ratio 0/0 = 1.



We let π(k) be the concatenation of vectors π(k,l), that is,
π(k) = (π(k,1)‖ . . . ‖π(k,ok)) and

π̂(k) = (ψk,1π
(k,1)‖ . . . ‖ψk,okπ

(k,ok)).

Note that vectors π̂(k) for all 1 ≤ k ≤ m have the same
cardinality.

We have the following result.

Theorem 3.3. If the graph process Ψ is T-connected, sta-
tionary, and ergodic, and ψ exists, then in the limit as
γ → ∞, the stationary distribution π of the random walk
when graph configurations may be disconnected is given by

π =

m∑
k=1

π̂(k). (8)

Proof. The proof is similar to that for the case where all
graphs are connected. �

In general ψ is difficult to compute. The difficulty here
lies in that the walker state at time t0 can now depend on
{A(t)}t00 , something that was not possible when all configu-
rations were connected. However, ψ is easily characterized
when the underlying transitions between configurations are
described by a Markov chain and the times that the graph
remain in a configuration correspond to mutually indepen-
dent sequences of iid random variables; one sequence for
each configuration. Let P = [pij ] denote the m×m transi-
tion probability matrix for the graph configurations at the
time of transitions between graphs and, with an abuse of
notation, let {Sk,i}∞0 , k = 1, . . .m, denote the mutually in-
dependent iid sequences of configuration holding times for
the graph configurations.

We focus now on transitions that the walker makes be-
tween connected components in two different graph con-
figurations, say the j1-th connected component in config-
uration Gk1 and the j2-th connected component in con-
figuration Gk2 . We define a transition probability matrix

P̂ = [p̂k1,j1;k2,j2 ] as follows

p̂k1,j1;k2,j2 = pk1,k2

∑
v∈Vk1,j1

∩Vk2,j2
dk1,v/βk1,v∑

w∈Vk1,j1
dk1,w/βk1,w

. (9)

The first term accounts for transitions between graph config-
urations and the second term accounts for the walker dynam-
ics. Here P̂ can be thought of as the transition probability
matrix for a discrete time Markov chain that characterizes
the subgraphs visited by a random walk at graph transi-
tions in the limit as γ → ∞. This chain is irreducible pro-
vided the graph is T-connected. Let ψ∗ = (ψ∗1,1, . . . , ψ

∗
m,lm)

denote the stationary distribution of this MC. The earlier
introduced probability distribution ψ can be expressed in
terms of ψ∗ as follows

ψk,l =
ψ∗k,lE[Sk]∑m

i=1

∑oi
j=1 ψ

∗
i,jE[Si]

, Ak ∈ A; l = 1, . . . , ok ,

(10)
Note that the above characterization depends on the inde-
pendence and identical distribution assumptions of the con-
figuration holding times. This, along with (8) fully charac-
terizes the stationary distribution of the walker in the fast
walker regime for the Markovian environment.

3.1.2 The Slow Walker
In this section we consider the walker stationary distribu-

tion, π, at the other timescale decomposition, namely where
the graph dynamics speed up relative to the walker. Con-
sider a walker with the set of walker rates Γ
walking a dynamic graph Ψ. We consider the RMPP
Ψ(a) = {(Xi, aSi)}i∈Z that is a speed up of the RMPP Ψ
by a factor of a, 0 < a < 1, and characterize the CTRW on
Ψ(a) as a → 0. We denote by A(a)(t) the state at time t of

the dynamic graph corresponding to the RMMP Ψ(a). We
do this in two steps. We first consider an observer of Ψ(a),
who makes observations according to a renewal process with
the property that it has a continuous non-increasing proba-
bility density function with finite mean. We then determine
conditions under which the observer is guaranteed to ob-
serve independent instances of the graph with probability
given by the stationary distribution of the graph. Finally,
we consider a Poisson observer and couple the walker with
it in order to characterize the stationary distribution of the
walker.

We introduce a renewal process {Wj}∞1 where Wj denotes
the time between the (j − 1)-th and j-th observations with
CDF G(x) (with PDF g(x)) satisfying the following assump-
tion.

Assumption 3.1. The pdf g(x) := dP (Wi < x)/dx is
differentiable with g′(x) = dg(x)/dx, non-increasing, non-
negative, with (i) g(0) < ∞, (ii)

∫∞
0
g(x)dx = 1 and (iii)

E[Wj ] =
∫∞

0
xg(x)dx := D < ∞. As a consequence of the

previous assumptions (iv)
∫∞

0
xg′(x)dx = −1 (Hint: use an

integration by part and note that limx→∞ xg(x) = 0 thanks
to (iii)).

Assumption 3.1 holds if Wi is exponentially distributed with
parameter γ <∞. It also holds if Wi has a Pareto distribu-
tion with Pareto index strictly larger than one. We will now
observe the graph at the renewal instants

∑j
k=1 Wk, j ≥ 1.

We denote by A(a)(t) the state at time t ∈ R of the graph

associated with the RMPP Ψ(a), namely,

A(a)(t) =

∞∑
i=−∞

Xi1(aTi ≤ t < aTi+1), (11)

so that A(a)(t) = A(t/a) for all t ∈ R, where Ti is as defined

in (1). We denote by A
(a)

(j) = A(a)(W1 + · · ·+Wj) the graph

configuration of A(a)(t) at the j-th renewal instant (j ≥ 1).

Lemma 3.1. Let Ψ(a) be the RMPP associated with the
stationary and ergodic dynamic graph Ψ. If the observation
process satisfies Assumption 3.1, then for any i ≥ 1, k =
1, . . . ,m,

lim
a→0

P
(
A

(a)

(i+1) = Ak |A(a)

(j) = Alj , j = 1, . . . , i
)

= σk. (12)

Proof. Throughout i ≥ 1 is fixed and so are k, l1, . . . , li ∈
{1, . . . ,m}. Define the set Ii = {1, . . . , i} and let ga(x) :=
ag(ax).

Conditioning on Wj = yj for j ∈ Ii and Wi+1 = x
and using the independence assumption between the pro-



cess {A(t)} and the iid rvs (Wj)j with pdf g(·), gives

P
(
A

(a)

(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk =∫

[0,∞)i

∫ ∞
x=0

(P (A((xi + x)/a) = Ak |

A(xj/a) = Alj , j ∈ Ii)− σk)g(x)dx
∏
j∈Ii

g(yj)dyj

=

∫
[0,∞)i

∫ ∞
x=0

(P (A(xi + x) = Ak |A(xj) = Alj , j ∈ Ii)

−σk)ga(x)dx
∏
j∈Ii

ga(yj)dyj

=

∫
[0,∞)i

∫ ∞
x=0

(P (A(x) = Ak |A(xj − xi) = Alj , j ∈ Ii)

−σk)ga(x)dx
∏
j∈Ii

ga(yj)dyj (13)

with xj :=
∑j
l=1 yj , j ∈ Ii, where we have used the station-

arity of the process {A(t)}∞−∞ to derive (13). Define

xi := (x1, . . . , xi),

f(u,xi) := P (A(u) = Ak |A(xj − xi) = Alj , j ∈ Ii))− σk ,

F (x,xi) :=

∫ x

0

f(u,xi)du.

Note that |f(u,xi)| ≤ 1 for any u,xi so that |F (x,xi)| ≤ x
for any x,xi. In this notation (13) rewrites

P
(
A

(a)

(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk =

=

∫
[0,∞)i

∫ ∞
x=0

f(x,xi)ga(x)dx
∏
j∈Ii

ga(yj)dyj . (14)

Integrating by parts and using the definition of ga(x) and
Assumption 3.1 yields∫ ∞

0

f(s,xi)ga(x)dx

=
[
ga(x)F (x,xi)

]∞
0
−
∫ ∞

0

F (x,xi)g′a(x)dx

= lim
x↑∞

ga(x)F (x,xi)− a2

∫ ∞
0

F (x,xi)g′(ax)dx(15)

= −a2

∫ ∞
0

F (x,xi)g′(ax)dx , (16)

where the limit in (15) is zero since 0 ≤ ga(x)F (x,xi) ≤
ga(x)x and limx→∞ xg(x) = 0 (see Assumption 3.1). Com-
bining (14) and (16) gives

P
(
A

(a)

(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk = (17)

−a2

∫
[0,∞)i

∫ ∞
x=0

F (x,xi)g′(ax)dx
∏
j∈Ii

ga(yj)dyj .

Fix ε > 0. By Prop. 2.2 we know that there exists 0 <
Tε <∞, denoted as T from now on, such that for all x > T ,
|F (x,xi)/x| < ε/2, uniformly in xi or, equivalently, uni-
formly in y1, . . . , yi ∈ [0,∞). We have (Hint: use Assump-

tion 3.1 and inequality |F (x,xi)| ≤ x)∣∣∣∣∫ ∞
0

F (x,xi)g′(ax)dx

∣∣∣∣ ≤ − ∫ T

0

F (x,xi)g′(ax)dx

−
∫ ∞
T

∣∣∣∣F (x,xi)

x

∣∣∣∣xg′(ax)dx

≤ −T
∫ T

0

g′(ax)dx− ε

2

∫ ∞
T

xg′(ax)dx

≤ −T
∫ ∞

0

g′(ax)dx− ε

2

∫ ∞
0

xg′(ax)dx

=
Tg(0)

a
+

ε

2a2
(18)

so that, from (17),∣∣∣P (A(a)

(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk

∣∣∣ ≤
=

(
aTg(0) +

ε

2

)∫
[0,∞)i

∏
j∈Ii

ga(yj)dyj

= aTg(0) +
ε

2
. (19)

We observe from (19) that∣∣∣P (A(a)

(i+1) = Ak |A(a)

(j) = Alj , j ∈ Ii
)
− σk

∣∣∣ < ε

for any 0 < a < ε/(2Tg(0)), which completes the proof since
ε is arbitrary. �

Application of the chain rule yields the following result.

Proposition 3.1. As a→ 0 the sequence {A(a)

(j)}j≥1 con-

verges to an iid sequence with distribution

P
(
A

(a)

(j) = Ak
)

= σk, k = 1, . . . ,m.

It is now straightforward to describe the behavior of a
constant rate walker. Take the observation process to be
Poisson with rate γ′ > γ (recall that γ is the walker rate of

our constant rate walker), namely P (Wj < x) = 1 − e−γ
′x.

Consider the dynamic graph {A(a)(t)}t∈R associated with

the RMPP Ψ(a) (see (11)). We embed the times that the
walker takes a step into the observation process. At each
observation the walker takes a step with probability γ/γ′;
otherwise it does not with probability (γ′ − γ)/γ′. Let

U
(a)
j ∈ {1, . . . , n} denote the position of the walker imme-

diately after the j-th observation of the observation pro-

cess (j ≥ 1), and let U
(a)
0 be the walker position at time

t = 0. We assume that lima→0 P (U
(a)
0 = v) exists for all

v = 1, . . . , n. This is the case, for instance, if U
(a)
0 is con-

stant for any a > 0.

The following equation describes the behavior of π
(0)
j (v) =

lima→0 P (U
(a)
j = v), the fraction of observations after which

the walker resides at node v ∈ V . Assume first that this limit
exists for any j ≥ 1 and v = 1, . . . , n. Let P := [P(u, v)] be
an n-by-n stochastic matrix with (u, v)-entry given by

P(u, v) =


γ
γ′
∑m
k=1 σk

Ak(u,v)
dk,u

, if dk,u > 0, u 6= v,
γ′−γ
γ′ + γ

γ′
∑m
k=1 σk1{dk,u=0} , if u = v ,

0 , otherwise,

(20)



u, v = 1, . . . , n. We have

π
(0)
j (v)

= lim
a→0

n∑
u=1

m∑
k=1

P
(
A

(a)

(j) = Ak, U
(a)
j−1 = v

)
(21)

×σk
(
Ak(u, v)

dk,u
1(dk,u > 0) + 1(u = v)1(dk,u = 0)

)
=

n∑
u=1

m∑
k=1

lim
a→0

P
(
A

(a)

(j) = Ak
)

lim
a→0

P
(
U

(a)
j−1 = v

)
×σk

(
Ak(u, v)

dk,u
1(dk,u > 0) + 1(u = v)1(dk,u = 0)

)
=

n∑
u=1

P(u, v)π
(0)
j−1(u), (22)

for j ≥ 1 and v = 1, . . . , n, where dk,u is the degree of
node u ∈ V in graph configuration Ak and Ak(u, v) is the
(u, v)-entry of the adjacency matrix Ak (i.e. Ak(u, v) = 1 if
there is a link between vertices u and v in configuration k
and zero otherwise). The second and third equalities follow
from Proposition 3.1.

The existence of lima→0 P (U
(a)
j = v) for all j ≥ 1 and

v = 1, . . . , n can be shown by induction on j based on (22).

Define π
(0)
j := (π

(0)
j (1), . . . , π

(0)
j (n)). With these defini-

tions (22) rewrites in the following matrix form

π
(0)
j = π

(0)
j−1P, j ≥ 1,

with π
(0)
0 the n-dimensional vector where all entries are equal

to zero except entry U
(a)
0 that is equal to 1. To show that

π(0) is unique, we prove that P is irreducible. The definition
of T-connectivity and the fact that σk > 0, k = 1, . . . ,m im-
ply that P is an adjacency matrix of a strongly connected di-
rected graph and strong connectivity of this graph is equiva-
lent to the irreducibility of P [9, Theorem 6.2.24], the details
of this proof are found in our technical report [5]. As P is
also aperiodic, as the diagonal elements of P are non-zero,
then the associated discrete-time Markov chain is ergodic
since the state-space is finite so that, by Markov chain the-

ory, the limit π(0) = limj→∞ π
(0)
j exists and is given by the

unique solution of

π(0) = π(0)P,

n∑
u=1

π(0)(u) = 1.

Because of the PASTA property the steady state probability

π(0) = limj→∞ π
(0)
j on the observation events is also the

distribution in time, i.e., in the limit as a→ 0, π = π(0).
The case where the walker rate depends on the node and

graph configuration in which the walker resides yields a sim-
ilar characterization.

Proposition 3.2. Let Ψ be a stationary, ergodic, and T-
connected dynamic graph and let {(A(t), U(t))}t≥0 be an as-
sociated CTRW with walker rates Γ = {βk,v : k = 1, . . . ,m, v ∈
V }. Let βmax > sup(Γ). Then, in the limit as a → 0, the
stationary walker position distribution π satisfies

π = πP ,

where

P(u, v) =


∑
k σk

βk,v

βmax

Ak,vu

dk,v
, dk,u > 0,

v 6= u∑
k σk

(
1− βk,v

βmax
+

βk,v

βmax
1{dk,u=0}

)
, v = u .

(23)

The proof is similar to that given for the constant rate
walker case and is omitted. The assumption that βmax >
sup(Γ) ensures that P is aperiodic and the assumption of
T-connectivity ensures that P is irreducible.

Proposition 3.2 shows, as a → 0, the steady state distri-
bution of a walker with state dependent rates to be just a
function of σ (the stationary distribution of {A(t)}t≥0), the

set of configurations A, and the walker rates ~β, regardless
of the graph dynamics.

3.2 Time-scale Invariant Stationary
Distribution

In this section we turn our attention to a sufficient condi-
tion where the CTRW stationary distribution is invariant to
the walker time scale γ. Consider a CTRW {(A(t), U(t))}t≥0

with non-zero walker rates on a stationary, ergodic, and T-
connected graph Ψ.

The key insight into our sufficient condition is the follow-
ing: If there exists a π that is the CTRW stationary dis-
tribution given any (static) configuration A1, . . . , Am, then
once the CTRW reaches distribution π it remains with dis-
tribution π independent of the graph dynamics. The key
challenge is to show that the CTRW always converges to
distribution π, irrespective of the graph dynamics. We see
that this is true if Ψ is stationary, ergodic, and T-connected.
However, we also believe that the following results can be
extended to some families of non-stationary dynamic graphs.

We first present the notation used in this section. It will
be useful to describe the walker rates as a row vector ~γ(γ) =
(γβk,v)v∈V,k=1,...,m.

The CTRW confined to a given configuration Ak is a
Markov chain, k = 1, . . . ,m. Let

Q(Ak, ~γ(γ)) =

{
Ak(i, j)γβk,i/dk,i , if i 6= j ,

−
∑
j∈V Ak(i, j)γβk,i/dk,i , if i = j ,

where Ak(i, j) is the element (i, j) of Ak, be the infinitesimal
generator of {U(t)}t≥0 given configuration Ak.

Assumption 3.2 (Fixed point π?). Let A be the set
of graph configurations of Ψ and ~γ be a set of walker rates
such that there exists a π? ∈ [0, 1]n,

∑
v∈V π

?(v) = 1, that
is a fixed point solution to

0 = π?Q(M, ~γ) , ∀M ∈ A . (24)

In what follows we show that if A and ~γ satisfy Assump-
tion 3.2, then limt→∞ P [U(t) = v] = π?(v), ∀v ∈ V . More-
over, we show that π? is independent of γ. We are now
ready for the main result of this section.

Theorem 3.4. Let graph process Ψ be a stationary, er-
godic, and T-connected graph with configuration set A. Let
{(A(t), U(t))}t≥0 be a CTRW on the dynamic graph {A(t)}t∈R
associated with Ψ. The CTRW has walker rates ~γ(γ) =
{γβk,v}, v ∈ V, k = 1, . . . ,m, γ > 0. If A and ~γ(1) satisfy
Assumption 3.2, then

lim
t→∞

P [U(t) = v] = π?(v) , ∀v ∈ V,



where π? solves (24). Moreover, π? does not depend on γ.

Proof. For now assume γ = 1. Let Π(t) = (P [U(t) =
v])v∈V . The Kolmogorov forward equation gives

dΠ(t)

dt
= Π(t)Q(A(t), ~γ(1)). (25)

From Assumption 3.2 there exists π? is that is a solution
to (24). Hence, Π(t) = π? is also a solution to (25) where
dΠ(t)/dt = 0. It follows from Theorem 3.1 that there is no
other solution to (25) and therefore limt→∞ P [U(t) = v] =
π?(v), ∀v ∈ V . To show that π? does not depend on γ, note
that for any α > 0 and k = 1, . . . ,m

0α = π?Q(Ak, ~γ(1))α = π?Q(Ak, ~γ(α)).

�

Examples of adjacency matrix setsA = {Ak : k = 1, . . . ,m}
that satisfy Assumption 3.2 for a constant rate walker, ~γ(γ) =
(γ, . . . , γ) include:

• Regular graphs: Ai, i = 1, . . . ,m, consists of Ci ≥ 1
connected components where the j-th connected com-

ponent (j = 1, . . . , Ci) is a d
(i)
j -regular graph (d

(i)
j >=

0).

• Nodes v ∈ V alternate between isolated and
connected with constant degree, i.e., dk(v) ∈
{0, d(v)}, d(v) > 0, k = 1, . . . ,m. Figure 1 illustrates
a dynamic graph that satisfies these requirements.

Conditions imposed on the walker rates ~γ(γ) can also
guarantee that Assumption 3.2 is valid for any set of graph
configurations A, as long as {A(t)}t∈R is T-connected. Con-
sider the coupled CTRW and graph dynamics that satisfies
Assumption 3.2 in the following proposition, stated without
a proof:

Proposition 3.3 (Degree proportional walker).
Let A = {Ak : k = 1, . . . ,m} be a set of graph configura-
tions. If the walker rates are ~γ(γ) = (γdk,v)v∈V,k=1,...,m,
where dk,v is the degree of node v at configuration k. Then
Theorem 3.4 is satisfied. Moreover, π? = ( 1

n
, . . . , 1

n
).

Proposition 3.3 has an interesting application. We can
uniformly sample nodes (in time) without knowing the un-
derlying topologies, A, or graph dynamics, {A(t)}t∈R, as
long as {A(t)}t∈R is stationary, ergodic, and T-connected.
So far we have focused on conditions that allow us to obtain
the stationary distribution of the walker. In what follows we
present some case studies solved numerically.

4. CASE STUDIES
In previous sections we characterized the stationary be-

havior of an RW on a broad class of dynamic graph processes
{(Xi, Si)}i≥Z. In this section, we focus mostly on random
walks on Markovian dynamic graphs where {Xi}i≥0 forms
a Markov chain and {Si}i≥0 is a sequence of independent
and exponentially distributed random variables. Note that
this model allows state dependent graph holding times to be
taken into account in the Markov chain {Xi}i≥0. In what
follows we provide several examples and numerical evalu-
ations. Later in the section, we also show how the pro-
posed framework can be applied to a Delay-Tolerant Net-
work (DTN) scenario.
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Figure 1: Illustration of a dynamic graph whose node

degrees are either kept constant in all graph configura-

tions or there are isolated nodes. We make no assump-

tion about the holding times of each graph configuration

except that the graph is T-connected.

4.1 Markovian dynamic graph examples
In this section we present numerical results for some toy

Markovian dynamic graph examples, that illustrate the non-
trivial behavior of random walks on dynamic graphs and
that support our theoretical findings.

4.1.1 Star-circle example
We begin by considering a very simple model, consisting of

just two graph snapshots: a star and a circle, as illustrated in
Figure 2a. The graph transits from one snapshot to another
with rates λ12 = λ21 = 1. Thus, the average time in each
graph is 1/2. Note however, that edges (1,2) and (1,10) are
always present, since they exist in both configurations.

We investigate the steady state solution of the CTRW
on this dynamic graph. Figure 2b shows the steady state
distribution of the random walk as a function of the walker
rate (for clarity, only a subset of the states are shown). Note
that the stationary distribution of the walker depends on the
walker rate and converges to different distributions as the
walker moves faster or slower. Indeed, the numerical results
obtained are in agreement with the theoretical distributions
for the fast and slow walker given in Sections 3.1.1 and 3.1.2,
respectively. Finally, we note that in a graph with n nodes,
node one alternates between degrees n − 1 and two. As n
increases the dependence on the walker speed is magnified.

4.2 Edge Markovian model and examples
In this section we consider some particularities of ran-

dom walks on a special class of dynamic graphs called edge
Markovian graphs. Start with a fixed adjacency matrix A
and attach an independent On-Off process to each edge with
exponentially distributed holding times. In edge Markovian
graphs, edges alternate between being present and absent
from the graph according to independent On-Off processes.
Let E be the set of edges in the graph described by A. Let
Λ0(e) and Λ1(e) denote the rate at which edge e ∈ E changes
from the On to the Off state and from the Off to the On
state, respectively, which can vary from edge to edge.

A few observations on the model follows. Let Ak be a
particular configuration of the dynamic graph model. In
particular, the edge Markovian model induces a total of
m = 2|E| configurations, which represent all possible labeled
subgraphs over an edge set with |E| edges. Moreover, con-
sider any transition between two configurations induced by
the model. The graphs corresponding to these two configu-
rations differ by exactly one edge, since the on-off processes
associated with the edges are continuous in time. Moreover,



(a) The star-circle graph dynamics. (b) Steady state distribution of walker as a function of walker
rate (nodes 5, 6 ,7 not shown for clarity).

Figure 2: The star-circle graph dynamics and behavior of CTRW as a function of walker rate.

the rate associated with this graph transition is given by
the corresponding rate of the edge (either its On rate or Off
rate).

Let quv denote the stationary fraction of time that edge
(u, v) ∈ E is On, which is simply given by

quv = Λ1(u, v)/(Λ0(u, v) + Λ1(u, v)).

Let σk denote the steady state fraction of time that the
edge Markovian model spends in configuration Ak, k =
1, . . . , 2|E|. In particular, we have

σk =
∏

(u,v)∈E

1{Ak(u, v)}quv + (1− 1{Ak(u, v)})(1− quv)

(26)

Note that σk is given by the product of the probabilities
the egdes that define Ak are present while all other edges
are absent. Since all edges are independent, this is trivially
obtained as shown above. Edge Markovian graphs are of
interest due to their simple description and structure. How-
ever, as we will soon see in our numerical results, the steady
state distribution of a constant rate random walk on this
model depends on the walker rate. It is an open problem
whether the walker steady state distribution can be obtained
in closed form.

4.2.1 Edge Markovian: n = 3

Consider the edge Markovian graph model over a complete
graph with 3 nodes. The number of different configurations
is 23 = 8, out of which 4 have at least one isolated vertex
(graph not connected). Moreover, let Λ1(1, 2) = Λ0(1, 2) =
104, Λ1(1, 3) = Λ0(1, 3) = 1, Λ1(2, 3) = Λ0(2, 3) = 1. Thus,
pe = 0.5 for every edge (i.e., all edges have the same time
average), and thus, all configurations have the same time
average probability of 1/8, as given by equation (26).

Figure 3a shows the exact steady state distribution of the
random walk as a function of the walker rate. Interestingly,
while all edges have the same time average and all config-
urations Ak, k = 1, . . . , 2|E|, have the same σk, the walker
steady state distribution still depends on the walker rate.
Moreover, the behaviors of the fast and slow walkers differ.
While the slow walker converges to a uniform distribution
over the nodes, the fast walker always favors node 3, the
node not incident to the fastest changing edge (1, 2). De-

spite the relatively small differences in the walker distribu-
tion (P [W = 3] varies by 7%), the point of this example is
to illustrate that such differences can arise even in small and
simple models.

Figure 3b also shows the maximum absolute difference be-
tween our theoretical results for the fast and slow walker and
the actual distribution obtained exactly. In particular, we
present the total variation distance between the two distri-
butions, defined as maxi=1,...,n |π(i)− π′(i)|, where π is the
exact walker distribution and π′ is either the fast or slow
walker distribution, and n is the number of nodes in the
graph. For walker rates greater than one, the theoretical
results for the fast walker were used (π′ as defined in Sec-
tion 3.1.1), while for rates smaller than one the results for
the slow walker were used (π′ as defined in Section 3.1.2).
Note that as the walker slows down or speeds up, the total
variation decreases (graph in log-log scale). Our numerical
results indicate that the fast and slow walker become close to
our asymptotic results as their rates increase and decrease,
respectively. When the timescales of the walker and graph
dynamics are similar, the total variation distance between
the asymptotic cases and the steady state distribution is
relatively larger, as expected.

Moreover, if we consider the “degree-time distribution” of
a given node, namely, the fraction of time that node v ∈
V has degree 0, 1, . . ., we note that all three nodes have
identical degree-time distributions but the fraction of time
the walker spends on each node varies. This indicates that
the degree-time distribution is insufficient to characterize
the walker steady state. This is also like true for transient
metrics as well.

4.2.2 Edge Markovian: 6-node kite
Now consider an edge Markovian process over the “kite

graph” illustrated in Figure 4a. In particular, let all thin
edges e have On-Off rates Λ1(e) = Λ0(e) = 1. Similarly, let
all thick edges e′ have On-Off rates Λ1(e′) = 100,= Λ0(e′) =
10. Note that locally all nodes are connected through identi-
cal and independent On-Off processes, two thin edges (On-
Off rates equal to one) and one thick edge (On-Off rates
equal to one hundred). Thus, in some sense, “locally” all
nodes are indistinguishable. Surprisingly, even in this case
the behavior of the walker depends on its rate, as shown



(a) Steady state distribution of walker as a function
of walker rate.

(b) Total variation distance between theoretical re-
sults for fast and slow walker when compared to
exact walker distribution.

Figure 3: Characteristics of random walks on a K3 edge Markovian graph model.

in Figure 4b. Clearly, the structure of the graph plays an
important role, as illustrated in this example, as the fast
and the slow walkers have different time stationary distri-
butions for different nodes. This indicates the difficulty of
characterizing the exact behavior of random walks in gen-
eral graph dynamics, even if we limit ourselves to the class
of edge Markovian graphs.

4.3 A simple vehicular DTN
In this section we consider an application of our model-

ing framework to a simple vehicular disruption-tolerant net-
works (DTN) model. Our model captures some essential
characteristics of DTNs. Consider a set of buses equipped
with wireless routers moving around according to their routes.
Two buses establish communication when they are within
the coverage radius of the wireless routers. Buses belonging
to the same line (route) move from one bus stop to another
following a predefined sequence of stops in a circular fash-
ion. The following notation is used to describe the model:
S = {s1, . . . , so} is the set of bus stops across all bus lines,
where o is the number of different stops; Li ∈ Sni is a vector
with the sequence of stops for bus line i, and ni is the num-
ber of stops at bus line i; l denotes the number of different
bus lines and bi is the number of different buses operating in
line i = 1, . . . , l; Assume that both ξik, the amount of time
line i bus stays at stop k, and ζikl, the amount of time it takes
line i bus to move from stop k to l, are exponentially dis-
tributed random variables, but can have different parameter
values for any i, k, l. In addition, buses move independently
of each other, including those in the same line.

The bus routes and the coverage radius of the wireless
router allow two or more buses to exchange information
when buses are at the same stop. Thus, if two or more
different bus lines share at least one bus stop in their route,
then buses from these lines will be able to communicate at
the shared bus stops. Moreover, two or more buses from the
same line can communicate in any stop of their line, as they
can always meet at these stops. Finally, we assume that the
communication radius is smaller than the distance between
bus stops, such that buses only communicate when located
at a shared bus stop.

Figure 5a shows an example with 11 bus stops, three
bus lines (l = 3), defined by L1 = (s1, s2, s3, s4, s5), L2 =

(s3, s4, s6, s7, s8) and L3 = (s7, s9, s10, s11), and four buses:
b1 = 1, b2 = 1, b3 = 2 (line three has two buses). Note that
lines 1 and 2 share two bus stops (s3 and s4) and that lines
2 and 3 share one bus stop (s7).

Consider a continuous-time random walker (CTRW) mov-
ing around the buses with rate γ. The goal is to determine
the fraction of time that the walker spends in each bus or in
each bus line. This problem can be formulated and solved
using the modeling framework proposed in this paper. The
first step is to construct a dynamic connectivity graph model
from the movement of the buses in their respective lines. In
particular, each bus is a node in the graph, since this cor-
responds to a possible location for the random walk. More-
over, each possible configuration of buses on their stops will
define a connectivity graph, where nodes (buses) in the same
stop are all within communication radius of one another.
Note that each connectivity graph is composed of connected
components that are all cliques (fully connected subgraph),
since all buses in the same stop can communicate.

Consider the example in Figure 5a and the possible con-
nectivity graphs that can be created, which are illustrated
in Figure 5b. The connectivity graph has four nodes, cor-
responding to the four buses. Each bus can be in a differ-
ent stop, thus yielding a connectivity graph with no edges.
Also, bus in line 2 can be at stop s7 at the same time as the
two buses from line 3, yielding a connectivity graph where
these three buses are all connected. Finally, note that not
all graphs with four nodes are possible, since different lines
may not have stops in common such as lines 1 and 3, for
instance.

The transitions between graph configurations are shown in
Figure 5b. In our model, buses cannot simultaneously leave
a stop. As a consequence, the number of allowed transitions
is reduced. Once the dynamic graph model is constructed,
we can obtain the state holding times for each graph config-
uration. This is possible if the holding times at bus stations
and the amount of time it takes a bus to move from a sta-
tion to another are exponentially distributed. However, this
is non-trivial in the general case, since buses can move along
their routes without changing the connectivity graph. More-
over, totally different bus configurations over the set of stops
can lead to the same connectivity graph. Since our modeling
framework makes no assumption on the state (static graph)



(a) The edge Markovian model over
the 6-node kite graph where edges
belong to one of two On-Off pro-
cesses.

(b) Steady state distribution of walker as a function of
walker rate (nodes 5 and 6 not shown, but are identical
to nodes 2 and 3).

Figure 4: Characteristics of random walks on a 6-node kite edge Markovian graph model.

(a) Example of a vehicular DTN with eleven bus stops, three
bus lines and four buses (line 3 has 2 buses).

(b) Connectivity graphs and transitions between them ac-
cording to the bus system illustrated in Figure 5a.

Figure 5: Example of a simple bus system (a) and the induced dynamic graph model (b).

holding times of the dynamic graph model we can extend the
exponential assumption considering general distributions for
the holding times at each graph configuration, assuming only
that the expected holding time is finite for all static graphs
and that dynamic graph process is stationary, ergodic and
T-connected.

The model constructed from this scenario matches the
case studied in Section 3.2 in which the stationary distribu-
tion of the random walk is time-scale invariant and uniform
over the set of nodes in the graph, independent of graph
dynamics (see Theorem 3.4). This occurs since every con-
nected component of every possible graph configuration is
a clique, thus, having identical degree within each compo-
nent. Therefore, the fraction of time the walker spends in
any given bus is simply 1/

∑
j bj , while the fraction of time

spent in bus line i is simply bi/
∑
j bj . Thus, CTRWs could

find applications in searching for information or sampling
properties in such systems, as its steady state does not de-
pend on the graph dynamics.

5. RELATED WORK
Random walks have been widely used to understand and

characterize graphs due to their well understood steady state
behavior. By leveraging the steady state distribution of ran-
dom walks, principled mechanisms for characterizing and es-
timating vertex-related properties have been devised [7, 12,
14,16,17].

It follows that random walks can potentially be used to
understand and characterize dynamic graphs. In fact, ef-
forts in this direction concerning time-independent dynamic
graphs (i.e., each snapshot is independent of the previous)
have appeared in the literature [3, 8, 10, 15], mainly in the
context of determining upper and lower bounds for the cover
time of random walks. More recently, proposals to define
time-dependent dynamic graph models as well as character-
ize random walks in them have also appeared in the litera-
ture [1,2,4]. However, these efforts have focused on discrete-
time dynamic graph models with a goal of computing the
cover time of random walks either in special graph struc-
tures [2], in specific dynamic graph models [4], or through
numerical evaluations [1]. Our work differs from these in
the sense that we consider continuous-time dynamic graph



models and continuous-time random walks with the goal of
analytically characterizing the steady state behavior of the
walker. Moreover, our prior work on this topic considered
only Markovian dynamics and characterized the steady state
behavior of the walker only under time-scale separation [18].

Finally, random walks have also been used as a sampling
mechanism to estimate characteristics of vertices (e.g., frac-
tion of vertices of a particular kind) in large static graphs
[7, 12, 17]. More recently, efforts to measure characteristics
of vertices in dynamic graphs have also appeared in the lit-
erature [16, 20]. However, these are mostly preliminary and
exploratory papers, indicating potential pitfalls and biases
introduced by fast changing dynamic graphs. In contrast,
our works is a first step at providing a theoretical founda-
tion that can then be applied to estimate characteristics of
vertices in dynamic graphs.

6. CONCLUSION
Understanding the long-term behavior of CTRW over dy-

namic graphs is an important step towards a comprehensive
study of dynamic graphs. Since the steady state distribu-
tion of random walks on static graphs is arguably the most
important characteristic of these processes, it is of vital im-
portance to characterize the CTRW steady state distribu-
tion for a broad class of dynamic graph processes. Unlike
random walks on static graphs, CTRWs on dynamic graphs
have a non-trivial behavior. The walker rate as well as the
process that governs the graph dynamics both impact the
asymptotic time stationary distribution of the walker (the
amount of time a walker spends on each node).

Our main results assume the graph process to be asymp-
totically stationary, ergodic and T-connected. We make no
independence assumptions concerning the times the process
resides in each of the graph configurations or the particu-
lar distribution of these residence times. In other words,
the time spent in a given graph configuration can be depen-
dent on the residence time at other configurations and, in
addition, the distribution of the time the network spends
in a configuration can be general. Moreover, the dynamic
graph can have temporarily disconnected nodes as long as
the dynamic graph is T-connected.

Under this general scenario, we have obtained the steady
state distribution of cases in which the walker is either much
faster or much slower as compared to the rate of changes in
graph configurations. We have obtained a sufficient condi-
tion for the CTRW stationary distribution to be invariant
to the walker rate and presented examples that illustrate
models in which these results are applicable. In this context,
additional application examples for the constant degree con-
straint can be found in P2P networks where peers maintain
a nearly fixed number of connections. Hence, Theorem 3.4
helps explain why sampling these dynamic networks using
random walks leads to meaningful results [20].

The examples in this paper serve mainly for illustrative
purposes. However, we believe that the theory we developed
will find applications in many important areas. Examples of
promising application areas are in sampling DTN and P2P
networks.
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