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ABSTRACT
Online social networks (OSNs) offer a rich medium of mal-
ware propagation. Unlike other forms of malware, OSN
malware campaigns direct users to malicious websites that
hijack their accounts, posting malicious messages on their
behalf with the intent of luring their friends to the mali-
cious website, thus triggering word-of-mouth infections that
cascade through the network compromising thousands of ac-
counts. But how are OSN users lured to click on the mali-
cious links? In this work, we monitor 3.5 million Facebook
accounts and explore the role of pure monetary, social, and
combined socio-monetary psychological incentives in OSN
malware campaigns. Among other findings we see that the
majority of the malware campaigns rely on pure social in-
centives. However, we also observe that malware campaigns
using socio-monetary incentives infect more accounts and
last longer than campaigns with pure monetary or social in-
centives. The latter suggests the efficiency of an epidemic
tactic surprisingly similar to the mechanism used by biolog-
ical pathogens to cope with diverse gene pools.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human factors

General Terms
Human Factors, Measurement

Keywords
OSN Malware; Social Incentives; Monetary Incentives; La-
bor Markets
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1. INTRODUCTION
In 1949 von Neumann first suggested the possibility of cre-

ating self-reproducing computer programs [42]. Thirty-five
years later Cohen wrote one of the first computer malwares,
which he named a computer virus [7]. Since then, the con-
nection between computer malware and biological viruses
has captivated the imagination of both researchers and the
general public [10, 11, 12, 36], and the manner in which
malware interacts with people and computers has evolved.
The inception of e-mail in the 60’s created a new medium
for malware developers [5, 15, 30].

Today, online social networks (OSNs) offer another new
medium for malware propagation that, as shown in this and
some of other of our recent studies [19, 33], is profoundly
changing the face of malware. In OSN malware, OSN users
are lured into visiting malicious websites containing click-
jacking attacks1 or into installing malicious in-OSN apps
(e.g., Facebook apps). Once infected, the victim is imper-
sonated in the social network, unknowingly exposing his or
her friends to the same campaign through bogus direct mes-
sages or broadcast posts, creating a word of mouth infection
that cascades through the network [19, 33]. One of the key
features of OSN malware (a.k.a. socware [19, 33]) is lever-
aging on the perceived “endorsement” of hijacked users from
the in the eyes of that user’s friends. OSN malware is more
than just a nuisance, it enables identity theft and cyber-
crime with several reported cases resulting in financial losses
for the victims [20, 35].

But how are OSN users lured to click on these malicious
links in the first place? We leverage on our prior work on de-
tecting malware posts through a combination of keywords,
anomalous user behavior, and topological anomalies [19, 33]
to study how OSN malware exploits psychological incen-
tives. Following Heyman and Ariely [17] classification of
behavioral incentives in labor markets, we divide incentives
into monetary, social, and socio-monetary (the latter is a
combination of monetary and social incentives). These so-
cial and monetary incentives are, for instance, a pure mon-
etary posts that promises a “free iPad”; pure social posts
related to improving or checking your social status such as
“Can you beat me in this game 〈link〉?” and “OMG check

1Clickjacking and other attack mechanisms are described in
Huang et al. [19]



if a friend has deleted you! Click 〈here〉, it works!”, or of
shared curiosity“This is shocking 〈link〉!”; and finally (socio-
monetary) a combination of social and monetary incentives
(e.g., a friend’s challenge with the promise of a free iPad if
you win).

Contributions
One of the main contributions of this work is to study the im-
pact of distinct socio-monetary incentives in the size and du-
ration of malware campaigns2, covering the posts of nearly
3.5 million Facebook users collected over ten months be-
tween July 2011 and April 2012. With the help of My-
PageKeeper malware post detection heuristics [19, 33] and
226 Mechanical Turk [3] volunteers we classify thousands of
unique Facebook posts. We note, however, that our monitor-
ing is restricted to both users that installed MyPageKeeper
and the posts of their friends that are visible to these users.
But while we are limited to users of one online social network
(Facebook) that volunteer to have their accounts protected
by MyPageKeeper, the data collected from this viewpoint (of
3.5 million users) is of great interest. Aside from truly ran-
dom monitoring without user consent, data collection from
volunteers is prone to unknown biases.

We observe that 67% of the malware campaigns in our
dataset use pure social incentives. Interestingly, and de-
spite Heyman and Ariely’s observations that subjects ex-
posed to socio-monetary incentives act like subjects exposed
to monetary incentives [17], we observe that combined socio-
monetary incentives are more effective – in fact, stochasti-
cally dominant with respect to number of infected users and
campaign durations – than campaigns using pure social or
pure monetary incentives. For instance, malware campaigns
with socio-monetary incentives last on average 136% longer
than pure monetary and pure social campaigns.

Relation to Biological Pathogens
A simple explanation for the effectiveness of combined socio-
monetary incentives is a type of percolation effect observed
in plant pathogen epidemics over mixed crops [28, 46]. Through
simulations we show that even if the susceptibility to com-
bined incentives is less than that of any one specialized
incentive, combining incentives provide a tremendous ad-
vantage to percolate over the network. On Facebook the
mix is the likely propensity of distinct users to be more
attracted to either monetary or social incentives. While
there are other plausible explanations to why campaigns
with socio-monetary incentives infect more users and last
longer than campaigns with pure incentives (e.g., posts with
socio-monetary incentives could be more difficult to classify
as spam), the percolation effect described does not need ex-
tra (unverifiable) assumptions.

Outline
This work is organized as follows. Section 2 presents the
necessary background to understand Facebook malware and
their incentives. Section 3 presents the related work. Sec-
tion 4 introduces our dataset, the malware incentives to-
gether, and the definitions used throughout this work. Sec-
tion 5 shows how we classified malware posts. Section 6

2Malware campaigns are precisely defined in Section 4 but
can be roughly thought as the spread of a malware associated
with a specific website.

reports statistics of the observed incentives at the campaign
level. Section 7 shows that simulations of epidemics on real
OSN topologies using mixed incentives can indeed outper-
form pure incentives, even if mixed incentives are not as
effective than pure incentives in infecting to the subpopula-
tion of individuals susceptible to the pure incentive. Finally,
Section 8 discusses our results and future work.

2. PRELIMINARIES
Facebook is the largest online social network ever created

in the Internet’s short history. With over 1.11 billion active
users as of March 2013 [9], Facebook is a prime source of
online social network data. Through the analysis of posts of
over 3.5 million Facebook users collected over ten months,
we observe a new generation of computer malware that re-
lies heavily on two factors to spread through word of mouth:
(a) incentive mechanisms provided by the post and (b) peo-
ple’s cognitive capacity to distinguish between a legitimate
request from a friend and a bogus request from an infected
friend. Other security factors are also known to play a role
in security threats [4, 18, 25, 45], such as users’ belief that
they are less at risk than others, the fact that privacy and
security are abstract concepts, and that it is hard for non-
experts to judge risk. We leave the analysis of the analysis of
these other security factors as future work, so we can instead
focus our analysis on the role of socio-monetary incentives.

A representative example of the kind of incentive used
on Facebook malware campaigns3 is the campaign whose
posts include the text “OMG check if a friend has deleted
you! Click 〈here〉, it works!”. This campaign simultaneously
exploits the reader’s incentive to know his or her social status
in the group and the credibility (and social capital [37]) of
the impersonated victim. The latter is remarkably different
from messages seen in e-mail spam, an effect broadly felt on
the use of keywords. For instance, “viagra” and “pills” are
popular keywords in e-mail spam, but out of the hundreds
of thousands of malicious posts we collected on Facebook,
not a single one contains these keywords [33].

Once the post appears legitimate to the victim, a com-
bination of the incentives in the post and the victim’s sus-
ceptibility to the incentive drive the victim’s decision as to
whether or not to click on the malicious link. The data
shows that social incentives often target the victim’s social
capital – increasing one’s social capital is known as one of
the reasons why people join online social networks [37] – or
the victim’s social insecurities about his or her social status
in their social group.

3. RELATED WORK
While we are unaware of other works analyzing the im-

pact of social and monetary incentives on online social net-
work cascades, there is a rich literature on both percolation
phenomena and computer viruses. Recent work on percola-
tion phenomena over interdependent networks shows that a
virus or a failure spreading over distinct but interconnected
networks has a lower critical threshold than the same phe-
nomenon spreading over a single network [14, 23, 43].

The connection between traditional computer viruses and
biological pathogens has been extensively studied in the lit-

3Facebook actively combats malware alongside with third
party application such as MyPageKeeper, the application
we used to collect the data used in this study [19].



erature [7, 12, 36]. But these works do not consider the true
networked nature of the infection. In the last decade there
has been great interest in the connection between computer
viruses and networks (e.g. [13, 32, 38]) but these works tend
to look at worms and computer viruses that do not depend
on human intervention to spread.

The role of diverse gene pools in the containment of bio-
logical pathogens has been studied since the early 70s [2, 6,
39]. Recent works in the literature make the connection be-
tween diversity of types and computer viruses. For instance,
recently Wang et al. [44] conjectured that the spreading of
viruses on mobile phones was hindered by the existence of
two distinct popular (but incompatible) smartphone plat-
forms. Even more recently, Newell et al. [29] proposed the
use of a diverse set of network routers with distinct software
(and possibly distinct vulnerabilities) as a way to deter mali-
cious attacks that could compromise the network. The above
works also disregard incentives and the effect of human inter-
vention on the infection process. In business environments
Yves et al. [8] study how to mitigate social engineering or
insider attacks by using different administrative personnel.

In contrast to the above works, we study online social
network malware that relies on user intervention to spread.
Unlike worms and similar computer viruses, OSN malware
must provide incentives to convince a user to perform actions
that allow the malware to hijack that user’s account. We an-
alyze the incentives used by malware developers classifying
these as social and monetary. Interestingly, we observe that
malware campaigns with both monetary and social incentive
are able to last longer and infect more users.

Adamic et. al. [22] study the evolution of memes of Face-
book. They found that memes were copied or mutated by
people during transmission. In contrast, our work focus on
how malware developers conduct their malware campaigns
with different incentives and how these incentives affect the
duration and the number of infected users. Note that unlike
Adamic et. al., victims of OSN malware often do not spread
it willingly. The textual changes observed in the posts of a
single malware campaign are overwhelmingly for text obfus-
cation purposes (likely to fool Facebook’s malware detection
tools). In this work we classify campaigns by the URL used
in the attack rather than the text of the post as to avoid
problems with obfuscation (in the following section we pro-
vide more details about our methodology).

4. DATASET AND DEFINITIONS
In this section, we describe some of the definitions used

throughout this work. After presenting the definitions, we
introduce our dataset.

Definitions. A post is a broadcast message that a Facebook
user writes on her timeline (a.k.a. wall) that can be seen by
all of her friends (modulo Facebook’s post recommendation
algorithm and privacy filters that users may have in place).
We consider a post text to be the collection of all texts of
posts that show small Levenshtein distance [24]. For in-
stance, “Click here and win an iPad2” and “Click here and
win an iPhone5” are considered posts with identical post
text. A campaign is defined as the set of Facebook posts
with the same unique URL, i.e., we are aggregating posts ac-
cording to the website they advertise. Using URLs to finger-
print a campaign avoids the caveats of text-based classifica-
tion or mutating post text. Some URLs are shortened using

Observation period Jul’11–Apr’12
Number of observed posts with links 111 million
Number of malicious posts 164,304
Number of posts with text content 120,455
Number of campaigns with text 3,110

Table 1: Dataset summary.

URL shortening services such as goo.gl and bit.ly. However,
Huang et al. [19] shows that assigning posts to ‘ campaigns
based on their URLs is similar to aggregating campaigns by
the address of the final landing webpage.

A single post may contain one or more distinct incen-
tives. For instance, 22.52% of the posts contain both social
and monetary incentives. These posts are combined socio-
monetary incentive posts. Otherwise the post has a sin-
gle incentive. Our classification method is designed to find
combined social and monetary incentives. A campaign may
have both social and monetary incentives in two forms. Ei-
ther the campaign sends messages with combined social and
monetary incentives, or it uses two or more posts containing
different incentives.

MyPageKeeper Summary: MyPageKeeper evaluates every
URL that it sees on any user’s Wall or News Feed to deter-
mine if the URL points to OSN malware. MyPageKeeper
classifies a URL as malware if it points to a web page that
1) is known to spread malware, 2) attempts to “phish” for
personal information, 3) requests the user to carry out tasks
(e.g., fill out surveys) that profit the owner of the website, 4)
promises false rewards, or 5) attempts to entice the user to
artificially inflate the reputation of the page (e.g., forcing the
user to “Like” the page to access a false reward). MyPage-
Keeper evaluates each URL using a classifier which leverages
on hand-annotated and examples and post features that take
into account the social reaction (context) of posts associ-
ated with the URL. For any particular URL, the features
used by the classifier are obtained by combining informa-
tion from all posts (seen across users) containing that URL.
Example features used by MyPageKeeper’s classifier include
the similarity of text messages across posts and the number
of comments and Likes on those posts. MyPageKeeper has
false positive and false negative rates of 0.005% and 3%,
respectively. For more details about MyPageKeeper’s im-
plementation and accuracy, please see Rahman et al. [33].

Datasets. Our data was collected through our MyPage-
Keeper Facebook app [1] from July 2011 to April 2012. We
monitored the activity of 3.5 million Facebook users through
the news feeds of 16,240 of MyPageKeeper’s users4. In to-
tal, we identified 164,304 malicious posts, which contain at
least one link out of 4,389 unique URLs. Within these posts
we found 3,110 distinct posts that contain both text and a
unique URL, the remaining 1,279 posts contain only URLs.
Table 1 summarizes the dataset.

Detailed Description of MyPageKeeper
In what follows we present details of the MyPageKeeper
app. The reader uninterested in the inner workings of My-
PageKeeper can safely skip to the next section. The key

4On any user’s news feed, Facebook selectively shows only
12% of updates posted by the user’s friends. Hence, we will
not see all the updates of any user’s friends.



novelty of MyPageKeeper lies in the classification module
(summarized in Figure 1(b) of Rahman et al. [33]). The in-
put to the classification module is a URL and the related
social context features extracted from the posts that con-
tain the URL. Our classification algorithm operates in two
phases, with the expectation that URLs and related posts
that make it through either phase with- out a match are
likely benign and are treated as such. We use whitelists and
blacklists. To improve the efficiency and accuracy of our
classifier, we use lists of URLs and domains in the following
two steps. First, MyPageKeeper matches every URL against
a whitelist of popular reputable domains. We currently use
a whitelist comprising the top 70 domains listed by Quant-
cast, excluding domains that host user-contributed content
(e.g., OSNs and blogging sites). Any URL that matches this
whitelist is deemed safe, and it is not processed further.

All the URLs that remain are then matched with several
URL blacklists that list domains and URLs that have been
identified as responsible for spam, phishing, or malware. Us-
ing machine learning algorithms (trained with social con-
text features) we evaluate all URLs that do not match the
whitelist or any of the blacklists are evaluated using a Sup-
port Vector Machines (SVM) based classifier. We train our
system with a batch of manually labeled data, that we gath-
ered over several months prior to the launch of MyPage-
Keeper. For every input URL and post, the classifier out-
puts a binary decision to indicate whether it is malicious or
not.

Our SVM classifier uses the following features: (a) Spam
keyword score: keywords such as “FREE”, “Hurry”, “Deal”,
and “Shocked”. To compile a list of such keywords we col-
lect words that 1) occur frequently in blacklisted URL posts,
and 2) appear with a greater frequency in OSN malware as
compared to their frequency in benign posts. (b) Time-
line post count: the more successful a spam campaign, the
greater the number of users will be infected. Therefore, for
each URL, MyPageKeeper computes counts of the number
of Facebook timelines that contain the URL. (c) Like and
comment count. Facebook users can “Like” any post to indi-
cate their interest or approval. Users can also post comments
to follow up on the post, again indicating their interest. (d)
Level of URL obfuscation: hackers often try to spread mali-
cious links in an obfuscated form, e.g., by shortening it with
a URL shortening service such as bit.ly or goo.gl. We store
a binary feature with every URL that indicates whether the
URL has been shortened or not; we maintain a list of URL
shorteners. Further details on the inner workings of My-
PageKeeper can be found in Rahman et al. [33].

5. CLASSIFYING INCENTIVES
We classify the different types of incentives into one of the

fourteen different incentives shown as a hierarchical taxon-
omy tree in Figure 1. These categories help our volunteers
define whether the post contains a social, a monetary, or a
socio-monetary incentive. At the highest level, we divide in-
centives into two categories: monetary incentives and social
incentives. Under these two main categories, we further di-
vided them into subcategories based on the mechanisms that
are used to attract new victims. Table 2 presents three of
the most informative frequent words of some of our incentive
categories.

We use Amazon’s Mechanical Turk platform [3] to recruit
volunteers to classify thousands of unique Facebook posts.

We refers to these volunteers as turkers in the remaining
of the study. Mechanical Turk’s main advantage over au-
tomatic text classifiers is its ability to actually reflect the
reactions of real users to the post text. Simultaneously, Me-
chanical Turk allows us to perform the classification in much
larger scale than with in-campus volunteers; by recruiting
226 turkers on Mechanical Turk, we avoid potential biases
resulting from the use of a few volunteers doing a tedious
task.

5.1 Mechanical Turk Classification
A total of 26.88% of all malicious posts in our dataset are

URLs that do not contain any text. Facebook automatically
displays a snapshot of the webpage URL, and as a result,
when users read the post, they are subject to an incentivized
post even though there is no text content in the post. Un-
fortunately, we do not consider these posts in this study as
these webpages are short-lived [19], making it challenging to
collect the necessary information. We defer the analysis of
the incentives of these kind of posts for future study.

Figure 2: Screenshot of our Mechanical Turk survey.

From 120,455 malicious posts with text content, we iden-
tify 2,119 groups of posts, where posts in the same group
contain text similar to each other with Levenshtein distance
[24] less than 20. We select one post from each group to
represent the group and ask workers two questions about
the post:

1. Which monetary incentive is given to click on the link?

2. Which social incentive is given to click on the link?

On Amazon Mechanical Turk, tasks assigned to workers are
called HITs (Human Intelligence Tasks). When we conduct
our survey on Amazon Mechanical Turk, each HIT contains
19 different malicious posts and is assigned to 5 distinct
turkers. To ensure the quality of the conducted survey, in
each HIT, we add one control post with an obvious known
incentive and one control question to each post. The re-
sults of a HIT completed by a turker are only valid if the



Figure 1: Taxonomy of malware post incentives.

Trait Largest group % of total
Age 25-34 39.42%
Gender Male 55.29%
Education level Some college 42.31%
Income $25K - $37.5K 19.71%
Has FB account? Yes 85.58%

Table 3: Demographical information of turkers

turker answers the control post and control questions cor-
rectly. Otherwise, we ignore it and assign the HIT to a new
turker.

The content of a post is labeled social or non-social, mon-
etary or non-monetary (socio-monetary are posts with both
monetary and social labels) only if the majority of the turk-
ers agree with the classification. In total, we successfully
labeled 99.25% of all campaigns with a total disagreement
rate of only 3%. Since these are malicious posts, we need
to be careful with external links in the posts. To protect
turkers we direct all links to our website explaining the na-
ture of our study. To protect Facebook user’s privacy, we
do not include users’ names on posts, replacing these names
with some of the most common names and surnames in the
U.S. population [40]. Figure. 2 shows a screenshot of our
Mechanical Turk survey.

Each HIT consists of 19 malicious posts and one control
post. Each post is rated by at least 5 turkers. We assign
an incentive to a post by majority vote but to optimize la-
bor costs we start assigning only 3 turkers to each HIT. We
then create new HITs only for the posts where not all three

Control post Get a free iPhone 4 Click here
Control question 2 + 3 =?

Table 4: Sample of a control post and a control question.

turkers agreed on the incentive. We stop creating new as-
signments when all posts have at least 5 turker ratings.

Qualification of turkers.
To ensure that turkers are reliable we filter turkers that

can accept on our HITs by: (1) Only allowing turkers who
have “Assignments Approval rate” higher than 95%. (2)
Only allowing turkers who register their location as the United
States. to ensure consistency, and a common linguistic back-
ground. (3) No turker can work on two HITs that share the
same posts. In total, we get 226 turkers. Table 3 shows the
self-reported information about the turkers that helped us
classify campaign incentives.

Human subject verification.
In order to ensure high quality in our classification results,

we add one controlled message within each HIT and one
controlled question in each post. Table 4 lists the control
posts and sample of controlled questions. We design the
incentive of the control post to be straightforward. If turkers
cannot classify the controlled posts correctly the entire HIT
is discarded.

We evaluate the quality of our survey by checking the
design of the questions first. We want to make sure that
turkers can understand our questions clearly. In the survey
each question has 6-10 options. In total, (85− 90%) of text



Category Frequent Words
Click and win Free, wow, offer
Play a game contest, win, click
Discounted item free, recharge, get
Best my friends in a game context, win, click
Brownie points just, got, miscrits
Raffle cruise, win, holidays
Earn Money make, moms, year
Sexual incentive omg, shows, model

A chance to support something or to show I can about something
(e.g. sport team, animals, etc.) team, vote, favorite

Social curiosity (e.g., track profile visitors, monitor friend activities) check, friend, deleted

News, interesting topics, etc. (e.g., Bin-Laden death video) live, news, streaming

Feel-good reward (e.g., video of puppies) freee, shirt, recharge

Personalize and make my Facebook page cooler facebook, graphic, change

Table 2: Frequent words in each category

messages have at least 3 turkers voting the exact same an-
swer according to our taxonomy in Figure 1 (e.g., the post
contains a “Click-and-Win Rebate”). Second, we want to
evaluate if our control questions are actually weeding out
misbehaving turkers. Over the turkers that answered the
control questions correctly, we select dissenting turkers who
have at least one answer that disagrees with the majority of
the other turkers of the same HIT. We found that 77− 93%
of the remaining answers of the dissenting turkers agree with
the majority, showing no consistent wrongdoing in the part
of the dissenting turkers. Figure 3 lists the probability that
the remaining answers of the dissenting turkers are the same
as the majority. Based on the evaluation we just describe
above, we believe that the results of our survey are trust-
worthy.

6. USE OF INCENTIVES ON FACEBOOK
MALWARE

In this section, we report the observed incentives at the
campaign level. We also study these campaigns using met-
rics such as the number of infected accounts and duration
of these campaigns. The duration of a campaign is defined
as the period of time from the first day until the last day
we observe newly infected users. Note that we consider a
campaign to be alive only while it keeps infecting new users;
we do not consider a campaign to be alive if it stops com-
promising new users. Figure 4 shows the evolution of the
campaigns breaking them down into monetary, social, and
socio-monetary incentivized campaigns relative to the to-
tal number of campaigns. The inset in Figure 4 shows the
same plot with the absolute number of campaigns. Note
that the overwhelming majority of the campaigns are so-
cial incentivized. Monetary and socio-monetary incentivized
campaigns compete neck-in-neck.

Among campaigns with social incentives, we observe a
sizable fraction of them lure users with social curiosity. For
example, we observe 591 distinct campaigns—13% of all ob-
served campaigns—with text content of the nature “check if
a friend has deleted you”. Other representative text content
of social curiosity campaigns—with observed 302 distinct
campaigns—is “Wow! l cant believe that you can check who
is viewing your profile. l just checked my top proflle lookers
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(b) Q: Which social (non-economic) incentive
is given to click on the link?

Figure 3: Turker’s classification performance.

(sic) and l am shocked at who is seeing my profile! You can
also see who viewed your profile 〈here〉”.

We use two measures of campaign success: campaign du-
ration and the number of infected users of a campaign. Fig-
ure 5(a) shows a semi-log plot of the complementary cu-
mulative distribution (CCDF) of campaign durations sepa-
rated by incentive. Note that socio-monetary campaigns are
stochastically dominant over the duration of monetary and
social campaigns. The average duration of a socio-monetary
campaign is 17.8 days while the durations of pure social



Campaign type (Total campaigns)
Social campaigns 2075 68%
Monetary campaigns 540 17%
Socio-monetary campaigns 414 13%
Unclassified 81 3%

Table 5: Breakdown of malware campaigns for each incen-
tive type (unclassified campaigns are campaigns where there
was no agreement on the type of incentive provided).

Campaign type duration reach
All campaigns 7.1 days 28.1 users
Social campaigns 4.8 days 26.2 users
Monetary campaigns 7.5 days 22.3 users
Socio-monetary campaigns 17.8 days 43.2 users

Table 6: Average duration and reach (number of infected
users) of malware campaigns.

and monetary campaigns are 4.8 and 7.5, respectively. The
duration average by campaign incentive is summarized in
Table 6.

The total number of infected accounts with socio-monetary
campaigns is also stochastically dominant over the number
infected with only monetary or social campaigns (see the
semi-log CCDF of number of infected users in Figure 5(b)).
Interestingly, we observe that the conditional distribution
of the number of infected users given campaign durations
(Figure 6) shows that campaign durations and the number
of infected users in a campaign are mostly independent of
each other. In other words, campaigns that last long do not
necessarily infect more users. On average socio-monetary
campaigns infect almost twice as many users as pure mon-
etary campaigns (43.2 v.s. 22.3) and 165% more users than
pure social campaigns. The average number of infected users
(reach) by campaign incentive is summarized in Table 6.

To exemplify the dominance of socio-monetary campaigns,
we select two similar “play/win a game” subcategories that
belong to monetary and social incentives, denoted “play a
game” and “win a game” in Figure 1, respectively. Ta-
ble 7 shows the statistics of these game campaigns along
with a sample post content. Observe that socio-monetary
campaigns infect 4.4 times more users than campaigns with
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Figure 6: The number of infected users is loosely correlated
with campaign durations. The graph shows the boxplot of
the number of infected users of campaigns with a given du-
ration. Duration values are sometimes binned to ensure that
each bin has at least 31 samples.

pure incentives. Also note that, consistent with our general
observations, there are more social game campaigns than
monetary game campaigns, and that social campaigns are
less effective than monetary campaigns.

These observations have remarkable real-world implica-
tions. For instance, stochastic dominance [16] implies that
any rational agent betting on the outcome of a campaign
whose utility function—for instance, the malware developer’s
revenue—increases according to the campaign duration or
the number of infected (or any linear combination of the
two) will choose socio-monetary campaigns. Another in-
teresting observation is that while social incentivized cam-
paigns are the majority of the observed campaigns, socio-
monetary campaigns are superior and monetary campaigns
are equally good if not better than social campaigns.

The observation that socio-monetary campaigns are more
effective than pure monetary or pure social campaigns is
rather surprising. Heyman and Ariely [17] show that sub-
jects exposed to a combined socio-monetary incentive treat
the incentive mostly as monetary and, thus, are less sus-
ceptible to the social incentive component. However, it is
possible that the virulence of the monetary and social in-
centives that go into the socio-monetary campaign is more
pronounced alone for certain users than when in combina-
tion. For instance, consider the following hypothetical sce-
nario. Alice sees that her good friend Bob is challenging
her to a game that also offers an iPad prize but is suspi-
cious of the monetary prize (likely a scam) but would love
to play the game with Bob. Carol is friends with Bob but
does not know him very well and is not interested in the
personal challenge but would love to play to win an iPad.
In a scenario where socio-monetary incentives are not as vir-
ulent as pure incentives for a given set of users, could using
socio-monetary incentives be still advantageous?

Without the possibility to infect users with malware we
are unable to perform an experiment to answer the above
question. However, we find a likely explanation can be
found in a percolation phenomena well known in biological
pathogens. Consider an extreme toy problem scenario. Fig-
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Figure 5: Impact of monetary, social, and socio-monetary incentives on the duration and size of malware campaigns.

incentive
infections
per campaign

campaigns sample post content

social
(game)

2.46 24
Some People will dominate all the games and some are
doomed to remain losers their whole life (sic): 〈link〉

monetary
(game)

16.18 11

NEW GAME NOTICE! Come check out the awesome
new Wild Wild Taxi contest that is available, you
could win a Kindle Fire. Start playing〈here〉

socio-monetary
(game)

71.33 51

CONTEST UPDATE: Currently in 10246th place in
The Daily Addi’s Gem Swap II contest to win a 16GB
iPad2. Think you can do better? You should give it a
try 〈here〉

Table 7: Statistics of social, monetary, and socio-monetary game campaigns.

ure 7(a) shows the original toy network where users have a
pure incentive preference: social (blue) or monetary (green).
While in real life people are susceptible to both social and
monetary incentives with different intensities, in our toy ex-
ample, we consider the extreme case where they have a strict
preference for either social or monetary incentives. That is,
a node with a social (monetary) incentive preference may
not be infected by campaigns using pure monetary (social)
incentive. Figs. 7(b-c) show the percolation paths that can
be taken by pure incentive campaigns. In contrast, socio-
monetary incentivized campaigns see the percolation paths
as in Figure 7(d). However, despite the denser percolation
paths, the virulence of a socio-monetary campaign may not
be as high as the virulence of a pure incentive campaign.
This is because users with social (monetary) incentive pref-
erence may be put off by the mix with a monetary (social)
incentive.

While there is recent work on percolation phenomena over
interdependent networks, showing that a virus spreading
over distinct but interconnected networks is more virulent
than the same virus spreading over a single network [14, 23,
43], the phenomenon of interest in this work is a different
type of percolation. The percolation consists of a flexible

“pathogen” (socio-monetary campaign) that can infect users
with distinct incentive preferences, contrasting the latter
with a more specialized “pathogen” (pure social or mone-
tary campaigns) that is more virulent in infecting users of a
specific incentive preference but less virulent to other users.
We find a similar scenario looking at plant pathogens.

One of the most famous cases of the epidemiological im-
pact of a single gene variant in crops is the blight disease
that hit potatoes in Western Europe, particularly Ireland,
in the middle of the 19th century (1845–1852). The widely
used single variety of potato used in Europe allowed the dis-
ease to spread quickly through the continent [2]. Since then,
some commercial farmers adopted mixed-strain crops.

The E. graminis is a fungus that causes powdery mildew
on barley. E. graminis has genotypes that if specialized
to attack one barley strand are known to be highly viru-
lent on that strand but significantly less effective on other
strands [6]. In the presence of mixed strands flexible E.
graminis genotypes evolve to attack different barley strands,
but this flexibility comes at the cost of limiting the pathogen’s
ability to adapt with increased virulence to individual strands.
Despite the decreased virulence that comes with flexibility,
E. graminis is known to suffer strong genetic pressure to



(a) network with monetary (green) 
and social (blue) motivated nodes

(b) possible paths of social
incentive campaigns

(c) possible paths of monetary
incentive campaigns

(d) possible paths of 
socio-monetary 

incentive campaigns

Figure 7: Malware spreading over a population with sharp incentive preferences such that users with one incentive preference
may not be infected by the other incentive. Fig. (a) illustrates a network where users (nodes) prefer social (blue) or monetary
(green) incentives. Figs. (b) and (c) show the possible edges that pure incentivized social and monetary campaigns can
traverse, respectively. Fig. (d) shows the links that socio-monetary campaigns can traverse, however, with possibly lower
virulence than pure incentive campaigns.

select flexible genotypes in mixed crops [6], an effect also
extensively reported in simulations [28]. The percolation ef-
fect of specialized v.s. flexible pathogens on mixed crops is
illustrated in Figure 8, showing why a more stable connec-
tivity can tip the advantage towards flexibility. The reader
is encouraged to see Mundt [28] for an interesting review on
the effect of mixed crops on pathogen epidemics. This phe-
nomenon is not limited to E. graminis [41] and provides an
interesting mechanism to explain our observations: In pop-
ulations with mixed susceptibilities to social and monetary
incentives, flexible socio-monetary incentives are more effec-
tive due to percolation effects even if they are less virulent
than pure incentives for some classes of users.

 pathogen

mixed crop

infection probability

low high

            pathogen

mixed crop

(a) specialized pathogen (b) flexible pathogen

infection probability

low high

Figure 8: Percolation effect of specialized and flexible
pathogens on mixed crops. In mixed crops, pathogen geno-
type flexibility reduces the infection probability variance,
and possibly also its average. However, in most cases, the
lower variability increases the percolation probability, facil-
itating the spread of the disease.

However, crops live in a two dimensional world—akin to
a lattice—and small world effects of social networks can
greatly impact epidemic cascades [27]. In what follows, we
perform epidemic simulations over real social networks to
show that, even in the presence of small world effects, the
scale can also be tipped in favor of flexibility (i.e., socio-
monetary incentives in our setting).

7. FLEXIBILITY V.S. VIRULENCE SIMU-
LATIONS

We now use epidemic simulations over real social net-
works to show that, in the contest between flexibility (incen-
tive combination) and virulence (pure incentive), the scale
is tipped towards flexibility, thus providing a plausible ex-
planation as to why socio-monetary campaigns outperform
social and monetary campaigns. In other words, even if the
combination of incentives reduces the virulence of each iso-
lated incentive, incentive combination (flexibility) still pro-
duces larger cascades in most cases.

We simulate a variant of the Susceptible-Infected-Recovered
(SIR) epidemic [31] that also takes into account user incen-
tive preferences, a simple model to simulate the effects of
different incentives over two distinct network datasets. The
first network is the Enron e-mail network [21], which con-
sists of 36,692 users. The Enron e-mail network is repre-
sented as an undirected graph between email senders and
receivers. Malware campaign cascades are likely affected by
trust relationships. To account for real (asymmetric) trust
relationships, the second network dataset is the Epinions
trust network [34], which consist of 75,879 users. The Epin-
ion trust network shows a directed network of ”who-trust-
whom” among members of epinion.com. In our epidemic
model, each user has a binary preference for social or mone-
tary incentives, i.e., a purely socially incentivized campaign
cannot infect monetary incentivized users and vice-versa.
We randomly assign 60% of the users to prefer monetary
incentives and the remaining 40% users to prefer social in-
centives.

At each time step, any infected user recovers with proba-
bility r. The recovery probability simulates the effect of the
malware being discovered. Users that prefer social (mone-
tary) incentives get infected with constant probability p by
social (monetary) campaigns, but these same users cannot
get infected by monetary (social) campaigns. The infection
probability of socio-monetary campaigns is p/2 regardless
of the incentive the user prefers. The latter captures the
trade-off between flexibility and virulence.

Figure 9 shows box plots with the results of the average
(over 300 campaigns) of number of infected nodes with dif-
ferent infection probabilities p ∈ {0.03, 0.05, 0.07, 0.09}. In



●●

●● ●

●

●●

●

●
●

●

●●

0

500

1000

1500

2000

2500

infection probability

a
va

e
a

g
e

 in
fe

ct
e

d
 u

se
rs

0.03 0.05 0.07 0.09

monetary
social
socio−monetary

(a) The Enron network

●●

●
●●

●●

●

●●

●

●●

●

0

500

1000

1500

infection probability

a
va

e
a

g
e

 in
fe

ct
e

d
 u

se
rs

0.03 0.05 0.07 0.09

monetary
social
socio−monetary

(b) The Epinions trust network

Figure 9: Simulation results showing the number of infected users of distinct incentive types.

these simulations, we set the recovery probability r to be
0.5. The box plots have a “notch” around the median that
offer a rough guide to the significance of difference of medi-
ans; if the notches of two boxes do not overlap, this offers
evidence of a statistically significant difference between the
medians [26]. As observed in Facebook, the number of in-
fected users in socio-monetary campaigns is larger than that
of pure monetary or social campaigns in both Enron (Fig-
ure 9(a)) and Epinions (Figure 9(b)). Note, however, that
the advantage between socio-monetary incentives and pure
monetary incentives is more prominent as we increase the in-
fection probability p. Observe that typically socio-monetary
campaigns infect more users than campaigns with pure in-
centives with or without taking into account asymmetric
trust relationships.

8. DISCUSSION
In this work, we observe that post incentives play a major

role on the spread of malware campaigns over online so-
cial networks. We observe that while social incentives are
prevalent in OSN malware, socio-monetary incentives are
more effective—with respect to the number of infected users
and campaign durations—than social or monetary incentives
when used in isolation.

The effectiveness of combined socio-monetary incentives
can be explained by percolation effects resulting from mixed
incentive preferences in the population of users. Through
simulations we show that even if the susceptibility to com-
bined incentives is less than that of any one specialized
incentive, combining incentives provide a tremendous ad-
vantage to percolate over the network. This phenomenon
is also observed on plant pathogens [28, 46], to which we
make a variety of connections in our conclusions. In mixed
crops, natural selection dislikes highly virulent but special-
ized pathogen to promote less virulent but unspecialized
pathogens [28, 46], a mechanisms used by biological pathogens
to cope with diverse gene pools [2, 28, 46]. Thus, the diver-

sity of incentive preferences of OSN users may be a key fac-
tor in impeding the further spread of OSN malware, which
should put selective pressure on OSN malware to evolve to-
wards socio-monetary incentives but, interestingly, we found
no evidence of such evolution over our 10 months of data.
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