2 Background on Probability and Statistics

These are basic definitions, concepts, and equations that should have been covered in your earlier discrete math and probability courses.

Definition 2.1. Sample space (S)
Set of all possible outcomes of an experiment (e.g., $S = \{O_1, O_2, ..., O_s\}$).

Example. Rolling one 6-sided die $S = \{1, 2, 3, 4, 5, 6\}$

Definition 2.2. Event
Any subset of outcomes (e.g., $A = \{O_i, O_j, O_k\}$) contained in the sample space S.

Example. Odd numbers from rolling one 6-sided die $A = \{1, 3, 5\}$

Definition 2.3. Mutually exclusivity
When events A and B have no outcomes in common (e.g., $A \cap B = \emptyset$).

Example. Let A and B be the odd and even outcomes respectively, from rolling one 6-sided die, then A and B are mutually exclusive.

Definition 2.4. Axioms of probability
For a sample space S with possible events A_S, a function that associates real values with each event A is called a **probability function** if the following properties are satisfied:

1. $0 \leq P(A) \leq 1$ for every A.
2. $P(S) = 1$
3. $P(A_1 \cup A_2 \cup ... \cup A_s \in S) = P(A_1) + P(A_2) + ... + P(A_n)$
 if $A_1, A_2, ..., A_n$ are pairwise mutually exclusive events

Properties of probability functions (i.e., implications of axioms):

- $P(A) = 1 - P(S \setminus A)$.
- $P(true) = 1$
- $P(false) = 0$
- If A and B are mutually exclusive then $P(A \cap B) = 0$
- $P(A \cap B) = P(A) + P(B) - P(A \cup B)$.
Notation

- We will also represent \(P(A \cap B) \equiv P(A, B) \)
- If the probability comes from a model that has parameters, we will represent it as \(P(A; \text{model parameters}) \).

How to calculate probabilities

When the various outcomes of an experiment are *equally likely*, the task of computing probability reduces to counting:

1. Let \(N := |S| \) be the size of sample space (i.e., number of simple outcomes)
2. Let \(N(A) := |A| \) be the number of simple outcomes contained in the event \(A \)
3. Then \(P(A) = \frac{N(A)}{N} \)

Example. Roll two 6-sided dice. What is the probability that the sum is 8?
\[
|S| = 6 \times 6; \quad \text{Event } A = \{2, 6\}, \{3, 5\}, \{4, 4\}, \{5, 3\}, \{6, 2\}
\]
\[
P(\text{sum } = 8) = \frac{|S|}{|A|} = \frac{5}{36}
\]

Definition 2.5. Permutation

An *ordered* sequence of size \(k \) taken from a set of \(n \) distinct objects *without* replacement. The number of permutations of size \(k \) that can be constructed from \(n \) objects is:

\[
P_{k,n} = \frac{n!}{(n-k)!}
\]

If you are choosing an ordered sequence of \(k \) objects *with* replacement instead, there are \(n^k \) possibilities.

Example. An urn contains ten balls, numbered from 0 to 9. Two balls are drawn at random. How many different *ordered* sequences can we draw?
\[
n=10; \quad k=2; \quad \text{then we can draw } \frac{10!}{(10-8)!} = 90.
\]

What happens if once we see a ball, we return it to the urn (i.e., the two draws are with replacement)?
\[
n=10; \quad k=2; \quad \text{then we can draw } 10^2 = 100 \text{ (numbers from 00 to 99)}.
\]

Definition 2.6. Combination

An *unordered* sequence of size \(k \) taken from a set of \(n \) distinct objects *without* replacement. The number of combinations of size \(k \) that can be constructed from \(n \) objects is:

\[
C_{k,n} = \frac{P_{k,n}}{k!} = \frac{n!}{(n-k)!k!}
\]

If you are choosing an unordered sequence of \(k \) objects *with* replacement instead, there are \(C_{k,n+k-1} \) possibilities.
Example. An urn contains ten balls, numbered from 0 to 9. Two balls are drawn at random. How many different unordered sequences can we draw?

\[n=10; k=2; \text{ then we can draw } \frac{10!}{(10-8)2!} = 45. \]

What happens if once we see a ball, we return it to the urn (i.e., the two draws are with replacement)?

\[n=10; k=2; \text{ then we can draw } \frac{(10+2-1)!}{(10+2-1-2)!2!} = 55 \]

(previous result plus 00, 11, 22, 33, \cdots, 99).

Definition 2.7. Random variable (RV)
Mapping from a measurement (i.e., property) of objects to a variable that can take on a set of possible different values.

You can think of a r.v. \(X \) as a measurement of interest in the context of an experiment. Each time the experiment is run, an outcome \(O \in S \) occurs and a value \(x \) is measured and associated with the outcome \(O \). The r.v. \(X \) then consists of all possible values \(x \) that can occur as a result of the experiment. Note that the reference to \(S \) is suppressed, often because the sample space is hidden or unknown.

The future population of the state of Indiana tomorrow is a r.v. Often, for modeling purposes, we will also say that today’s and yesterday’s populations are also random variables, even when we know the exact values. This is counter-intuitive but an important concept towards understanding how to model the data.

Definition 2.7.1. Discrete random variable
A random variable with a finite set of possible values.

Example. Let \(X \) be the sum of the roll of two 6-sided dice. \(X \) is a discrete random variable with possible values \(X = \{2, \cdots, 12\} \).

Definition 2.7.2. Continuous random variable
A random variable with an infinite set of possible values.

Example. Let \(X \) be the output of a random number generator between 0 and 1. \(X \) is a continuous random variable with possible values \(X = [0, 1] \).

Definition 2.8. Probability distribution
Probability mass function (for discrete random variables) or probability density function (for continuous random variables) specifies the probability of observing each possible value of a random variable.
Example. Let the random variable X represent the sum of the roll of two 6-sided dice, then its probability mass function is:

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X=x)$</td>
<td>$\frac{1}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{6}{36}$</td>
<td>$\frac{5}{36}$</td>
<td>$\frac{4}{36}$</td>
<td>$\frac{3}{36}$</td>
<td>$\frac{2}{36}$</td>
<td>$\frac{1}{36}$</td>
</tr>
</tbody>
</table>

Definition 2.9. Joint probability distribution

For a set of random variables, gives the probability of every possible combination of values for those random variables.

Example. Let W_1 be a discrete random variable over the possible weathers $W_1 = \{\text{sunny}, \text{rainy}, \text{cloudy}, \text{snow}\}$, and let W_2 be a discrete random variable over a possible weather warning $W_2 = \{\text{true}, \text{false}\}$

<table>
<thead>
<tr>
<th>$W_2 \setminus W_1$</th>
<th>sunny</th>
<th>rainy</th>
<th>cloudy</th>
<th>snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>0.005</td>
<td>0.080</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>false</td>
<td>0.415</td>
<td>0.120</td>
<td>0.310</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Definition 2.10. Conditional (or posterior) probability

Gives the probability of a set of random variables (e.g., A) given some evidence about the values of another set of random variables (e.g., B).

$$P(A|B) = \frac{P(A,B)}{P(B)} \quad \text{if} \quad P(B) > 0$$

Example. Based on the previous joint probability distribution $P(W_1, W_2)$, what is the probability that there will be a weather warning given that is snowing?

$$P(W_2=\text{true}|W_1=\text{snow}) = \frac{P(W_2=\text{true}, W_1=\text{snow})}{P(W_1=\text{snow})} = \frac{0.020}{0.020 + 0.030} = 0.400$$

Definition 2.11. Mathematical rules of probability

- **Product rule:**

 $$P(A, B) = P(A|B)P(B) = P(B|A)P(A)$$

- **Chain rule (via successive application of the product rule):**

 $$P(X_1, \ldots, X_n) = P(X_n|X_1, \ldots, X_{n-1})P(X_1, \ldots, X_{n-1})$$
 $$= P(X_n|X_1, \ldots, X_{n-1})P(X_{n-1}|X_1, \ldots, X_{n-2})P(X_1, \ldots, X_{n-2})$$
 $$= \ldots$$
 $$= \prod_{i=1}^n P(X_i|X_1, \ldots, X_{i-1})$$

- **Bayes rule (via product rule and definition of conditional probability):**

 $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
Definition 2.12. Marginal (or unconditional) probability
The probability that an event will occur regardless of conditioning events.

\[P(A) = \sum_{b \in B} P(A, b) = \sum_{b \in B} P(A|b)P(b) \]

Definition 2.13. Independence
Two events \(A \) and \(B \) are independent iff:

\[P(A|B) = P(A) \quad \text{or} \quad P(B|A) = P(B) \quad \text{or} \quad P(A, B) = P(A)P(B) \]

Example. Based on the previous joint probability distribution \(P(W_1, W_2) \), are the events “weather warning” and “cloudy” independent?

\[
\begin{align*}
P(W_1 = \text{cloudy}) &= P(W_1 = \text{cloudy}, W_2 = \text{true}) + P(W_1 = \text{cloudy}, W_2 = \text{false}) \\
&= 0.02 + 0.31 = 0.33 \\
P(W_2 = \text{true}) &= P(W_1 = \text{sunny}, W_2 = \text{true} + \cdots + W_1 = \text{snow}, W_2 = \text{true}) \\
&= 0.005 + 0.08 + 0.02 + 0.02 = 0.125 \\
P(W_1 = \text{cloudy} \wedge W_2 = \text{true}) &= 0.02 \neq 0.04125 = P(W_1 = \text{cloudy}) \cdot P(W_2 = \text{true})
\end{align*}
\]

The events are not independent.

Definition 2.14. Conditional independence
Two variables \(A \) and \(B \) are conditionally independent given \(Z \) iff for all values of \(A, B, Z \):

\[P(A, B|Z) = P(A|Z)P(B|Z) \]

Note: independence does not imply conditional independence or vice versa.

Definition 2.15. Expected values
The expectation of a random variable \(X \) is a measure of location and is defined as:

Discrete: \(E[X] = \sum_{x \in X} x \cdot p(x) \)

Continuous: \(E[X] = \int x \cdot p(x) \, dx \)

Definition 2.15.1. Properties of expectation. Expectation is a linear operator.

Function of a rv: \(E[h(X)] = \sum_{x \in X} h(x) \cdot p(x) \)

Change in location: \(E[X + b] = E[X] + b \)
Scaling by constant: $E[aX] = a \cdot E[X]$

Sum of two rvs: $E[X + Y] = E[X] + E[Y]$

Note that this expression holds even when the random variables X and Y are dependent. This is referred to as linearity of expectation.

Conditional expectation: $E[X|Y = y] = \sum_{x \in X} x \cdot P(X = x|Y = y)$

Example. Based on the previous rv X that represents the sum of the roll of two 6-sided dice, what is its expected value?

$$
E[X] = \sum_{x=2}^{12} x \cdot p(x) = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + \ldots + 12 \cdot \frac{1}{36} = 7
$$

Definition 2.16. Variance
The variance of a random variable X is a measure of dispersion and is defined as:

$$
Var(X) = E[(x - E[X])^2] = E[X^2] - (E[X])^2
$$

Standard deviation: $\sigma = \sqrt{Var(X)}$

Definition 2.16.1. Properties of variance

Function of a rv: $Var(h(X)) = \sum_{x \in X} (h(x) - E[h(x)])^2 \cdot p(x)$

Change in location: $Var(X + b) = Var(X)$

Scaling by constant: $Var(aX) = a^2 \cdot Var(X)$

Sum of two rvs: $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)$

Note that in contrast to expectation, this expression is linear only if X and Y are uncorrelated or independent.

Conditional variance: $Var(X|Y = y) = E[(X - E[X|Y = y])^2|Y = y]$

Definition 2.16.2. Covariance
The covariance between two random variable X and Y is a measure of relation between the two variables and is defined as:

$$
Cov(X,Y) = E[(x - E[X])(y - E[Y])] = E[XY] - E[X]E[Y]
$$

Example. Based on the previous rv X that represents the sum of the roll of two 6-sided dice, what is its expected value?

$$
Var(X) = E[X^2] - (E[X])^2 = \sum_{x=2}^{12} x^2 \cdot p(x) - (7)^2 = 4 \cdot \frac{1}{36} + 9 \cdot \frac{2}{36} + \ldots + 144 \cdot \frac{1}{36} - 7^2 = \frac{5}{36}
$$
Definition 2.17. Common probability distributions for rvs

- **Bernoulli**: Binary rv that takes value 1 with success probability p and value 0 with probability $1 - p$.

 Let $X \sim Bernoulli(p)$, then the probability distribution of X is

 \[
 P(X = x; p) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases} \\
 E[X] = p \quad V[X] = p(1 - p)
 \]

- **Binomial**: Describes the number of successful outcomes (i.e., 1s) in n independent $Bernoulli(p)$ trials.

 Let $X \sim Bin(n, p)$, then the probability distribution of X is

 \[
 P(X = x; n, p) = \binom{n}{x} p^x (1 - p)^{n-x} \quad \text{for } x \in \{0, 1, \ldots, n\} \\
 E[X] = np \quad V[X] = np(1 - p)
 \]

- **Multinomial**: Generalization of binomial with n trials to case where each trial has k possible outcomes, and outcome i has probability p_i of occurring.

 Let $X = (X_1, X_2, \ldots, X_k) \sim Mult(n, p_1, p_2, \ldots, p_k)$ such that $\sum_{i=1}^{k} p_i = 1$, then the probability distribution of X is

 \[
 P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = \begin{cases} \frac{n!}{x_1!x_2!\cdots x_k!} p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k} & \text{if } \sum_{i=1}^{k} x_i = n \\ 0 & \text{otherwise} \end{cases} \\
 E[X_i] = np_i \quad V[X_i] = np_i(1 - p_i)
 \]

- **Poisson**: Expresses the probability of a given number of events occurring in a fixed interval of time, if the events occur with a known average rate (λ) and the events are independent.

 Let $X \sim Poisson(\lambda)$, then the probability distribution of X is

 \[
 P(X = x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!} \\
 E[X] = \lambda \quad V[X] = \lambda
 \]

- **Normal (Gaussian)**: Very commonly occurring distribution, sometimes informally called the *bell curve*, which is continuous, symmetric about its mean, and is non-zero over the entire real line.
Let X be a normal distribution with mean μ and variance σ^2 (i.e., $X \sim N(\mu, \sigma)$), then the probability distribution of X is
\[
P(X = x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
\[
E[X] = \mu \quad \quad V[X] = \sigma^2
\]

Definition 2.18. Multivariate random variable

A multivariate rv $X = \{X_1, X_2, \ldots, X_p\}$ is a list of p random variables that are grouped together, often because they refer to different properties of an individual entity (e.g., height, weight, age of a person).

Definition 2.18.1. Properties of multivariate rvs

- **Joint density:** $P(X) = P(X_1, X_2, \ldots, X_p)$
- **Marginal density of a subset:** $P(X_i) = \sum_{x \in X - X_i} P(X_1 = x_1, X_2 = x_2, \ldots, X_p = x_p)$
- **Conditional density of a subset:** $P(X_i | X - X_i) = \frac{P(X_1, X_2, \ldots, X_p)}{P(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_p)}$