Multi-Armed Bandits (MABs)

CS57300 - Data Mining
Spring 2016

Instructor: Bruno Ribeiro
Announcements

- Homework corrected
- See TAs to get your corrected HW
Recap last two classes

- So far we have seen how to:
 - Test a hypothesis in batches (A/B testing)
 - Test multiple hypotheses (Paul the Octopus-style)
 - Stop a hypothesis test before experiment is over
The New York Times Daily Dilemma

- Select 50% users to see headline A
 - Titanic Sinks

- Select 50% users to see headline B
 - Ship Sinks Killing Thousands

- Do people click more on headline A or B?

- If A much better than B we could do better…

- We refer to decision A or B as choosing an arm
Truth is…

- Sometimes we don’t only want to quickly find whether hypothesis A is better than hypothesis B

- We really want to use the best-looking hypothesis at any point in time

- Deciding if H_0 should be rejected is irrelevant
Real-world Problem

- Web in perpetual state of feature testing

- Goal:
 Acquire just enough information about suboptimal arms to ensure they are suboptimal

\[X_k^{(i)} = \begin{cases}
1 & \text{if } k\text{-th user seeing headline } i \text{ clicks} \\
0 & \text{otherwise}
\end{cases} \]

(arm A) Titanic Sinks

\[X_k^{(1)} = \begin{cases}
1 & \text{with probability } p_1 \\
0 & \text{otherwise}
\end{cases} \]

(arm B) Ship Sinks Killing Thousands

\[X_k^{(2)} = \begin{cases}
1 & \text{with probability } p_2 \\
0 & \text{otherwise}
\end{cases} \]
Multi-armed Bandits
Multi-armed Bandit Dynamics

- Play \(t \) times
- Each time choose arm \(i \in \{1, 2\} \)

Goal:
Maximize total expected reward

\[
R_t = \sum_{h=1}^{t} X^{(\pi_h)}_{m'(h, \pi_h)}
\]

where \(m'(h, \pi_h) = \sum_{m=1}^{h} 1\{\pi_m = \pi_h\} \)

\(\pi \) is a vector of the arms we play
\(\pi_h \) is the \(h \)-th played arm

\[
X^{(1)}_k = \begin{cases} 1, & \text{with probability } p_1 \\ 0, & \text{otherwise} \end{cases}
\]

\[
X^{(2)}_k = \begin{cases} 1, & \text{with probability } p_2 \\ 0, & \text{otherwise} \end{cases}
\]
Problem Characteristics

- Exploration-exploitation trade-off
 - Play arm with highest (empirical) average reward so far?
 - Play arms just to get a better estimate of expected reward?

- Classical model that dates back multiple decades
Formal Bandit Definition

- $K \geq 2$ arms
- Pulling n_i times arm i produces rewards $X_1^{(i)}, \ldots, X_{n_i}^{(i)}$ with (unknown) joint distribution $f(x_1, \ldots, x_{n_i} | \theta_i), \theta_i \in \Theta$
- At time $t \geq n_i(t)$ we know $X_1^{(i)}, \ldots, X_{n_i(t)}^{(i)}$, where $n_i(t)$ is the number of pulls of arm i at time t.
- Many formulations assume $X_1^{(i)}, \ldots, X_{n_i(t)}^{(i)}$ form a Markov chain

Markov chain: \[P[X_k^{(i)} | X_{k-1}^{(i)}, X_{k-2}^{(i)}, \ldots] = P[X_k^{(i)} | X_{k-1}^{(i)}] \]
Assumptions (can be easily violated in practice)

(A1) only one arm is operated each time

(A2) rewards in arms not used remain froze

(A3) arms are independent

(A4) frozen arms contribute no reward
Simpler Stochastic Bandit Definition

- Simplification: Independence
- $K \geq 2$ arms
- Pulling n_i times arm i produces rewards $X_1^{(i)}, \ldots, X_{n_i}(t)$ i.i.d. with distribution $f(x|\theta_i)$, $\theta_i \in \Theta$
- At time $t \geq n_i(t)$ we know $X_1^{(i)}, \ldots, X_{n_i}(t)$
Goal

Regret

\[R_t = \max_{j^* = 1, \ldots, k} \sum_{h=1}^{t} X^{(j^*)}_{n_{j^*}(h)} - \sum_{h=1}^{t} X^{(\pi_h)}_{n_{\pi_h}(h)}, \]

where \(\pi \) is the sequence of arm choices, \(n_{\pi_h}(h) \) is the number of times we pull arm \(\pi_h \) at time \(h \).

We can seek to minimize average regret

\[\min_{\pi} E[R_t] \]

or minimized regret with high probability

\[P[R_t \geq \epsilon] \leq \delta \]
Regret Growth with i.i.d. Rewards

- Standard deviation of empirical $\sum_{k=1}^{n_i} X_k^{(i)}$ grows like \sqrt{t}

- Thus, at best $E[R_t] \propto \sqrt{t}$

- Rather, we minimize over π w.r.t. best policy (Pseudo-regret)

$$\bar{R}_t = \max_{i^* = 1, \ldots, K} E \left[\sum_{h=1}^{n} X_{ni^*}(h) - \sum_{h=1}^{n} X_{n\pi_h}(h) \right]$$

Optimal policy Chosen policy
Reward Definitions

- Mean reward $\mu_i = E[X_1^{(i)}]$
- Highest reward $\mu^* = \max_{i^* = 1, \ldots, K} \mu_i$
- Reward gap: $\Delta_i = \mu^* - \mu_i$
Lower Bound on Expected Regret

- Recall

\[\tilde{R}_t = \max_{i^* = 1, \ldots, K} \ E \left[\sum_{h=1}^{t} X_{n_{i^*}(h)} - \sum_{h=1}^{t} X_{n_{\pi_h}(h)} \right] \]

\[= n \max_{i^* = 1, \ldots, K} \mu_{i^*} - E \left[\sum_{h=1}^{t} X_{n_{\pi_h}(h)} \right] \]

\[= n \max_{i^* = 1, \ldots, K} \mu_{i^*} - \sum_{k=1}^{K} E \left[n_k(t) \Delta_k \right] \]

- Asymptotically \ (Theorem 2, Lai & Robbins, 1985) \ Valid for large values of \(n \)

\[E[n_i(t)] \geq \frac{\log t}{D_{KL}(f(x|\theta_i), f(x|\theta_{i^*}))}, \]

where \(D_{KL} \) is the KL divergence metric.

The KL-divergence of two distributions can be thought of as a measure of their statistical distinguishability.
Playing Strategies
Play-the-winner

- Algorithm
 - Let arm i be the arm with the maximum average reward at step t
 - Play i

- Play-the-winner does not work well
 - Worst case: $E[R_t] \propto t$
ε -greedy

- Assume rewards in [0,1]
- **ε** -greedy: at time \(t \)
 - with probability \(1 - \varepsilon_t \) play the best arm so far
 - with probability \(\varepsilon_t \) play random arm

- Theoretical guarantee (Auer, Cesa-Bianchi, Fischer 2002)
 - \(\Delta = \min_{i: \Delta_i > 0} \Delta_i \) and let \(\varepsilon_t = \min \left(\frac{12}{\Delta^2 t}, 1 \right) \)
 - If \(t \geq \frac{12}{\Delta^2} \), the probability of choosing a suboptimal arm \(i \) is bounded by \(\frac{C}{\Delta^2 t} \) for some constant \(C > 0 \)
 - Then we have a logarithmic regret as \(E[n_i(t)] \leq \frac{C}{\Delta^2} \log t \) and \(R_t \leq \sum i: \Delta_i > 0 \frac{C \Delta_i}{\Delta^2} \log t \)
Problems of ε-greedy

- For $K > 2$ arms we play suboptimal arms with same probability
- Very sensitive to high variance rewards
- Real-world performance worst than next algorithm (UCB1)
Optimism in Face of Uncertainty (UCB)

- Using a probabilistic argument we can provide an upper bound of the expected reward for arm $i=1,\ldots,K$ with a given level of confidence

- Strategy: play arm with largest upper bound

- Algorithm known as Upper Confidence Bound 1 (UCB1)
Using the Chernoff-Hoeffding Theorem

Let X_1, \ldots, X_{n_i} be i.i.d. rewards from arm i with distribution bounded in $[0, 1]$, then for any $\epsilon \in (0, 1)$

$$P \left[\sum_{k=1}^{n_i} X_k \leq n_i E[X_1] - \epsilon \right] \leq \exp \left(- \frac{2\epsilon^2}{n_i} \right)$$

- **UCB1 algorithm**
 - t total arm plays
 - Let $\epsilon = \sqrt{2n_i(t) \log t}$
 - Gives algorithm:
 - Play arm i with largest
 $$\frac{1}{n_i(t)} \sum_{k=1}^{n_i(t)} X_k + \sqrt{\frac{2 \log t}{n_i(t)}}$$

Why: $P \left[\frac{1}{n_i(t)} \sum_{k=1}^{n_i(t)} X_k + \sqrt{\frac{2 \log t}{n_i(t)}} \leq E[X_1] \right] \leq t^{-4}$
UCB 1 Regret Bound

- Each sub-optimal arm i is pulled on average at most

$$E[n_i(t)] \leq \frac{8 \log t}{\Delta_i^2} + \frac{\pi^2}{3}$$

- Note that the MAB lower bound is $O(\log t)$
Improving Bound ➞ Smaller Regret

- Use Empirical Bernstein’s inequality

- Play arm i at time t if

$$
\frac{1}{n_i(t)} \sum_{h=1}^{n_i(t)} X_h^{(i)} + \sqrt{\frac{2 \log t \text{ var}(X_1^{(i)}, \ldots, X_{n_i(t)}^{(i)})}{n_i(t)}} + \frac{8 \log t}{3n_i(t)}
$$
Optimal Solution?

- Optimal solutions via stochastic dynamic programming
 - Gittins index

- Suffer from Incomplete Learning (Brezzi and Lai 2000, Kumar and Varaiya 1986)
 - Playing the wrong arm forever with non-zero probability
 - One more reason to be wary of average rewards

- Only applicable to infinite horizon & complex to compute

- Poor performance on real-world problems
Announcements (Homework 2 is out)

- Cognitive bias awareness
- About our performance on tasks
 - The Dunning–Kruger effect (Kruger & Dunning 1999)
 - The set of skills required to perform a task sometimes is the same set of skills that make us aware that we performed the task well
 - e.g.: prove \((a + b) \cdot 0 = 0\), \(\forall a, b \in \mathbb{R}\)
 - Implication 1: if assessment is not obvious & we lack the skills to perform a task we may not recognize we performed it poorly
 - Implication 2: if you either know a lot or know nothing you will find a task easy (but no way of knowing which one you are)
 - Implication 3: we also think it is easy to be good at the task

- In HW 2 it may be hard to assess how well you are doing before the grades come in…
Bayesian Bandits (continuing from last class)

- Thompson sampling
 - Strategy: select arm i according to posterior probability
 \[P[\mu_i = \mu^* | X_1^{(i)}, \ldots, X_n^{(i)}] \]
 - Can be used in complex problems (dependent priors, complex actions, dependent rewards)
 - Great real-world performance
 - Great regret bounds
• Let $\mu_i \in (0, 1)$

• Reward of arm $i = 1, \ldots, K$ at step k is $X_{k}^{(i)} \sim \text{Bernoulli}(\mu_i)$
Thompson (1933)

- Strategy:
 - Uniform prior $\mu_i \sim U(0, 1)$
 - Play arm i at time t as to maximize posterior $P[\mu_i = \mu^* | X_{1}^{(i)}, \ldots, X_{n_i(t)}^{(i)}]$
Bernoulli rewards + Beta priors

\(Y_t | I_t \sim \text{Bernoulli}(\mu_{I_t}) \)

Prior: Beta distribution

\[
P[\mu_i | \alpha, \beta] = \frac{\mu_i^{\alpha-1}(1 - \mu_i)^{\beta-1}}{\int_0^1 p^{\alpha-1}(1 - p)^{\beta-1} dp}
\]

Posterior \(\mu_i \sim \text{Beta}(\alpha + \sum_{k=1}^t Y_k 1\{I_k = i\}, \beta + \sum_{k=1}^t (1 - Y_k) 1\{I_k = i\}) \)

Beta distribution PDF
Thompson Algorithm (for Bernoulli rewards)

Prior arm i: $\mu_i \sim \text{Beta}(\alpha, \beta)$

$S_i = 0; F_i = 0$ // no. successes and failures of arm i

1. $\forall i$, draw $\hat{\mu}_i \sim \text{Beta}(S_i + \alpha, F_i + \beta)$

2. Choose arm $I_t = \arg \max_i \hat{\mu}_i$ and get reward Y_t

3. $S_{I_t} = S_{I_t} + Y_t$

4. $F_{I_t} = F_{I_t} + (1 - Y_t)$
Theorem (Agrawal and Goyal, 2012)

For all μ_1, \ldots, μ_K there is a constant C such that $\forall \epsilon > 0$,

$$\bar{R}_t \leq (1 + \epsilon) \sum_{i: \Delta_i > 0} \frac{\Delta_i \log t}{\text{D}_{\text{KL}}(\mu_i, \mu^*)} + \frac{Ck}{\epsilon^2}$$

Proof idea

- Posterior gets concentrated as more samples are obtained
Contextual Bandits

- Bandits with side information

- We know reader subscribes to magazine

- Headline A may be more successful in this subpopulation
 - Titanic Sinks

- Headline B better for general population
 - Ship Sinks Killing Thousands
Contextual Bandits: Problem Formulation

- Consider a hash (random function) with deterministic projection \(h : \{0,1\}^n \to \mathbb{R}^m \)
- At each play:
 1. Observe features \(X_t \in \mathcal{X} \)
 2. Choose arm \(i_t \in \{1, \ldots, K\} \)
 3. In theory we will get reward \(Y_t = f(h(x_t, z_{it})|\theta) + \epsilon_t \)

some useful assumptions about \(f \)
- \(f(x|\theta) = \theta^T x \) (linear bandit)
- \(f(x|\theta) = g(\theta^T x) \) (generalized linear bandit)
Contextual Bandits (linear model)

- First we build model

\[
\begin{bmatrix}
\hat{Y}_t \\
y_1 \\
\vdots \\
y_t
\end{bmatrix} = \begin{bmatrix}
h(x_1^T, z_1^T) \\
\vdots \\
h(x_t^T, z_t^T)
\end{bmatrix} \theta + \begin{bmatrix}
\epsilon_1 \\
\vdots \\
\epsilon_t
\end{bmatrix}
\]

We can estimate \(\hat{\theta}_t \) using a regularized least-squares estimate of \(\theta \) at time \(t \)

\[
\hat{\theta}_t = (\lambda I + X_t^T X_t)^{-1} X_t^T \hat{Y}_t,
\]

\(\lambda > 0 \)
Assume noise is Gaussian
\[\epsilon_t \sim N(0, \sigma^2) \]
and that \(\theta \) has prior
\[\theta \sim N(0, \kappa^2 I) \]
The posterior distribution of \(\theta \) is given by
\[p(\theta|X_t, \bar{Y}_t) = N(\hat{\theta}_t, \Sigma_t) \]
where
\[\Sigma_t = \lambda I + X_t^T X_t, \]
where
\[\lambda = \frac{\sigma^2}{\kappa^2}. \]
Thompson Sampling for Linear Contextual Bandits 2/2

Thompson Sampling heuristic:

\[\tilde{\theta}_t \sim N(\hat{\theta}_t, \Sigma_t) \]

and obtain best arm

\[i^* = \arg \max_{i \in \{1, \ldots, K\}} h(x_{t+1}, z_i) \tilde{\theta}_t \]

The above draws each context \(\propto \) posterior probability of being optimal

- From [Russo, Van Roy 2014] pseudo-regret is

\[\bar{R}_t = \tilde{O}(d\sqrt{t}) \]

PS: \(\tilde{O} \) ignores logarithmic factors
Effectiveness of ad may depend on consumer
Example:
- Chapelle et al. (2012)

The features used:
- Ω_{t+1} set of sparse binary entries
- Concatenate categorical features of user with features of all bandits (ad, headline)
- Use hash function $h()$ maps from categorical space to lower dimensional \mathbb{R}^m space
Algorithm for Display Advertising

Goal: maximize the number of clicks or conversions

Model: Logistic regression

\[P[Y_t = 1|x_t, z_{I_t}, \theta] = \frac{1}{1 + \exp(-\theta^T h(x_t, z_{I_t}))} \]

Response prediction based on training set \(\Omega'_t = \{(x_k, z_{I_k}, y_k)\}_{k=1,...,t} \)

\[
\hat{\theta} = \arg \min_{\alpha \in \mathbb{R}^m} \frac{\lambda}{2} \|\alpha\|^2 + \sum_{k=1}^{t} \log(1 + \exp(-y_k \alpha^T h(x_k, z_{I_k}))
\]
If prior $\theta \sim N(0, \frac{1}{\beta} I)$, the posterior $P[\theta|D]$ has no closed form expression but we can use the Laplace approximation of the integral

$$P[\theta|D] = N(\hat{\theta}, \text{diag}(q_i)^{-1})$$

where

$$q_i = \sum_{j=1}^{t} w_{j,i}^2 p_j (1 - p_j) \quad \text{with} \quad p_j = (1 + \exp(-\hat{\theta}^T h(x_j, z_{I_j})))^{-1}$$

and $w_j = h(x_j, z_{I_j})$
Using Thompson Sampling Algorithm for Ad Display

1. A new user arrives at time $t + 1$

2. Form the set $\Omega_{t+1} = \{(x_t, z_i) : i \in \{1, \ldots, K\}\}$ of context corresponding to the different items that can be recommended to user

3. Sample vector from the current (approximate) posterior

$$\tilde{\theta}_t \sim N(\hat{\theta}, \text{diag}(q_i)^{-1})$$

4. Choose the context (x_t, z_i) that maximizes probability of positive response according to

$$i = \arg \max_{i=1, \ldots, K} \frac{1}{1 + \exp(-\tilde{\theta}_t^T h(x_t, z_i))}$$

5. Recommend item and get response Y_{t+1}
Some Shortcomings of MAB

- Why does Facebook & Linkedin use two-sample hypothesis tests instead of MAB?

- More generally, which MAB assumptions often does not hold in real-life applications?