Sequential Analysis & Testing Multiple Hypotheses,

CS57300 - Data Mining
Spring 2016

Instructor: Bruno Ribeiro

© 2016 Bruno Ribeiro
This Class:
• Sequential Analysis
• Testing Multiple Hypotheses
• Nonparametric Tests
• Independence Tests
Sequential Analysis
Sequential Probability-ratio Test

- Inspector needs max of 5 broken bulbs out of 100 to reject lot

- We can clearly stop after $k < 100$ bulbs if we observe 5 broken ones

- But if $k = 10$ and we have observed 4 broken bulbs. Aren’t we confident we can stop?
Motivation: The New York Times Dilemma

- Select 50% users to see headline A
 - Titanic Sinks

- Select 50% users to see headline B
 - Ship Sinks Killing Thousands

- Hypothesis?
 - H_0: % page views A = % page views B

- Assign half the readers to headline A and half to headline B?

If A is much better than B then we could reject hypothesis H_0 quickly
Reject hypothesis before end of experiment (see slide 11 for context)

- Early hypothesis rejection
- We should not have to wait to declare hypothesis is rejected
- Problem:

\[
P[Y_{13} \geq 11|H_0] = \sum_{k=11}^{13} \binom{13}{k} 0.5^k (1 - 0.5)^{n-k} = 0.0112 < 0.01
\]

First 7 of Paul's predictions:

\[
P[Y_7 = 7|H_0] = 0.5^7 = 0.0078 < 0.01
\]
Example Application: Jung et al. 2004

- Detect whether a remote host is a port scanner or a benign host

- Ground truth: based on percentage of local hosts which a remote host has a failed connection

- Example of parameters:
 - for a scanner, the probability of hitting inactive local host is 0.8
 - for a benign host, that probability is 0.1

Ack: M. Jordan
Wald’s Sequential Probability Ratio Test

- Starts with two hypotheses
- Example:
 - A remote host attempts to connect a local host at time i
 - let $X_i = 0$ if the connection attempt is a success,
 1 if failed connection
 - As outcomes X_1, X_2, \ldots are observed we wish to determine whether host is a scanner or not
 - Two competing hypotheses:
 - H_0: remote host is benign: $P[X_i = 1|H_0] = 0.1$
 - H_1: remote host is a scanner: $P[X_i = 1|H_1] = 0.8$

- Calculate the cumulative sum of the log-likelihood ratio
 - $S_0 = 0$
 - $S_i = S_{i-1} + \log P[X_i|H_0] - \log P[X_i|H_1]$
Thresholds vs. Errors

- False alarm rate $\alpha = P[R = 1|H_0]$
- Misdetection rate $\beta = P[R = 0|H_1]$

Wald's approximation:

$$a \geq \log \frac{\beta}{1-\alpha} \Rightarrow a \approx \log \frac{\beta}{1-\alpha}$$

$$b \leq \log \frac{1-\beta}{\alpha} \Rightarrow b \approx \log \frac{1-\beta}{\alpha}$$

So, $\alpha \approx \frac{1-e^a}{e^b-e^a}$ and $\beta \approx \frac{e^{-b}-1}{e^{-b}-e^{-a}}$
Hypothesis Testing Example
Paul the Octopus (2008-2010)

- Paul was an animal oracle
- Paul's keepers would present him with two boxes containing food
- Whichever team is in the box Paul chooses first is the predicted winner

Results involving Germany

<table>
<thead>
<tr>
<th>Opponent</th>
<th>Tournament</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poland</td>
<td>Euro 2008</td>
<td>Correct</td>
</tr>
<tr>
<td>Croatia</td>
<td>Euro 2008</td>
<td>Incorrect</td>
</tr>
<tr>
<td>Austria</td>
<td>Euro 2008</td>
<td>Correct</td>
</tr>
<tr>
<td>Portugal</td>
<td>Euro 2008</td>
<td>Correct</td>
</tr>
<tr>
<td>Turkey</td>
<td>Euro 2008</td>
<td>Correct</td>
</tr>
<tr>
<td>Spain</td>
<td>Euro 2008</td>
<td>Incorrect</td>
</tr>
<tr>
<td>Australia</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>Serbia</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>Ghana</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>England</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>Argentina</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>Spain</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
<tr>
<td>Uruguay</td>
<td>World Cup 2010</td>
<td>Correct</td>
</tr>
</tbody>
</table>
Hypothesis Testing Paul the Octopus as an Oracle

- Random variable (i.i.d.)
 \[X_i = \begin{cases}
 1 & \text{, if Paul predicts correct outcome} \\
 0 & \text{, otherwise}
\end{cases} \]

- Variable of interest: \(Y_{13} = \sum_{i=1}^{13} X_i \)

- What is the Null Hypothesis?
 - Paul is not an animal oracle
 - Mathematical definition?
 - \(H_0 := P[X_i = 1] = p = 0.5 \)
 - \(\Rightarrow P[Y_{13} = k|H_0] = \binom{13}{k} 0.5^k (1 - 0.5)^{n-k} \)

- Should we reject \(H_0 \) with significance level 0.05? (one-sided test)
 \[
 P[Y_{13} \geq 11|H_0] = \sum_{k=11}^{13} \binom{13}{k} 0.5^k (1 - 0.5)^{n-k} = 0.0112 < 0.05
 \]
Anything Wrong in our Hypothesis Test?
Hypothesis Test Possible Outcomes

Actual Situation “Truth”

<table>
<thead>
<tr>
<th></th>
<th>H₀ True</th>
<th>H₀ False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Not Reject H₀</td>
<td>$P[H₀</td>
<td>H₀] = 1 - \alpha$</td>
</tr>
<tr>
<td>Reject H₀</td>
<td>$P[\neg H₀</td>
<td>H₀] = \alpha$</td>
</tr>
</tbody>
</table>
Hypothesis Test as Random Variable

\[X_i = \begin{cases} 1 & \text{if Paul predicts correct outcome} \\ 0 & \text{otherwise} \end{cases} \]

- \(R \) is random variable that defines if hypothesis is rejected
 - if \(P[Y_{13} \geq k|H_0] < 0.05 \) then \(R = 1 \); otherwise \(R = 0 \)
 - \(k \) correct predictions by animal

Binomial Distribution (p=0.5)

\[P[R = 1|H_0] = P[Y_{13} \geq 10|H_0] = 0.046 \]
Testing Multiple Hypotheses
Familywise Error
(probability of rejecting a true hypothesis in multiple hypotheses tests)

- Probability we reject ”not an oracle” hypothesis of Paul based on chance alone?
 \[P[R = 1|H_0] = 0.046 \]

- Probability we reject ”not an oracle” hypothesis of one or more animals (Paul, Peter, Paloma, Philis)
 \[1 - (1 - P[R = 1|H_0])^4 = 0.17 \]

\[P[R=0|H_0]^4 = \text{Probability we correctly reject all 4 hypotheses} \]
Bonferoni’s correction

- Used when there aren’t too many hypotheses
- Tends to be too conservative for large number of hypotheses

- Per-hypothesis significance level of m hypotheses: α/m
- In our animal oracle example:
 - Old significance level $\alpha=0.05$
 - Bonferoni’s corrected significance level $\alpha'=0.05/4 = 0.0125$
 - Hypothesis test: ”Paul is not an animal oracle”

 \[
 P[Y_{13} \geq 11|H_0] = \sum_{k=11}^{13} \binom{13}{k} 0.5^k (1 - 0.5)^{n-k} = 0.0112 < 0.0125
 \]
 - Effect on $P[H_0|\neg H_0]$?
False Discovery Rate

- Often used for large number of tests
- Bonferroni’s correction seeks to ensure that no true hypotheses are rejected
 - Low statistical power for large number of hypotheses
 (rejects no hypotheses $m >> 1$)
- False Discovery Rate:
 - Controls: $m P[\neg H_0 | H_0]$
 - Greater statistical power at expense of more false positives
 - Order p-values of all m tests: $p_1 \leq p_2 \leq \cdots \leq p_m$
 - Holm’s Method:
 - $\tilde{p}_i = \min((m - i + 1)p_i, 1)$
 - Reject if adjusted p-value $< \alpha$
 - Benjamini-Hochberg method:
 - Reject j null hypothesis if $p_j \leq \alpha \frac{j}{m}$
Back to Single (Two-sample) Hypothesis Tests
Nonparametric Test Procedures

- Not Related to Population Parameters
 Example: Probability Distributions, Independence

- Data Values not Directly Used
 Uses Ordering of Data

Examples:
 Wilcoxon Rank Sum Test, Komogorov-Smirnov Test
Example of Nonparametric Test
Nonparametric Testing of Distributions

- Two-sample Kolmogorov-Smirnov Test
 - Do $X^{(0)}$ and $X^{(1)}$ come from the same underlying distribution?
 - Hypothesis (same distribution) rejected at level p if
 $$D_{n_1,n_2} > c(p) \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

The K-S test is less sensitive when the differences between curves is greatest at the beginning or the end of the distributions. Works best when distributions differ at center.

Good reading:
M. Tygert, Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density. *PNAS 2010*
Are Two User Features Independent?
Chi-Squared Test

- Twitter users have features gender and number of tweets.
- We want to determine whether gender is related to number of tweets.
- Use chi-square test for independence
When to use Chi-Squared test

- When to use chi-square test for independence:
 - Uniform sampling design
 - Categorical features
 - Population is significantly larger than sample

- The hypotheses:
 - H_0: variables are independent
 - H_1: variables are not independent

- O_i = the number of observations of type i
 e.g. (gender = Male, $N > 100$ tweets)

- E_i = the expected frequency of type i if H_0 is true
 e.g. ($\text{population}_\text{size} \times P[\text{gender} = \text{Male}]P[N > 100 \text{ tweets}]$)

\[
\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}
\]

If H_0 is true χ^2 is distributed as a sum square of random variables $\sim N(0,1)$
Example Chi-Squared Test

```r
men = c(300, 100, 40)
women = c(350, 200, 90)
data = as.data.frame(rbind(men, women))
names(data) = c('large', 'med', 'small')
data
chisq.test(data)
```

Reject H_0 ($p<0.05$) means …
Next Class

- Select 50% users to see headline A
 - Titanic Sinks

- Select 50% users to see headline B
 - Ship Sinks Killing Thousands

- If we just care about page visitors we never need to decide which one is best