(Review)
Linear Algebra
Statistical Inference
Python & R

CS57300 - Data Mining
Spring 2016

Instructor: Bruno Ribeiro
Goals today

- Review some basic concepts
 - Linear Algebra
 - Statistical Inference

- Introduce useful tools in Python and R

- Introduce the Scholar cluster
But before…

- A woman is leading an environmental protest outside PMU today

- What is more likely?
 - a) That she is an investment banker?
 - b) That she is an investment banker studying Environmental Engineering at Purdue?

\[
P[A] = \sum_{b \in B} P[A, b]
\]
Linear Algebra Review
Why Linear Algebra?

- Why Algebra?
 - Computing is all about algebra
 - Way to mathematically describe data

- Why Linear?
 - Fast tools
 - Easy to understand
 - Many non-linear problems can be transformed or approximated as linear systems

- Combination works well in practice
Example of Linear Algebra Application: Explain Relationships

- Marvel character appears on comic book
- Described as an adjacency matrix (representing a graph)
Important Properties

Matrix multiplication is not commutative

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]
\quad \neq \quad
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}

Trace: \(\text{Tr}(AB) = \text{Tr}(BA) \)

inner product \(\langle x, y \rangle = x^T y = \sum_{i} x_i y_i \)

2.1 \(\langle x, x \rangle \geq 0 \)
2.2 \(\|x\|^2 \equiv \langle x, x \rangle \)
2.3 \(\langle x, y \rangle = 0 \) if and only if \(x \perp y \)
2.4 \(\langle x, y \rangle = \|x\| \|y\| \cos \theta \), thus \(y \langle x, y \rangle = \|x\| u \), where \(u = y / \|y\| \)
Common Matrix Representations

Undirected graph:

\[A = A^T \]

Bipartite graph: (undirected)

\[
A = \begin{bmatrix}
0 & B \\
B^T & 0
\end{bmatrix}
\]

\(k\) connected components:

\[
A = \begin{bmatrix}
A_1 & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & A_k
\end{bmatrix}
\]
Orthogonal vectors (linearly independent)

- Consider vectors $u_1, \ldots, u_k \in \mathbb{R}^k$

- Normalized if $u_i u_i^T = 1$,
 also defined as $\|u_i\| = 1, \ i = 1, \ldots, k$

- Orthogonal if $u_i u_j^T = 0$,
 also defined as $u_i \perp u_j, \ i \neq j$

- Orthonormal if both

 If U is orthonormal then $UU^{-1} = UU^T = I$,
 where I is the identity matrix
Orthogonal Projections

Note that \(I = UU^T = \sum_{i=1}^{k} u_i u_i^T \)

Thus \(a = Ia = U(U^T a), \quad a \in \mathbb{R}^k \)

The vector \((U^T a)\) is the projection of \(a\) onto \(U\)

Thus, \(a = \sum_{i=1}^{k} (u_i^T a)u_i \)
Can we have non-orthogonal basis?

- Yes

- For instance:

 Let $U = [u_1, u_2]$ be an orthonormal basis and let

 $$v_1 = 2u_1 + u_2$$

 $$v_2 = u_1 + 2u_2$$

 The vectors v_1 and v_1 are not orthogonal:

 $$v_1 v_2^T = 4,$$

 but still form a basis for \mathbb{R}^2
Eigenvalues and Eigenvectors

\(A > 0 \) is \(n \times n \) full rank, \(\lambda \) eigenvalue
\[
\det(A - \lambda I) = 0
\]
and \(x \) eigenvector (right eigenvector)
\[
Ax = \lambda x,
\]
we assume \(\|x\| = 1 \).

\[
A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots \\ \cdots & \lambda_n \end{bmatrix},
\]
where \(x_i \) is the \(i \)-th eigenvector of \(A \) ordered s.t. \(\lambda_1 \geq \cdots \geq \lambda_n \)

If \(A \) has \(n \) linearly independent eigenvectors
\[
A = V\Lambda V^{-1}
\]

If \(A \) is symmetric positive semidefinite \(V^{-1} = V^T \)

Square is \(A^2 = V\Lambda^2 V^{-1} \)

Inverse is \(A^{-1} = V\Lambda^{-1} V^{-1} \), where \(\Lambda^{-1} = \begin{bmatrix} 1/\lambda_1 & \cdots \\ \cdots & \cdots \\ 1/\lambda_n \end{bmatrix} \)
Singular Value Decomposition (SVD)

\[X = U \Sigma V^T \]

- \(X(i,j) \) = value of user \(i \) for property \(j \)
 - \(X(\text{Alice, cholesterol}) = 10 \)
 - \(X(i,j) \) = number of times \(i \) buys \(j \)
 - \(X(i,j) \) = how much \(i \) pays \(j \)
 - \(X(i,j) = 1 \) if \(i \) and \(j \) are friends, 0 otherwise
 - \(X(i,j) \) = temperature of sensor \(j \) at time \(i \)
SVD Dimensions

\[X = U \Sigma V^T \]

Data \quad \text{Left singular vectors} \quad \text{Right singular vectors}

© 2015 Bruno Ribeiro
SVD Definition

- SVD gives best rank-k approximation of X in L_2 and Frobenius norm

$$X = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i \otimes v_i$$

© 2015 Bruno Ribeiro
SVD Properties (I)

- “Almost unique” decomposition

\[
X = \sigma_1 v_1 + u_1 + \sigma_2 v_2 + u_2 + \ldots
\]

- There are two sources of ambiguity
 - Orientation of singular vectors
 - Permute rows of left singular vector and corresponding rows of left singular vector
 - If I is identity matrix: \(I = U I U^T \), for all orthonormal U
 - “Hypersphere ambiguity”
 - Related to rotational ambiguity of PCA
SVD Properties (II)

- Theorem (Eckart-Young, 1936)
 - $U\Sigma_1 V^T$ is best rank 1 approximation of X, that is $|X - U\Sigma_1 V^T|^2 \leq |X - Y|^2$ for every rank 1 matrix Y

 - $U\Sigma_1 V^T + U\Sigma_2 V^T$ is the best rank 2 approximation of X, that is $|X - U\Sigma_1 V^T - U\Sigma_2 V^T|^2 \leq |X - Y|^2$ for every rank ≤ 2 matrix Y

 - also for 3, 4, ..., r
SVD Properties (III)

\[X = U \Sigma V^T \]

\[U^T U = \begin{bmatrix} 1 & & \\ & 1 & \\ & & \ddots & 1 \end{bmatrix} \]

\[V^T V = \begin{bmatrix} 1 & & \\ & 1 & \\ & & \ddots & 1 \end{bmatrix} \]

U and V are orthonormal (orthogonal & unit norm)
Singular Value Decomposition

- SVD factorization $A = U \Sigma V^*$ is more general than eigenvalue / eigenvector factorization $A = V \Lambda V^{-1}$.

 $$\Sigma = \begin{bmatrix} \sigma_1 & \ & \ \\ & \ddots & \ \\ & & \sigma_n \end{bmatrix}$$

 Columns of U are orthonormal

 Columns of V are orthonormal

 V^* is the transpose if V is real-valued (always the case for us)

- SVD is significantly more generic:
 - Applies to matrices of any shape, not just square matrices
 - Applies to any matrix, not just invertible matrices
 - $AA^T = (U \Sigma V^T)(U \Sigma V^T)^T = (U \Sigma V^T)(V \Sigma^T U^T)$

 $$= U \Sigma \Sigma^T V^T = U \text{diag}(\Sigma)^2 V^T$$

 - Moore–Penrose pseudoinverse is $A^+ = V \Sigma^+ U^T$
As U and V have orthogonal rows

\[X^T X = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T \]

\[XX^T = (U \Sigma V^T)(U \Sigma V^T)^T = U \Sigma^2 U^T \]

Now you explain: What do V and U represent?
If $X(i,j) = \text{user } i \text{ buys product } j$

What is $X^T X$?
- Product-to-product similarity matrix
- What does V represent?

$$X^T X = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T$$

What is XX^T?
- User-to-user similarity matrix
- What does U represent?

$$XX^T = (U \Sigma V^T)(U \Sigma V^T)^T = U \Sigma^2 U^T$$
Statistical Inference Review
Data processing inequality:

“No processing can increase the amount of statistical information already contained in the data”
In data mining we often work with a sample of data from the population of interest.

Estimation techniques allow inferences about population properties from sample data.

If we had the population we could **calculate** the properties of interest.
Populations and samples

- **Elementary units:**
 - Entities (e.g., persons, objects, events) that meet a set of specified criteria
 - Example: All people who’ve purchased something at Walmart

- **Population:**
 - Aggregate of elementary units (i.e., all items of interest)

- **Sampling:**
 - Sub-group of the population
 - Serves as a reference group for estimating characteristics about the population and drawing conclusions
Sampling

- Sampling is the main technique employed for data selection
 - It is often used for both the preliminary investigation of the data and the final data analysis

- Reasons to sample
 - Obtaining the entire set of data of interest is too expensive or time consuming
 - Processing the entire set of data of interest is too expensive or time consuming
 - Note: Even if you use an entire dataset for analysis, you should be aware of the sampling method that was used to gather the dataset

The key principle for effective sampling is the following:

- Using a sample will work almost as well as using the entire dataset, if the sample is representative.
- A sample is representative if it has approximately the same property (of interest) as the original data.
Statistical inference

- Infer properties of an unknown distribution with sample data generated from that distribution

- Parameter estimation
 - Infer the value of a population parameter based on a sample statistic (e.g., estimate the mean)

- Hypothesis testing
 - Infer the answer to a question about a population parameter based on a sample statistic (e.g., is the mean non-zero?)
Parameter Estimation

- Maximum likelihood estimate (MLE)

\[
\hat{\theta} = \arg\max_{\theta} P[\text{Data} | \theta] \\
\text{s.t. } f(\theta) = 0
\]

- Maximum a posteriori probability estimate (MAP)

\[
\hat{\theta} = \arg\max_{\theta} P[\text{Data} | \theta] P[\theta] \\
\text{s.t. } f(\theta) = 0
\]
Programming Languages

Python & R
```python
import numpy as np
from matplotlib import use

# Avoid using the xterminal to create plots (needed if plotting on Scholar)
use("Agg")

import matplotlib.pyplot as plt
import scipy as sp
import math

p = 0.8
MAX_DEGREE = 101
ECCDF = 1.0

x = []
y = []

for d in xrange(MAX_DEGREE):
    # Be careful with machine precision
    x.append(d)
    y.append(ECCDF)
    ECCDF = ECCDF - (1-p)*p**d

plt.xlim([1, max(x)])
plt.xlabel("node degree", fontsize=18)
plt.ylabel("ECCDF", fontsize=18)
plt.loglog(x, y, "ro")
plt.savefig('ECCDF_plot.pdf')
```

Python example
Read CSV into R
mydata = read.csv(file="input.csv", header=FALSE, sep=",")

Generate a random matrix (elements exponentially distributed)
h = 100
k = 200
M = matrix(rexp(n=(h*k), rate=0.1), ncol=h, nrow=k)

print(max(M))
max_per_row = c()
for (i in 1:k) {
 max_per_row = c(max_per_row, max(M[i,]))
}
plot(max_per_row)
print(max(max_per_row)/min(max_per_row))
The Scholar Cluster
Scholar Cluster

- High Performance Computing Cluster

- Jobs must be submitted with `qsub` (do not use main terminal to run tasks or you will be banished)

- But you can also use your own computer (but Scholar learning curve pays-off later)
#!/bin/bash -l
Example submission file (myjob.sub)
choose queue to use (e.g. standby or scholar-b)
#PBS -q standby
FILENAME: myjob.sub
module load devel
module load gcc
module load anaconda/4.4.1-py35
module load r

cd $PBS_O_WORKDIR
unset DISPLAY

python matplotlib_example.py
Scholar Cluster Job Submission

- `qsub myjob.sub`
- `qstat -u <your Purdue username>`

After job finishes (submission directory has output files):
- `myjob.sub.o<jobID>` (std output)
- `myjob.sub.e<jobID>` (error)
- `ECCDF_plot.pdf` (your plot)
Not ideal for someone learning Python and R

- Submission takes a while to run (few minutes)
 - How to iteratively debug code?
 - `qsub -l -q standby -l walltime=01:00:00`
 # asks for 1 hour iterative terminal to debug problems in your code
 # remember to load the modules you need

- Where to get help
 https://www.rcac.purdue.edu/compute/scholar/guide/