A/B Testing

- Select 50% users to see headline A
 - Unlimited Clean Energy: Cold Fusion has Arrived

- Select 50% users to see headline B
 - Wedding War

- Do people click more on headline A or B?
A/B Testing on Websites

- Can you guess which page has a higher conversion rate and whether the difference is significant?

- When “upgraded” from the A to B the site lost 90% of their revenue

- Why? “There maybe discount coupons out there that I do not have. The price may be too high. I should try to find these coupons.” [Kumar et al. 2009]
Testing Hypotheses over Two Populations

Are the averages different?
Which one has the largest average?
The two-sample t-test

Is difference in averages between two groups more than we would expect based on chance alone?

PS: Same as alien identification problem: we don’t know how to model “average is different”
t-Test (Independent Samples)

The goal is to evaluate if the average difference between two populations is zero

Two hypotheses:

- $H_0: \mu_1 - \mu_2 = 0$
- $H_1: \mu_1 - \mu_2 \neq 0$

In the t-test we make the following assumptions

- The averages $\bar{X}^{(1)}$ and $\bar{X}^{(2)}$ follow a normal distribution (we will see why)
- Observations are independent
t-Test Calculation

General t formula

\[t = \frac{\text{sample statistic} - \text{hypothesized population difference}}{\text{estimated standard error}} \]

Independent samples t

Empirical averages

\[t = \frac{(\bar{x}^{(1)} - \bar{x}^{(2)}) - (\mu_1 - \mu_2)}{\text{SE}} \]

Empirical standard deviation (formula later)
t-Statistics p-value

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

- What is the p-value?

\[\bar{x}(i) = \text{empirical average of population } i \]

\[P[\bar{X}(1, n_1) - \bar{X}(2, n_2) > \bar{x}(1, n_1) - \bar{x}(2) | H_0] = p \]

- Can we test \(H_1 \)?

\[P[\bar{X}(1, n_1) - \bar{X}(2, n_2) > \bar{x}(1, n_1) - \bar{x}(2) | H_1] = 1 - p? \]

- Can we ever directly accept hypothesis \(H_1 \)?
 - No, we can’t test \(H_1 \), we can only reject \(H_0 \)
x1 <- c(1,0)
x2 <- c(1,1)

p <- t.test(x1,x2, alternative = "two.sided")$p.value

print(p)
0.5
Two Sample Tests (Fisher)

Null hypothesis H_0	Alternative hypothesis H_1	No. Tails
$\mu_1 - \mu_2 = d$ | $\mu_1 - \mu_2 \neq d$ | 2
$\mu_1 - \mu_2 = d$ | $\mu_1 - \mu_2 < d$ | 1
$\mu_1 - \mu_2 = d$ | $\mu_1 - \mu_2 > d$ | 1
Less Obvious Applications

- E.g. software updates
 - Perform incremental A/B testing before rolling ANY big system change on a website that should have no effect on users (even if users don’t directly see the change)
 - What is the hypothesis we want to test?
 - $H_0 = \text{no difference in [engagement, purchases, delay, transaction time, …]}$
 - How?
 - Start with 0.1% of visitors (machines) and grow until 50% of visitors (machines)
 - If at any time H_0 is rejected, stop the roll out
 - Must account for testing multiple hypotheses (next class) (more precisely, this is **sequential analysis**)
Sequential Analysis (Sequential Hypothesis Test)

- How to stop experiment early if hypothesis seems true
 - Stopping criteria often needs to be decided before experiment starts
Types of Hypothesis Tests

- Fisher’s test
 - Test can only reject H_0 (we never accept a hypothesis)
 - H_0 is likely wrong in real-life, so rejection depends on the amount of data
 - More data, more likely we will reject H_0

- Neyman-Pearson’s test
 - Compare H_0 to alternative H_1
 - E.g.: H_0: $\mu = \mu_0$ and H_1: $\mu = \mu_1$
 - $P[\text{Data} \mid H_0] / P[\text{Data} \mid H_1]$

- Bayesian test
 - Compute probability $P[H_0 \mid \text{Data}]$ and compare against $P[H_1 \mid \text{Data}]$
 - More precisely, test $P[H_0 \mid \text{Data}] / P[H_1 \mid \text{Data}]$
 - >1 implies H_0 is more likely
 - <1 implies H_1 is more likely
 - Neyman-Pearson’s test = Bayes factor when H_0 and H_1 have same priors
Back to Fisher’s test
(no priors)
How to Compute Two-sample t-test (1)

1) Compute the empirical standard error

\[
SE = \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}
\]

where,

Sample variance of \(x^{(i)}\)

\[
s_i^2 = \frac{1}{n_i} \sum_{k=1}^{n_i} (x_k^{(i)} - \overline{x}^{(i)})^2
\]

Number of observations in \(x^{(i)}\)

and

\[
\overline{x}_i = \frac{1}{n_i} \sum_{m=1}^{n_i} x_m^{(i)}
\]

(assumes both populations have equal variance)
How to Compute Two-sample t-test (2)

2) Compute the degrees of freedom

\[
DF = \left[\frac{(\sigma_1^2/n_1 + \sigma_2^2/n_2)^2}{(\sigma_1^2/n_1)^2/(n_1 - 1) + (\sigma_2^2/n_2)^2/(n_2 - 1)} \right]
\]

3) Compute test statistic (t-score, also known as Welsh’s t)

\[
t_d = \frac{(\bar{x}_1 - \bar{x}_2) - d}{SE}
\]

where d is the Null hypothesis difference.

4) Compute p-value (depends on \(H_1\))

- \(p = P[T_{DF} < -|t_d|] + P[T_{DF} > |t_d|]\) (Two-Tailed Test \(H_1: \mu_1 - \mu_2 \neq d\))
- \(p = P[T_{DF} > t_d]\) (One-Tailed Test for \(H_1 : \mu_1 - \mu_2 > d\))

- Important: \(H_0\) is always \(\mu_1 - \mu_2 = d\) even when \(H_1 : \mu_1 - \mu_2 > d\)!!
 Testing \(H_0: \mu_1 - \mu_2 \leq d\) is harder and “has same power” as \(H_0: \mu_1 - \mu_2 = d\)

What is the distribution of \(T_{DF}\)?

- I don’t know (majority answer)
- I don't know (the true answer)
Rejecting H_0 in favor of H_1

- Back to step 4 of slide 16:

4) Compute p-value (depends on H_1)

$$p = P[T_{DF} < -|t_d|] + P[T_{DF} > |t_d|] \quad \text{(Two-Tailed Test $H_1: \mu_1 - \mu_2 \neq d$)}$$

$$p = P[T_{DF} > t_d] \quad \text{(One-Tailed Test for $H_1: \mu_1 - \mu_2 > d$)}$$

Reject H_0 with 95% confidence if $p < 0.05$
Some assumptions about X_1 and X_2

- $X^{(1)} = [X_1^{(1)}, X_2^{(1)}, \ldots, X_{n_1}^{(1)}]$
- $X^{(2)} = [X_1^{(2)}, X_2^{(2)}, \ldots, X_{n_2}^{(2)}]$

- Observations of X_1 and X_2 are independent and identically distributed (i.i.d.)

- Central Limit Theorem (Classical CLT)
 - If: $E[X_k^{(i)}] = \mu_i$ and $\text{Var}[X_k^{(i)}] = \sigma_i^2 < \infty$ (here ∞ is with respect to n_i)

$$\sqrt{n_i} \left(\left(\frac{1}{n_i} \sum_{k=1}^{n} x_k^{(i)} \right) - \mu_i \right) \xrightarrow{d} N(0, \sigma_i^2)$$

- More generally, the real CLT is about stable distributions

© 2016 Bruno Ribeiro
CLT: If we have enough independent observations with small variance we can approximate the distribution of their average with a normal distribution
But we don’t know the variance of \(X^{(1)} \) or \(X^{(2)} \)

- \(N(0, \sigma_i^2) \) approximation not too useful if we don't know \(\sigma_i^2 \)

- We can estimate \(\sigma_i^2 \) with \(n_i \) observations of \(N(0, \sigma_i^2) \)

- But we cannot just plug-in estimate \(\hat{\sigma}_i^2 \) on the normal
 - It has some variability if \(n_i < \infty \)
 - \(\hat{\sigma}_i^2 \) is Chi-Squared distributed
 - The t-distribution is a convolution of the standard normal with a Chi-Square distribution to compute

\[
t = \frac{\mu_i}{\sqrt{\hat{\sigma}_i^2 / \text{DF}}}
\]
For small samples we can use the Binomial distribution

- If results are 0 or 1 (buy, not buy) we can use Bernoulli random variables rather than the Normal approximation
What about false positives and false negatives of a test?
Hypothesis Test Possible Outcomes

Errors:

\[P[\neg H_0 | H_0] \] - Reject \(H_0 \) given \(H_0 \) is true

\[P[H_0 | \neg H_0] \] - Accept \(H_0 \) given \(H_0 \) is false

In medicine our “goal” is to reject \(H_0 \) (drug, food has no effect / not sick), thus a “positive” result rejects \(H_0 \)

<table>
<thead>
<tr>
<th></th>
<th>Type I error (false positive)</th>
<th>Type II error (false negative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[H_0</td>
<td>H_0])</td>
<td></td>
</tr>
<tr>
<td>(P[\neg H_0</td>
<td>H_0])</td>
<td>(P[H_0</td>
</tr>
</tbody>
</table>

© 2016 Bruno Ribeiro
Statistical Power

\[
power = P[\neg H_0 | \neg H_0]
\]

- Statistical power is probability of rejecting \(H_0 \) when \(H_0 \) is indeed false

- Statistical Power \(\Rightarrow \) Number of Observations Needed

- Standard value is 0.80 but can go up to 0.95

- E.g.: \(H_0 \) is \(\mu_1 - \mu_2 = 0 \), where \(\mu_i = \) true average of population \(i \)
 - Define \(n = n_1 = n_2 \) such that statistical power is 0.8 under assumption \(|\mu_1 - \mu_2| = \Delta \):
 - \(P[\text{Test Rejects} | |\mu_1 - \mu_2| = \Delta] = 0.8 \)
 - where \(\text{Test Rejects} = 1 \{ P[x^{(1)}, x^{(2)} | \mu_1 - \mu_2 = 0] < 0.05 \} \)
 - which gives

\[
n = \frac{16\sigma^2}{\Delta^2}
\]
More Broadly: Hypothesis Testing Procedures

- **Parametric**
 - Z Test
 - t Test
 - Cohen's d

- **Nonparametric**
 - Wilcoxon Rank Sum Test
 - Kruskal-Wallis H-Test
 - Kolmogorov-Smirnov test
Parametric Test Procedures

- Tests Population Parameters (e.g. Mean)

- Distribution Assumptions (e.g. Normal distribution)

- Examples: Z Test, t-Test, χ^2 Test, F test
Effect Size
Testing Effect Sizes

t-Test tests only if the difference is zero or not?

General t formula

\[
t = \frac{\text{sample statistic} - \text{hypothesized population difference}}{\text{estimated standard error}}
\]

Independent samples t

Empirical averages

\[
t = \frac{(\bar{x}^{(1)} - \bar{x}^{(2)}) - (\mu_1 - \mu_2)}{SE}
\]

Estimated standard deviation

Solution? Homework 2
Cohen’s d often used to complement t-test when reporting effect sizes

$$d = \frac{\bar{x}^{(1)} - \bar{x}^{(2)}}{S}$$

where S is the pooled variance

$$S = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
Important Warning
American Statistical Association Statement On Statistical Significance And p-values

1. P-values can indicate how incompatible the data are with a specified statistical model.

2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.
Bayesian Approach
Bayesian Approach

- Probability of hypothesis given data
 \[P[H_0|x^{(1)}, x^{(2)}] \]

- The **Bayes factor**
 \[K = \frac{P[x^{(1)}, x^{(2)}|H_0]}{P[x^{(1)}, x^{(2)}|H_1]} \]

- Reject \(H_0 \) if \(K \frac{P[H_0]}{P[H_1]} \) is less than some value
Aliens visited Earth and government keeping secret?

- 21% of U.S. voters say a UFO crashed in Roswell, NM in 1947 and the US government covers it up
- Priors:
 - H_0: At least 21% of U.S. voters are irrational, will believe in alien story without evidence
 - $P[H_0] = 10^{10}/(10^{10} + 1)$ [Ribeiro’s prior]
 - $P[H_0] \sim \text{Beta}(10^{10}, 1)$ [Prior can also be a random variable, better models uncertainty]
 - H_1: Aliens can travel faster than the speed of light and, despite that, can’t drive and are easily captured by humans.
 - Because either H_0 or H_1 must be true: $P[H_1] = 1 - P[H_0]$

What is the data?

- Data:
 - 15% of U.S. voters say the government or the media adds mind-controlling technology to TV broadcast signals (a.k.a., the Tinfoil Hat crowd)
 - 20% of U.S. voters believe there is a link between childhood vaccines and autism, despite scientific evidence there is no such link
 - 15% of U.S. voters think the medical industry and the pharmaceutical industry “create” new diseases to make money (Ebola, Zika,…)
 - 14% of U.S. voters say the CIA was instrumental in creating the crack cocaine epidemic

Bayesian Disadvantage: Often hard to define $P[\text{Data} | H_1]$

Bayesian Advantage: Prior helps encode your uncertainty and beliefs about the world
Next Two Classes:

Non-parametric Tests
Independence Tests
Testing Multiple Hypotheses
Sequential Analysis
Multi-armed Bandits
Nonparametric Test Procedures

- Not Related to Population Parameters
 Example: Probability Distributions, Independence

- Data Values not Directly Used
 Uses Ordering of Data

Examples:
 Wilcoxon Rank Sum Test, Komogorov-Smirnov Test
Example of Nonparametric Test
Nonparametric Testing of Distributions

- Two-sample Kolmogorov-Smirnov Test
 - Do \(X^{(0)}\) and \(X^{(1)}\) come from same underlying distribution?
 - Hypothesis (same distribution) rejected at level \(p\) if
 \[
 D_{n_1,n_2} > c(p) \sqrt{\frac{n_1 + n_2}{n_1 n_2}}
 \]

The K-S test is less sensitive when the differences between curves is greatest at the beginning or the end of the distributions. Works best when distributions differ at center.

Good reading:
M. Tygert, Statistical tests for whether a given set of independent, identically distributed draws comes from a specified probability density. PNAS 2010
Are Two User Features Independent?
Chi-Squared Test

- Twitter users can have gender and number of tweets.
- We want to determine whether gender is related to number of tweets.
- Use chi-square test for independence
When to use Chi-Squared test

- When to use chi-square test for independence:
 - Uniform sampling design
 - Categorical features
 - Population is significantly larger than sample

- State the hypotheses:
 - H_0?
 - H_1?
Example Chi-Squared Test

```r
men = c(300, 100, 40)
women = c(350, 200, 90)

data = as.data.frame(rbind(men, women))

names(data) = c('low', 'med', 'large')

data

chisq.test(data)

Reject $H_0$ ($p<0.05$) means …
Deciding Headlines
Select 50% users to see headline A
  ◦ Titanic Sinks

Select 50% users to see headline B
  ◦ Ship Sinks Killing Thousands

Assign half the readers to headline A and half to headline B?
  ◦ Yes?
  ◦ No?
  ◦ Which test to use?

What happens A is MUCH better than B?