Dimensionality Reduction

CS57300 Data Mining
Fall 2016

Instructor: Bruno Ribeiro
Goal

- Visualize high dimensional data (and understand its Geometry)
- Project the data into lower dimensional spaces
- Understand how to model data
A Geometric Embedding Problem

- Ever wondered why flights from U.S. to Europe, India, China, and Middle East seem to take the longest route?
 - E.g. Figure shows Dubai – Los Angeles

This **is** the shortest path. We were looking at the wrong geometric embedding.
Embedding of High Dimensional Data

- Example: Bank Loans
 1. Amount Requested
 2. Interest Rate Percentage
 3. Loan Length in Months
 4. Loan Title
 5. Loan Purpose
 6. Monthly Payment
 7. Total Amount Funded
 8. Debt-To-Income Ratio Percentage
 10. Status (1 = Paid or 0 = Not Paid)

- What is the best low dimensional embedding?
Principal Component Analysis (PCA) is a linear projection that maximizes the variance of the projected data

- The output of PCA is a set of \(k \) orthogonal vectors in the original \(p \)-dimensional feature space, the \(k \) principal components, \(k \leq p \)
- PCA gives us uncorrelated components, which are generally not independent components; for that you need independent component analysis

Independent Component Analysis (ICA)

- A weaker form of independence is uncorrelatedness. Two random variables \(y \) and \(y' \) are said to be uncorrelated if their covariance is zero
- But uncorrelatedness does not imply independence (nonlinear dependencies)
- We would like to learn hidden independence in the data
PCA Formulation

- **Goal**: Find a linear projection that maximizes the variance of the projected data
 - Given a p-dimensional observed r.v., \mathbf{x}, find \mathbf{U} and \mathbf{z} such that
 \[
 \mathbf{x} = \mathbf{Uz}
 \]
 and \mathbf{z} has uncorrelated components z_i

- Due to non-uniqueness, \mathbf{U} is assumed unitary

- Best practices (Standardization = Centering + Scaling):
 - Centered PCA: The variables \mathbf{x} are first centered should they have 0 mean
 - Scaled PCA: Each variable is scaled to have unit variance (divide column by standard deviation)
Principal Component Analysis (PCA) is a linear projection that maximizes the variance of the projected data.

- The output of PCA is a set of k orthogonal vectors in the original p-dimensional feature space, the k principal components, $k \leq p$.

- Principal components are weighted combinations of the original features.

- The projections onto the principal components are uncorrelated.

- No other projection onto k dimensions captures more of the variance.

- The first principal component is the direction in the feature space along which the data has the most variance.

- The second principal component is the direction orthogonal to the first component with the most variance.
PCA Algorithm

- Let X be a N by p matrix with N measurements of dimension p
- $A = X X^T$
- Let $A = P \Lambda P^T$, where L is the eigenvalue diagonal matrix and P is the eigenvector matrix

- PCA projection = $P X$

- Standard deviation of component j

$$\text{std}_j = \sqrt{\frac{1}{p} (P \Lambda P^T)_j}$$
How Many Components to Use?

- Find steep drop in standard deviation \((\text{std}_j)\)
Independent Component Analysis (ICA) Formulation

- **Goal:**
 - Given a p-dimensional observed r.v., x, find H and s such that
 \[x = Hs \]

 s has mutually statistically independent components s_i

 - Known as “blind source separation” problem
Blind Source Separation: The "Cocktail Party" Problem

k sources, $N=k$ observations
Restrictions

- s_i must be statistically independent
 - $p(s_1, s_2) = p(s_1)p(s_2)$

- ICA not for Gaussian distributions
 - The joint density of unit variance s_1 & s_2 is symmetric.
 So no information about the directions (col vectors) in mixing matrix H.
 Thus, H can't be estimated.
 - If only one IC is gaussian, the estimation is still possible.

$$p(x_1, x_2) = \frac{1}{2\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right)$$
ICA Linear representation

- Find vectors that describe the data set the best.
- Each point: linear combination of

\[x_i = h_{i,1}s_1 + h_{i,2}s_2 \]
ICA Uniqueness

- If \(s \) has independent components \(s_i \), so has \(\Lambda Ps \) where \(\Lambda \) is invertible diagonal and \(P \) is a permutation.

- If \((A, s) \) is a solution, then \(A\Lambda P \) and \(P^\top \Lambda^{-1}s \) are also solutions.
 - Essential uniqueness: unique up to a trivial transformations, i.e. a scale-permutation.
 - Whole equivalence class of solutions \(\Rightarrow \) Just find one representative solution.
An ICA Algorithm (Example of noise-free ICA)

- Observed values \(\mathbf{x} \) such that \(\mathbf{x} = \mathbf{H} \mathbf{s} \)
- One way is to minimize mutual information
 - Equivalent to the well known Kullback-Leibler divergence between the joint density of \(\mathbf{s} \) and the product of its marginal densities
- Define distribution family of \(\mathbf{s}_i \sim g \) (assumed known, often \(\tanh \))
- Let \(\mathbf{W} = \mathbf{H}^{-1} \)
- Recall sources are independent \(p(x) = \prod_{i=1}^{N} p_s(w_i^T x) \cdot | \det \mathbf{W}|^N \)
- Given a training set \(\{ \mathbf{x}^{(i)}; i = 1,...,N \} \), the log likelihood of \(\mathbf{W} \) is given by

\[
\log P[X|W] = \sum_{i=1}^{N} \left(\sum_{j=1}^{p} \log g'(w_j^T x^{(i)}) + N \log | \det \mathbf{W}| \right)
\]

(Pham et al. 1992) D.T. Pham, P. Garrat and C. Jutten, Separation of a mixture of independent sources through a maximum likelihood approach, EUSIPC, 1992
PCA v.s. ICA

- Which method (PCA or ICA) provides best projection?

PCA Coordinates

ICA Coordinates

PCA orthogonality bad for non-orthogonal data

ICA: forcing independence but not orthogonality shows true dimension of data

R Code: https://www.cs.purdue.edu/homes/ribeirob/courses/Spring2016/extra/PCA_vs_ICA.R
Correlation vs Independence

- Example 1: Mixture of 2 identically distributed sources
- Consider the mixture of two independent sources

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} = \begin{pmatrix}
 1 & 1 \\
 1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
 s_1 \\
 s_2
\end{pmatrix}
\]

- where \(E[s_i^2] = 1 \) and \(E[s_i] = 0 \).
- Then \(x_i \) are uncorrelated as

\[
E[x_1 x_2] - E[x_1]E[x_2] = E[s_1^2] - E[s_2^2] = 0
\]

But \(x_i \) are not independent since, say

\[
E[x_1^2 x_2^2] - E[x_1^2]E[x_2^2] = E[s_1^4] + E[s_2^4] - 6 \neq 0
\]
PCA v.s. ICA (Round 2)

- Which method (PCA or ICA) provides best projection?

Sometimes Data is Locally Linear

- Rapper B.o.B. is talking about manifolds
- Earth’s surface is a manifold that is locally flat; linear algebra is all you need if you are not going far
ISOMAPS

- Use *manifolds* to project data into lower dimensional space
- Data geometry is locally linear
- Construct adjacency matrix A from data
 - $A_{i,j} = 1$ if points x_i and x_j are “nearby”
- Find low dimensional embedding of A
 - Any linear algebra tool will do
 - E.g. Spectral decomposition of symmetric normalized Laplacian: $D^{-1/2} A D^{-1/2}$