
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 1

Computers and Programs

Objectives

� To understand the respective roles of
hardware and software in a computing
system.

� To learn what computer scientists study
and the techniques that they use.

� To understand the basic design of a
modern computer.

2Python Programming, 2/e

Objectives (cont.)

� To understand the form and function of
computer programming languages.

� To begin using the Python
programming language.

� To learn about chaotic models and their
implications for computing.

3Python Programming, 2/e

The Universal Machine

� A modern computer can be defined as
“a machine that stores and manipulates
information under the control of a
changeable program.”

� Two key elements:
� Computers are devices for manipulating
information.

� Computers operate under the control of a
changeable program.

4Python Programming, 2/e

The Universal Machine

� What is a computer program?

� A detailed, step-by-step set of instructions
telling a computer what to do.

� If we change the program, the computer
performs a different set of actions or a
different task.

� The machine stays the same, but the
program changes!

5Python Programming, 2/e

The Universal Machine

� Programs are executed, or carried out.

� All computers have the same power,
with suitable programming, i.e. each
computer can do the things any other
computer can do.

6Python Programming, 2/e

Program Power

� Software (programs) rule the hardware
(the physical machine).

� The process of creating this software is
called programming.

� Why learn to program?

� Fundamental part of computer science

� Having an understanding of programming
helps you have an understanding of the
strengths and limitations of computers.

7Python Programming, 2/e

Program Power

� Helps you become a more intelligent user
of computers

� It can be fun!

� Form of expression

� Helps the development of problem solving
skills, especially in analyzing complex
systems by reducing them to interactions
between simpler systems.

� Programmers are in great demand!

8Python Programming, 2/e

What is Computer Science?

� It is not the study of computers!
“Computers are to computer science
what telescopes are to astronomy.” –
E. Dijkstra

� The question becomes, “What
processes can be described?”

� This question is really, “What can be
computed?”

9Python Programming, 2/e

What is Computer Science?

� Design

� One way to show a particular problem can
be solved is to actually design a solution.

� This is done by developing an algorithm, a
step-by-step process for achieving the
desired result.

� One problem – it can only answer in the
positive. You can’t prove a negative!

10Python Programming, 2/e

What is Computer Science?

� Analysis

� Analysis is the process of examining
algorithms and problems mathematically.

� Some seemingly simple problems are not
solvable by any algorithm. These problems
are said to be unsolvable.

� Problems can be intractable if they would
take too long or take too much memory to
be of practical value.

11Python Programming, 2/e

What is Computer Science?

� Experimentation

� Some problems are too complex for
analysis.

� Implement a system and then study its
behavior.

12Python Programming, 2/e

Hardware Basics

� The central processing unit (CPU) is the
“brain” of a computer.

� The CPU carries out all the basic
operations on the data.

� Examples: simple arithmetic operations,
testing to see if two numbers are equal.

13Python Programming, 2/e

Hardware Basics

� Memory stores programs and data.
� CPU can only directly access information
stored in main memory (RAM or Random
Access Memory).

� Main memory is fast, but volatile, i.e. when
the power is interrupted, the contents of
memory are lost.

� Secondary memory provides more
permanent storage: magnetic (hard drive,
floppy), optical (CD, DVD)

14Python Programming, 2/e

Hardware Basics

� Input devices

� Information is passed to the computer
through keyboards, mice, etc.

� Output devices

� Processed information is presented to the
user through the monitor, printer, etc.

15Python Programming, 2/e

Hardware Basics

� Fetch-Execute Cycle

� First instruction retrieved from memory

� Decode the instruction to see what it
represents

� Appropriate action carried out.

� Next instruction fetched, decoded, and
executed.

� Lather, rinse, repeat!

16Python Programming, 2/e

Programming Languages

� Natural language has ambiguity and
imprecision problems when used to
describe complex algorithms.
� Programs expressed in an unambiguous ,
precise way using programming languages.

� Every structure in programming language
has a precise form, called its syntax

� Every structure in programming language
has a precise meaning, called its
semantics.

17Python Programming, 2/e

Programming Languages

� Programming language like a code for
writing the instructions the computer
will follow.

� Programmers will often refer to their
program as computer code.

� Process of writing an algorithm in a
programming language often called coding.

18Python Programming, 2/e

Programming Languages

� High-level computer languages

� Designed to be used and understood by
humans

� Low-level language

� Computer hardware can only understand a
very low level language known as machine
language

19Python Programming, 2/e

Programming Languages

� Add two numbers:

� Load the number from memory location
2001 into the CPU

� Load the number from memory location
2002 into the CPU

� Add the two numbers in the CPU

� Store the result into location 2003

� In reality, these low-level instructions
are represented in binary (1’s and 0’s)

20Python Programming, 2/e

Programming Languages

� High-level language
c = a + b

� This needs to be translated into
machine language that the computer
can execute.

� Compilers convert programs written in a
high-level language into the machine
language of some computer.

21Python Programming, 2/e

Programming Languages

� Interpreters simulate a computer that
understands a high-level language.

� The source program is not translated
into machine language all at once.

� An interpreter analyzes and executes
the source code instruction by
instruction.

22Python Programming, 2/e

Programming Languages

� Compiling vs. Interpreting
� Once program is compiled, it can be
executed over and over without the source
code or compiler. If it is interpreted, the
source code and interpreter are needed
each time the program runs

� Compiled programs generally run faster
since the translation of the source code
happens only once.

23Python Programming, 2/e

Programming Languages

� Interpreted languages are part of a more
flexible programming environment since
they can be developed and run
interactively

� Interpreted programs are more portable,
meaning the executable code produced
from a compiler for a Pentium won’t run on
a Mac, without recompiling. If a suitable
interpreter already exists, the interpreted
code can be run with no modifications.

24Python Programming, 2/e

The Magic of Python

When you start Python, you will see
something like:

Python 3.1.2 (r312:79149, Mar 21 2010, 00:41:52) [MSC v.1500 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

25Python Programming, 2/e

The Magic of Python

� The “>>>” is a Python prompt indicating that
Python is ready for us to give it a command.
These commands are called statements.

� >>> print("Hello, world“)

Hello, world

>>> print(2+3)

5

>>> print("2+3=", 2+3)

2+3= 5

>>>

26Python Programming, 2/e

The Magic of Python

� Usually we want to execute several
statements together that solve a
common problem. One way to do this is
to use a function.

� >>> def hello():

print("Hello")

print("Computers are Fun")

>>>

27Python Programming, 2/e

The Magic of Python
� >>> def hello():

print("Hello")

print("Computers are Fun")

>>>

� The first line tells Python we are defining a
new function called hello.

� The following lines are indented to show that
they are part of the hello function.

� The blank line (hit enter twice) lets Python
know the definition is finished.

28Python Programming, 2/e

The Magic of Python
� >>> def hello():

print("Hello")
print("Computers are Fun")

>>>

� Notice that nothing has happened yet! We’ve
defined the function, but we haven’t told
Python to perform the function!

� A function is invoked by typing its name.
� >>> hello()

Hello
Computers are Fun
>>>

29Python Programming, 2/e

The Magic of Python

� What’s the deal with the ()’s?

� Commands can have changeable parts
called parameters that are placed
between the ()’s.

� >>> def greet(person):

print("Hello",person)

print ("How are you?")

>>>

30Python Programming, 2/e

The Magic of Python

� >>> greet("Terry")

Hello Terry

How are you?

>>> greet("Paula")

Hello Paula

How are you?

>>>

� When we use parameters, we can
customize the output of our function.

31Python Programming, 2/e

The Magic of Python

� When we exit the Python prompt, the functions we’ve
defined cease to exist!

� Programs are usually composed of functions,
modules, or scripts that are saved on disk so that
they can be used again and again.

� A module file is a text file created in text editing
software (saved as “plain text”) that contains
function definitions.

� A programming environment is designed to help
programmers write programs and usually includes
automatic indenting, highlighting, etc.

32Python Programming, 2/e

The Magic of Python
File: chaos.py

A simple program illustrating chaotic behavior

def main():

print("This program illustrates a chaotic function")

x = eval(input("Enter a number between 0 and 1: "))

for i in range(10):

x = 3.9 * x * (1 - x)

print(x)

main()

� We’ll use filename.py when we save our work
to indicate it’s a Python program.

� In this code we’re defining a new function
called main.

� The main() at the end tells Python to run the
code. 33Python Programming, 2/e

The Magic of Python
>>>

This program illustrates a chaotic function

Enter a number between 0 and 1: .5

0.975

0.0950625

0.335499922266

0.869464925259

0.442633109113

0.962165255337

0.141972779362

0.4750843862

0.972578927537

0.104009713267

>>>

34Python Programming, 2/e

Inside a Python Program
File: chaos.py

A simple program illustrating chaotic behavior

� Lines that start with # are called
comments

� Intended for human readers and
ignored by Python

� Python skips text from # to end of line

35Python Programming, 2/e

Inside a Python Program
def main():

� Beginning of the definition of a function
called main

� Since our program has only this one
module, it could have been written
without the main function.

� The use of main is customary, however.

36Python Programming, 2/e

Inside a Python Program
print("This program illustrates a chaotic function")

� This line causes Python to print a
message introducing the program.

37Python Programming, 2/e

Inside a Python Program
x = eval(input("Enter a number between 0 and 1: "))

� x is an example of a variable

� A variable is used to assign a name to a
value so that we can refer to it later.

� The quoted information is displayed,
and the number typed in response is
stored in x.

38Python Programming, 2/e

Inside a Python Program
for i in range(10):

� For is a loop construct

� A loop tells Python to repeat the same
thing over and over.

� In this example, the following code will
be repeated 10 times.

39Python Programming, 2/e

Inside a Python Program
x = 3.9 * x * (1 - x)

print(x)

� These lines are the body of the loop.

� The body of the loop is what gets repeated
each time through the loop.

� The body of the loop is identified through
indentation.

� The effect of the loop is the same as
repeating this two lines 10 times!

40Python Programming, 2/e

Inside a Python Program
for i in range(10):

x = 3.9 * x * (1 - x)

print(x)

� These are
equivalent!

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

x = 3.9 * x * (1 - x)

print(x)

41Python Programming, 2/e

Inside a Python Program
x = 3.9 * x * (1 - x)

� This is called an assignment statement

� The part on the right-hand side (RHS) of the
“=“ is a mathematical expression.

� * is used to indicate multiplication

� Once the value on the RHS is computed, it is
stored back into (assigned) into x

42Python Programming, 2/e

Inside a Python Program
main()

� This last line tells Python to execute the
code in the function main

43Python Programming, 2/e

Chaos and Computers

� The chaos.py program:
def main():

print("This program illustrates a chaotic function")

x = eval(input("Enter a number between 0 and 1: "))

for i in range(10):

x = 3.9 * x * (1 - x)

print(x)

main()

� For any given input, returns 10 seemingly
random numbers between 0 and 1

� It appears that the value of x is chaotic

44Python Programming, 2/e

Chaos and Computers

� The function computed by program has the
general form where k is 3.9

� This type of function is known as a logistic
function.

� Models certain kinds of unstable electronic
circuits.

� Very small differences in initial value can have
large differences in the output.

()(1)k x x−

45Python Programming, 2/e

Chaos and Computers

� Input: 0.25

0.73125

0.76644140625

0.698135010439

0.82189581879

0.570894019197

0.955398748364

0.166186721954

0.540417912062

0.9686289303

0.118509010176

� Input: 0.26

0.75036

0.73054749456

0.767706625733

0.6954993339

0.825942040734

0.560670965721

0.960644232282

0.147446875935

0.490254549376

0.974629602149

46Python Programming, 2/e

