
Python - Exceptions HandlingPython - Exceptions Handling

Python provides two very important features to handle any unexpected error in your Python programs andPython provides two very important features to handle any unexpected error in your Python programs and
to add debugging capabilities in them −to add debugging capabilities in them −

Exception HandlingException Handling − This would be covered in this tutorial. Here is a list standard Exceptions − This would be covered in this tutorial. Here is a list standard Exceptions
available in Python: available in Python: Standard ExceptionsStandard Exceptions ..

AssertionsAssertions − This would be covered in − This would be covered in Assertions in PythonAssertions in Python tutorial. tutorial.

List of Standard Exceptions −List of Standard Exceptions −

https://www.tutorialspoint.com/python/standard_exceptions.htm
https://www.tutorialspoint.com/python/assertions_in_python.htm

Sr.No.Sr.No. Exception Name & DescriptionException Name & Description

11 ExceptionException

Base class for all exceptionsBase class for all exceptions

22 StopIterationStopIteration

Raised when the next() method of an iterator does not point to any object.Raised when the next() method of an iterator does not point to any object.

33 SystemExitSystemExit

Raised by the sys.exit() function.Raised by the sys.exit() function.

44 StandardErrorStandardError

Base class for all built-in exceptions except StopIteration and SystemExit.Base class for all built-in exceptions except StopIteration and SystemExit.

55 ArithmeticErrorArithmeticError

Base class for all errors that occur for numeric calculation.Base class for all errors that occur for numeric calculation.

66 OverflowErrorOverflowError

Raised when a calculation exceeds maximum limit for a numeric type.Raised when a calculation exceeds maximum limit for a numeric type.

77 FloatingPointErrorFloatingPointError

Raised when a floating point calculation fails.Raised when a floating point calculation fails.

88 ZeroDivisionErrorZeroDivisionError

Raised when division or modulo by zero takes place for all numeric types.Raised when division or modulo by zero takes place for all numeric types.

99 AssertionErrorAssertionError

Raised in case of failure of the Assert statement.Raised in case of failure of the Assert statement.

1010 AttributeErrorAttributeError

Raised in case of failure of attribute reference or assignment.Raised in case of failure of attribute reference or assignment.

1111 EOFErrorEOFError

Raised when there is no input from either the raw_input() or input() function and the end of fileRaised when there is no input from either the raw_input() or input() function and the end of file
is reached.is reached.

1212 ImportErrorImportError

Raised when an import statement fails.Raised when an import statement fails.

1313 KeyboardInterruptKeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing Ctrl+c.Raised when the user interrupts program execution, usually by pressing Ctrl+c.

1414 LookupErrorLookupError

Base class for all lookup errors.Base class for all lookup errors.

1515 IndexErrorIndexError

Raised when an index is not found in a sequence.Raised when an index is not found in a sequence.

1616 KeyErrorKeyError

Raised when the specified key is not found in the dictionary.Raised when the specified key is not found in the dictionary.

1717 NameErrorNameError

Raised when an identifier is not found in the local or global namespace.Raised when an identifier is not found in the local or global namespace.

1818 UnboundLocalErrorUnboundLocalError

Raised when trying to access a local variable in a function or method but no value has beenRaised when trying to access a local variable in a function or method but no value has been
assigned to it.assigned to it.

1919 EnvironmentErrorEnvironmentError

Base class for all exceptions that occur outside the Python environment.Base class for all exceptions that occur outside the Python environment.

2020 IOErrorIOError

Raised when an input/ output operation fails, such as the print statement or the open() functionRaised when an input/ output operation fails, such as the print statement or the open() function
when trying to open a file that does not exist.when trying to open a file that does not exist.

2121 IOErrorIOError

Raised for operating system-related errors.Raised for operating system-related errors.

2222 SyntaxErrorSyntaxError

Raised when there is an error in Python syntax.Raised when there is an error in Python syntax.

2323 IndentationErrorIndentationError

Raised when indentation is not specified properly.Raised when indentation is not specified properly.

2424 SystemErrorSystemError

Raised when the interpreter finds an internal problem, but when this error is encountered theRaised when the interpreter finds an internal problem, but when this error is encountered the
Python interpreter does not exit.Python interpreter does not exit.

2525 SystemExitSystemExit

Raised when Python interpreter is quit by using the sys.exit() function. If not handled in theRaised when Python interpreter is quit by using the sys.exit() function. If not handled in the
code, causes the interpreter to exit.code, causes the interpreter to exit.

2626 TypeErrorTypeError

Raised when an operation or function is attempted that is invalid for the specified data type.Raised when an operation or function is attempted that is invalid for the specified data type.

2727 ValueErrorValueError

Raised when the built-in function for a data type has the valid type of arguments, but theRaised when the built-in function for a data type has the valid type of arguments, but the
arguments have invalid values specified.arguments have invalid values specified.

2828 RuntimeErrorRuntimeError

Raised when a generated error does not fall into any category.Raised when a generated error does not fall into any category.

2929 NotImplementedErrorNotImplementedError

Raised when an abstract method that needs to be implemented in an inherited class is notRaised when an abstract method that needs to be implemented in an inherited class is not
actually implemented.actually implemented.

Assertions in PythonAssertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are done with your testing of theAn assertion is a sanity-check that you can turn on or turn off when you are done with your testing of the
program.program.

The easiest way to think of an assertion is to liken it to a The easiest way to think of an assertion is to liken it to a raise-ifraise-if statement (or to be more accurate, a statement (or to be more accurate, a
raise-if-not statement). An expression is tested, and if the result comes up false, an exception is raised.raise-if-not statement). An expression is tested, and if the result comes up false, an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to Python, introduced in versionAssertions are carried out by the assert statement, the newest keyword to Python, introduced in version
1.5.1.5.

Programmers often place assertions at the start of a function to check for valid input, and after a functionProgrammers often place assertions at the start of a function to check for valid input, and after a function
call to check for valid output.call to check for valid output.

The The assertassert Statement Statement

When it encounters an assert statement, Python evaluates the accompanying expression, which isWhen it encounters an assert statement, Python evaluates the accompanying expression, which is
hopefully true. If the expression is false, Python raises an hopefully true. If the expression is false, Python raises an AssertionErrorAssertionError exception. exception.

The The syntaxsyntax for assert is − for assert is −

assert Expression[, Arguments]assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for the AssertionError.If the assertion fails, Python uses ArgumentExpression as the argument for the AssertionError.
AssertionError exceptions can be caught and handled like any other exception using the try-exceptAssertionError exceptions can be caught and handled like any other exception using the try-except
statement, but if not handled, they will terminate the program and produce a traceback.statement, but if not handled, they will terminate the program and produce a traceback.

ExampleExample

Here is a function that converts a temperature from degrees Kelvin to degrees Fahrenheit. Since zeroHere is a function that converts a temperature from degrees Kelvin to degrees Fahrenheit. Since zero
degrees Kelvin is as cold as it gets, the function bails out if it sees a negative temperature −degrees Kelvin is as cold as it gets, the function bails out if it sees a negative temperature −

#!/usr/bin/python#!/usr/bin/python

defdef KelvinToFahrenheitKelvinToFahrenheit((TemperatureTemperature):):

 assertassert ((TemperatureTemperature >=>= 00),),"Colder than absolute zero!""Colder than absolute zero!"

 returnreturn ((((TemperatureTemperature--273273)*)*1.81.8)+)+3232

printprint KelvinToFahrenheitKelvinToFahrenheit((273273))

printprint intint((KelvinToFahrenheitKelvinToFahrenheit((505.78505.78))))

printprint KelvinToFahrenheitKelvinToFahrenheit(-(-55))

When the above code is executed, it produces the following result −When the above code is executed, it produces the following result −

32.032.0

451451

Traceback (most recent call last):Traceback (most recent call last):

File "test.py", line 9, in <module>File "test.py", line 9, in <module>

print KelvinToFahrenheit(-5)print KelvinToFahrenheit(-5)

File "test.py", line 4, in KelvinToFahrenheitFile "test.py", line 4, in KelvinToFahrenheit

assert (Temperature >= 0),"Colder than absolute zero!"assert (Temperature >= 0),"Colder than absolute zero!"

AssertionError: Colder than absolute zero!AssertionError: Colder than absolute zero!

What is Exception?What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts the normal flow ofAn exception is an event, which occurs during the execution of a program that disrupts the normal flow of
the program's instructions. In general, when a Python script encounters a situation that it cannot cope with,the program's instructions. In general, when a Python script encounters a situation that it cannot cope with,
it raises an exception. An exception is a Python object that represents an error.it raises an exception. An exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception immediately otherwise itWhen a Python script raises an exception, it must either handle the exception immediately otherwise it
terminates and quits.terminates and quits.

Handling an exceptionHandling an exception

If you have some If you have some suspicioussuspicious code that may raise an exception, you can defend your program by placing code that may raise an exception, you can defend your program by placing
the suspicious code in a the suspicious code in a try:try: block. After the try: block, include an block. After the try: block, include an except:except: statement, followed by a block statement, followed by a block
of code which handles the problem as elegantly as possible.of code which handles the problem as elegantly as possible.

SyntaxSyntax

Here is simple syntax of Here is simple syntax of try....except...elsetry....except...else blocks − blocks −

try:try:

 You do your operations here; You do your operations here;

except except ExceptionIExceptionI::

 If there is ExceptionI, then execute this block. If there is ExceptionI, then execute this block.

except except ExceptionIIExceptionII::

 If there is ExceptionII, then execute this block. If there is ExceptionII, then execute this block.

else:else:

 If there is no exception then execute this block. If there is no exception then execute this block.

Live DemoLive Demo

http://tpcg.io/fBXCk7

Here are few important points about the above-mentioned syntax −Here are few important points about the above-mentioned syntax −

A single try statement can have multiple except statements. This is useful when the try blockA single try statement can have multiple except statements. This is useful when the try block
contains statements that may throw different types of exceptions.contains statements that may throw different types of exceptions.

You can also provide a generic except clause, which handles any exception.You can also provide a generic except clause, which handles any exception.

After the except clause(s), you can include an else-clause. The code in the else-block executes ifAfter the except clause(s), you can include an else-clause. The code in the else-block executes if
the code in the try: block does not raise an exception.the code in the try: block does not raise an exception.

The else-block is a good place for code that does not need the try: block's protection.The else-block is a good place for code that does not need the try: block's protection.

ExampleExample

This example opens a file, writes content in the, file and comes out gracefully because there is no problemThis example opens a file, writes content in the, file and comes out gracefully because there is no problem
at all −at all −

#!/usr/bin/python#!/usr/bin/python

trytry::

 fh fh == open open(("testfile""testfile",, "w""w"))

 fh fh..writewrite(("This is my test file for exception handling!!""This is my test file for exception handling!!"))

exceptexcept IOErrorIOError::

 printprint "Error: can\'t find file or read data""Error: can\'t find file or read data"

elseelse::

 printprint "Written content in the file successfully""Written content in the file successfully"

 fh fh..closeclose()()

This produces the following result −This produces the following result −

Written content in the file successfullyWritten content in the file successfully

ExampleExample

This example tries to open a file where you do not have write permission, so it raises an exception −This example tries to open a file where you do not have write permission, so it raises an exception −

#!/usr/bin/python#!/usr/bin/python

trytry::

 fh fh == open open(("testfile""testfile",, "r""r"))

 fh fh..writewrite(("This is my test file for exception handling!!""This is my test file for exception handling!!"))

exceptexcept IOErrorIOError::

 printprint "Error: can\'t find file or read data""Error: can\'t find file or read data"

elseelse::

 printprint "Written content in the file successfully""Written content in the file successfully"

This produces the following result −This produces the following result −

Error: can't find file or read dataError: can't find file or read data

The The exceptexcept Clause with No Exceptions Clause with No Exceptions

Live DemoLive Demo

Live DemoLive Demo

http://tpcg.io/wDwtP9
http://tpcg.io/guvZfU

You can also use the except statement with no exceptions defined as follows −You can also use the except statement with no exceptions defined as follows −

try:try:

 You do your operations here; You do your operations here;

except:except:

 If there is any exception, then execute this block. If there is any exception, then execute this block.

else:else:

 If there is no exception then execute this block. If there is no exception then execute this block.

This kind of a This kind of a try-excepttry-except statement catches all the exceptions that occur. Using this kind of try-except statement catches all the exceptions that occur. Using this kind of try-except
statement is not considered a good programming practice though, because it catches all exceptions butstatement is not considered a good programming practice though, because it catches all exceptions but
does not make the programmer identify the root cause of the problem that may occur.does not make the programmer identify the root cause of the problem that may occur.

The The exceptexcept Clause with Multiple Exceptions Clause with Multiple Exceptions

You can also use the same You can also use the same exceptexcept statement to handle multiple exceptions as follows − statement to handle multiple exceptions as follows −

trytry::

 YouYou dodo your operations here your operations here;;

 ..

exceptexcept((Exception1Exception1[,[, Exception2Exception2[,...[,...ExceptionNExceptionN]]]):]]]):

 IfIf there there isis any exception any exception fromfrom the given exception list the given exception list,,

 thenthen execute execute thisthis block block..

 ..

elseelse::

 IfIf there there isis nono exception exception thenthen execute execute thisthis block block..

The try-finally ClauseThe try-finally Clause

You can use a You can use a finally:finally: block along with a block along with a try:try: block. The finally block is a place to put any code that must block. The finally block is a place to put any code that must
execute, whether the try-block raised an exception or not. The syntax of the try-finally statement is this −execute, whether the try-block raised an exception or not. The syntax of the try-finally statement is this −

trytry::

 YouYou dodo your operations here your operations here;;

 ..

 DueDue to any exception to any exception,, thisthis may be skipped may be skipped..

finallyfinally::

 ThisThis would always be executed would always be executed..

 ..

You cannot use You cannot use elseelse clause as well along with a finally clause. clause as well along with a finally clause.

ExampleExample

#!/usr/bin/python#!/usr/bin/python

trytry::

 fh fh == open open(("testfile""testfile",, "w""w"))

 fh fh..writewrite(("This is my test file for exception handling!!""This is my test file for exception handling!!"))

Live DemoLive Demo

http://tpcg.io/Pfq1qs

finallyfinally::

 printprint "Error: can\'t find file or read data""Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will produce the following result −If you do not have permission to open the file in writing mode, then this will produce the following result −

Error: can't find file or read dataError: can't find file or read data

Same example can be written more cleanly as follows −Same example can be written more cleanly as follows −

#!/usr/bin/python#!/usr/bin/python

trytry::

 fh fh == open open(("testfile""testfile",, "w""w"))

 trytry::

 fh fh..writewrite(("This is my test file for exception handling!!""This is my test file for exception handling!!"))

 finallyfinally::

 printprint "Going to close the file""Going to close the file"

 fh fh..closeclose()()

exceptexcept IOErrorIOError::

 printprint "Error: can\'t find file or read data""Error: can\'t find file or read data"

When an exception is thrown in the When an exception is thrown in the trytry block, the execution immediately passes to the block, the execution immediately passes to the finallyfinally block. After block. After
all the statements in the all the statements in the finallyfinally block are executed, the exception is raised again and is handled in the block are executed, the exception is raised again and is handled in the
exceptexcept statements if present in the next higher layer of the statements if present in the next higher layer of the try-excepttry-except statement. statement.

Argument of an ExceptionArgument of an Exception

An exception can have an An exception can have an argumentargument, which is a value that gives additional information about the problem., which is a value that gives additional information about the problem.
The contents The contents of the argument vary by exception. You capture an exception's argument by supplying aof the argument vary by exception. You capture an exception's argument by supplying a
variable in the except clause as follows −variable in the except clause as follows −

trytry::

 YouYou dodo your operations here your operations here;;

 ..

exceptexcept ExceptionTypeExceptionType,, ArgumentArgument::

 YouYou can can printprint valuevalue ofof ArgumentArgument here here......

If you write the code to handle a single exception, you can have a variable follow the name of theIf you write the code to handle a single exception, you can have a variable follow the name of the
exception in the except statement. If you are trapping multiple exceptions, you can have a variable followexception in the except statement. If you are trapping multiple exceptions, you can have a variable follow
the tuple of the exception.the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the exception. TheThis variable receives the value of the exception mostly containing the cause of the exception. The
variable can receive a single value or multiple values in the form of a tuple. This tuple usually contains thevariable can receive a single value or multiple values in the form of a tuple. This tuple usually contains the
error string, the error number, and an error location.error string, the error number, and an error location.

ExampleExample

Following is an example for a single exception −Following is an example for a single exception −

Live DemoLive Demo

Live DemoLive Demo

http://tpcg.io/5p1Wkr
http://tpcg.io/Zr1ck8

#!/usr/bin/python#!/usr/bin/python

Define a function here.# Define a function here.

defdef temp_convert temp_convert((varvar):):

 trytry::

 returnreturn intint((varvar))

 exceptexcept ValueErrorValueError,, ArgumentArgument::

 printprint "The argument does not contain numbers\n""The argument does not contain numbers\n",, ArgumentArgument

Call above function here.# Call above function here.

temp_converttemp_convert(("xyz""xyz"););

This produces the following result −This produces the following result −

The argument does not contain numbersThe argument does not contain numbers

invalid literal for int() with base 10: 'xyz'invalid literal for int() with base 10: 'xyz'

Raising an ExceptionsRaising an Exceptions

You can raise exceptions in several ways by using the raise statement. The general syntax for the You can raise exceptions in several ways by using the raise statement. The general syntax for the raiseraise
statement is as follows.statement is as follows.

SyntaxSyntax

raise [Exception [, args [, traceback]]]raise [Exception [, args [, traceback]]]

Here, Here, ExceptionException is the type of exception (for example, NameError) and is the type of exception (for example, NameError) and argumentargument is a value for the is a value for the
exception argument. The argument is optional; if not supplied, the exception argument is None.exception argument. The argument is optional; if not supplied, the exception argument is None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is the tracebackThe final argument, traceback, is also optional (and rarely used in practice), and if present, is the traceback
object used for the exception.object used for the exception.

ExampleExample

An exception can be a string, a class or an object. Most of the exceptions that the Python core raises areAn exception can be a string, a class or an object. Most of the exceptions that the Python core raises are
classes, with an argument that is an instance of the class. Defining new exceptions is quite easy and canclasses, with an argument that is an instance of the class. Defining new exceptions is quite easy and can
be done as follows −be done as follows −

defdef functionName functionName((level level):):

 ifif level level << 11::

 raiseraise "Invalid level!""Invalid level!",, level level

 # The code below to this would not be executed# The code below to this would not be executed

 # if we raise the exception# if we raise the exception

Note:Note: In order to catch an exception, an "except" clause must refer to the same exception thrown either In order to catch an exception, an "except" clause must refer to the same exception thrown either
class object or simple string. For example, to capture above exception, we must write the except clause asclass object or simple string. For example, to capture above exception, we must write the except clause as
follows −follows −

trytry::

 BusinessBusiness LogicLogic here here......

exceptexcept "Invalid level!""Invalid level!"::

 ExceptionException handling here handling here......

elseelse::

 RestRest ofof the code here the code here......

User-Defined ExceptionsUser-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard built-inPython also allows you to create your own exceptions by deriving classes from the standard built-in
exceptions.exceptions.

Here is an example related to Here is an example related to RuntimeErrorRuntimeError. Here, a class is created that is subclassed from. Here, a class is created that is subclassed from
RuntimeErrorRuntimeError. This is useful when you need to display more specific information when an exception is. This is useful when you need to display more specific information when an exception is
caught.caught.

In the try block, the user-defined exception is raised and caught in the except block. The variable e is usedIn the try block, the user-defined exception is raised and caught in the except block. The variable e is used
to create an instance of the class to create an instance of the class NetworkerrorNetworkerror..

classclass NetworkerrorNetworkerror((RuntimeErrorRuntimeError):):

 defdef __init__ __init__((selfself,, arg arg):):

 selfself..args args == arg arg

So once you defined above class, you can raise the exception as follows −So once you defined above class, you can raise the exception as follows −

trytry::

 raiseraise NetworkerrorNetworkerror(("Bad hostname""Bad hostname"))

exceptexcept NetworkerrorNetworkerror,,ee::

 printprint e e..argsargs

