
Week 7, Lecture 2

Today we continue with reading data from files, except we
make it numeric data where we find the
mean and variance, as we did in the last example of the
last lecture.

To begin, we rewrite the code so that the mean and
variance can be computed by making ONE pass
through the data instead of the usual TWO. Alongside
that we also write the usual mean and variance
routines that need two passes, so we can check that the
results are correct. The one pass routine is
interesting in itself but you don’t have to understand the
computation.

We put these routines in a separate file that we can later
import into another file. So this file becomes
a “module”, i.e., a library of routines we can use. If you
keep adding stat functions to this library, you will
have your own stat library in time. At the bottom of this
stat module we put a conditional statement that
ensures the function test() will run as if it is main() when
we run this module directly. But function test() will
not run if we import this module into another file that we
run directly. This is one of the main uses of
the conditional statement using the special variable
__name__. So now you know how to build your own
Python libraries.

The first couple of programs show you how to import this
stat module and call functions inside it. And by
running the stat module directly you see how function
test() runs as main() to test the functions.

For the next couple of programs we make a new module
called “try_stats”. This is exactly the same file as the
stat file, but we have added a couple of lines to see how
“exceptions” work. For this we need a “try” block
of code (i.e., Python runs the code with an eye to
“catching” exceptions — which are runtime errors such
as
a divide by zero etc.). When a particular exception
occurs, Python control moves directly to a portion of the
code
which must handle the exception. In our examples we
have simple print statements to show that an exception
has
occurred. We don’t do anything special to handle the
exception, though in general you will have some code in
this part which tries to “handle” the exception, aside from
printing something. What is done will depend on
your application.

The last example shows you (a) how to compute min and
max of a sequence of n numbers in 2 separate passes
where each costs O(n) comparisons, so the total cost is
O(2n). Next you see an algorithm where the list can be
divided into pairs of numbers and the min and max
comparison done in one pass through the list in a
somewhat

clever way that reduces the complexity from O(2n) to
O(3*n/2) = O(1.5n).

Your homework for the weekend is convert the algorithm
into a Python program. It’s simple to do and good
practice.

We have now completed Chapters 1 through 8 (with the
exception of Chapter 4 on Graphics). We’ll see that soon.

