
Week 15, Lecture 1

We have completed the course syllabus and your final
test is scheduled for Thursday, December 1. It is
supposed to be comprehensive but will focus on the
material we have covered since Test 2.

In these last four lectures, we will cover material from the
book that we have not had a chance to cover so far. To
help with that, please read the slides for Chapter 10 from
the text and , in particular, (a) the cannonball example,
and (b) the many-sided die example. Both examples are
straightforward, and once you understand them, you’ll
see how they can be set up as classes so that you can
construct cannonball objects and many-sided die objects
just as easily as you obtained integers, strings and lists
…… only this time, the objects are ones for which you
have written the classes yourself.

So what is an object? Think of it as “something that has
(a) some data and thus knows this data about itself, and
(b) a number of functions (called methods) that can
operate on this data.”

You’ll notice that using objects makes your programs
clean and modular. Your programs start to become self-
contained (encapsulated) and simultaneously more
general.

To begin with, read the hand-written pdf describing the

cannonball problem. Supplement this with the slides from
Chapter 10 and make sure you understand the cannonball
problem and the solution method. This is called an
approximate, iterative solution. It is approximate because
we make assumptions (e.g., no wind resistance) and
because we iterate over small time-steps using an
approximation for velocity in the y-direction.

Thus, with an approximation in the x-direction (no wind
resistance) and an approximation in the y-direction (i.e.,
though the y-velocity changes continuously, we use an
average velocity over the time step based on only the
start and end velocities over that time step), the entire
solution becomes an approximation.

It is iterative because we are computing the position of
the cannonball over consecutive time-steps. We cannot
get its position at some arbitrary time without going step
by step. You could solve the problem accurately using
calculus, but that requires a little more math than we use
here.

The first program involves an iteration for the cannonball
problem.

The second file (not a program) demonstrates how the
look of the program changes when you take an object-
oriented view.

The third program shows you how to write a class to
construct many-sided die objects and then use such

objects in a simple game. Once you have such a class you
can use these objects anywhere.

The fourth program builds upon what you just saw in the
third program to develop a class for the cannonball
program.

The fifth program puts some very trivial graphics in the
cannonball code. You can improve on these graphics as
an exercise.

