
Week 11, Lecture 2

Today we’ll learn about SETS and DICTIONARIES. Both
are built-in python objects.

A set can have any objects as members, is mutable,
cannot have duplicates, and is unordered. Unordered
means we cannot walk through it in any particular order.

File sets.py shows you how to (a) construct a set and (b)
how to do the usual simple operations on sets (see the
last part of the file). Since sets can’t have duplicate
elements one common trick to remove duplicate elements
from a list is to convert it to a set and then reconvert the
result to a list. It is good practice for you to write a simple
program which allows the user to input n items and then
built a set of these items, and then perform a few of the
usual set operations on this set.

Dictionaries are objects that you will end up using a lot, as
you will see in Examples 4 and 5. Example 5 is also
explained in the lecture pdf for today, but perhaps in a
slightly different way. You can work with either, but it may
be a teeny bit easier for you to look at the explanation in
the pdf first if you have trouble understanding the code in
Example 5. But at this point you really should have no
difficulty with Example 5.

A dictionary is made up of <key:value> pairs. The key is
immutable — usually a number or a string (we explain why

in a program file). You can change the value associated
with a key. For example if a dictionary is made up for a
phone book, you cannot change a person’s name (the
name is the key) but you can certainly change the
person’s phone number (the number is the value
associated with that name (or key)).

In Example 1 we show simple examples of dictionaries
and how we can add and remove pairs, and also how to
look for a particular key in a dictionary (just like looking
for a person’s phone number if you know the name (or
key)). We show how you can walk through a dictionary
and print out just the keys, just the values, or both the key
and value pairs.

Example 2 is just a simple review of some sequences.

Example 3:

Since dictionaries are unordered, we have no control over
the order in which they will be printed. Python does its
own optimization to store information in the most efficient
way it can, and this order is not available to us and
perhaps could change. So we cannot assume anything
about the order of dictionary pairs.

However, if we want dictionary pairs to be output in
ascending/descending order of either keys or values (we
can order only one of the two, we cannot order both, just
as we cannot tell if (1,2) is smaller than (2,1) — that pair

cannot be ordered) we have to extract just that part of the
pair and make a list out of it. Then we can easily order the
list, and finally use that list to walk through and print
<key:value> pairs in ascending or descending order. We
do this in Example 3.

To do the ordering we use the “items()” method of
dictionaries which returns to us a “list” of all the pairs in
the dictionary. Though you are given the pairs in some
order, do not make any assumptions about order. Finally,
we put “list” in quotes because it’s only a list in the
English sense of the word. If you use the type() function
on what is returned by the items() method, you’ll see its a
“dictionary object”. So, to get a list on that object, you
have to apply the list() function to it. Once that is done
you can use list methods such as sort() on it, and you can
also give it a key on which to sort. Here the word “key” is
used in a more general sense, and you should not link this
to a dictionary key. Here, by key we mean a way to tell the
sort() method what sort of values to use in arranging
things in ascending or descending order. For example,
should it order based on dictionary keys or dictionary
values? The “key” parameter in sort will give the sort
method a helper function which returns a value that the
sort() can use. That is all a “key” means to the sort()
method. Don’t confuse this use of “key” with dictionary
keys. [In a more general sense, both uses of the word
“key” refer to a way to reach something …. a value we are
looking for.

Example 4: Here we look at how to use a dictionary to

convert numbers (of any length) from one base to
another base. You can extend this example to do arbitrary
base conversions. We focus on converting from octal
numbers (base 8) to binary numbers (base 2).

Example 5: Here we use a poem of Wordsworth (written
in 1802, and one ranking lists it as the 5th most liked
poem in England) and dictionaries to count the
frequencies of words occurring in the poem. It’s a simple
program. You’ll see a small variation of this explained in
the lecture pdf. You may want to start with that
explanation and code it and then look at this example.
Both are simple.

Remember, the best way to understand what objects
(e.g., dictionary objects) do is to create a simple problem,
such as we have done in Example 5, and use the object. If
you do this two or three times you will not ever need to
commit anything to memory. You will always remember
what you need when the time comes.

