
Python Programming, 3/e 1

CS 177

List Comprehensions

Lists, Lists, Lists… so many lists
n List Structures
n A List of Lists
n Loops and Lists

n Iterations and Comparisons
n Building Lists
n List Comprehension

Python Programming, 3/e 2

It’s important to consider not only what
we’re going to store in our List, but how it
will be organized

Lists are useful, but only if we
plan their structures carefully

Python Programming, 3/e 3

fnames = ['Will','John','Yolanda','Zeb']

lnames = ['Carson','Wilhelm','Brown','Indiano']

for j in range(len(fnames)):

print(lnames[j] + ', ' + fnames[j])

Loops are useful for iteration,
sequencing and comparisons

Python Programming, 3/e 4

Creating a Lists can be done with for loops,
while loops or ranges

list1=[]

for j in range(1,100,2):

list1.append(j)

list2=[]

j=1

while j<100:

list2.append(j)

j+=2list3=list(range(1,100,2))

Practice: Use a loop to create
the following:

1. A List with even integers from 50 to 200
2. A List with odd integers from 101 to 311
3. A List of UPPER case characters that are not

vowels
4. A List of Lists containing all the UPPER case

vowels and their corresponding ORD value
ie: [['A', 65], ['E', 69]]

Python Programming, 3/e 5

List Comprehension

n A List comprehension is a programming
construct which is useful for creating a List
based on another sequence

n A powerful and popular feature in Python
Generates a new list by applying a function to every
member of some other sequence

[expression for variable in sequence if condition]

The familiar components of
List Comprehensions

n The syntax looks like a for loop, an in
operation, and an if statement

n All three of these keywords (for, in, and
if) are also used in the syntax of forms of
List comprehensions

n The if condition portion is optional

[expression for variable in sequence if condition]

List Comprehensions

n Where expression is some calculation or
operation acting upon the variable.

n For each member of the sequence that meets
the condition:

1. Set variable equal to that member,
2. Calculate a new value using expression
3. Add the new value to a List

n Finally, return the List

[expression for variable in sequence if condition]

>>> [x*2 for x in range(6,15,3)]

[12, 18, 24]

List Comprehension Example
[expression for variable in sequence]

n The range function provides the values 6, 9 and 12
n [12, 18, and 24] are returned in the List

>>> myList = [3, 6, 2, 7, 1, 9]
>>> [elem*2 for elem in myList if elem > 4]

[12, 14, 18]

Filtered List Comprehension
[expression for variable in sequence if condition]

n Only 6, 7, and 9 satisfy the condition
n Only [12, 14, and 18] are returned as a result

Practice: Use List comprehensions
to create the following:

Python Programming, 3/e 11

[expression for variable in sequence if condition]

1. A List with even integers from 50 to 200
2. A List with odd integers from 101 to 311
3. A List of UPPER case characters that are not

vowels
4. A List of Lists containing all the UPPER case

vowels and their corresponding ORD value
ie: [['A', 65], ['E', 69]

