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CS 177

List Comprehensions



Lists, Lists, Lists… so many lists
n List Structures
n A List of Lists
n Loops and Lists

n Iterations and Comparisons
n Building Lists
n List Comprehension
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It’s important to consider not only what 
we’re going to store in our List, but how it 
will be organized

Lists are useful, but only if we 
plan their structures carefully
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fnames = ['Will','John','Yolanda','Zeb']

lnames = ['Carson','Wilhelm','Brown','Indiano']

for j in range(len(fnames)):

print(lnames[j] + ', ' + fnames[j])



Loops are useful for iteration, 
sequencing and comparisons
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Creating a Lists can be done with for loops, 
while loops or ranges

list1=[]

for j in range(1,100,2):

list1.append(j)

list2=[]

j=1

while j<100:

list2.append(j)

j+=2list3=list(range(1,100,2))



Practice: Use a loop to create 
the following:

1. A List with even integers from 50 to 200
2. A List with odd integers from 101 to 311
3. A List of UPPER case characters that are not 

vowels 
4. A List of Lists containing all the UPPER case 

vowels and their corresponding ORD value 
ie: [ ['A', 65], ['E', 69] ] 
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List Comprehension

n A List comprehension is a programming 
construct which is useful for creating a List 
based on another sequence

n A powerful and popular feature in Python
Generates a new list by applying a function to every 
member of some other sequence

[ expression for variable in sequence if condition ]



The familiar components of 
List Comprehensions

n The syntax looks like a for loop, an in
operation, and an if statement 

n All three of these keywords (for, in, and 
if) are also used in the syntax of forms of  
List comprehensions

n The if condition portion is optional

[  expression for variable in sequence if condition ]



List Comprehensions

n Where expression is some calculation or 
operation acting upon the variable. 

n For each member of the sequence that meets 
the condition:

1. Set variable equal to that member, 
2. Calculate a new value using expression
3. Add the new value to a List 

n Finally, return the List

[  expression for variable in sequence if condition ]



>>> [ x*2 for x in range(6,15,3)]

[12, 18, 24]

List Comprehension Example
[ expression for variable in sequence]

n The range function provides the values 6, 9 and 12
n [12, 18, and 24] are returned in the List



>>> myList = [ 3, 6, 2, 7, 1, 9 ]
>>> [ elem*2 for elem in myList if elem > 4 ]

[ 12, 14, 18 ]

Filtered List Comprehension
[ expression for variable in sequence if condition ]

n Only 6, 7, and 9 satisfy the condition 
n Only [12, 14, and 18] are returned as a result



Practice: Use List comprehensions 
to create the following:
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[ expression for variable in sequence if condition ]

1. A List with even integers from 50 to 200
2. A List with odd integers from 101 to 311
3. A List of UPPER case characters that are not 

vowels 
4. A List of Lists containing all the UPPER case 

vowels and their corresponding ORD value 
ie: [ ['A', 65], ['E', 69] 


