
Poster: Which Similarity Metric to Use for Software Documents?
A Study on Information Retrieval based Software Engineering Tasks

Md Masudur Rahman
University of Virginia

Charlottesville, Virginia, USA
masud@virginia.edu

Saikat Chakraborty
University of Virginia

Charlottesville, Virginia, USA
saikat.chakraborty@virginia.edu

Baishakhi Ray
University of Virginia

Charlottesville, Virginia, USA
rayb@virginia.edu

ABSTRACT
Information Retrieval (IR) plays a key role in diverse Software Engi-
neering (SE) tasks. Similarity metric is the core component of any IR
techniques whose performance differs for various document types.
Different SE tasks operate on different types of documents like bug
reports, software descriptions, source code, etc., that often contain
non-standard domain-specific vocabulary. Thus, it is important to
understand which similarity metrics are suitable for different SE
documents.

We analyze the performance of different similarity metrics on
various SE documents including a diverse combination of textual
(e.g., description, readme), code (e.g., source code, API, import pack-
age), and a mixture of text and code (e.g., bug reports) artifacts. We
observe that, in general, the context-aware IR models achieve better
performance on textual artifacts. In contrast, simple keyword-based
bag-of-words models perform better in code artifacts.
ACM Reference format:
Md Masudur Rahman, Saikat Chakraborty, and Baishakhi Ray. 2018. Poster:
Which Similarity Metric to Use for Software Documents?. In Proceedings of
40th International Conference on Software Engineering Companion, Gothen-
burg, Sweden, May 27-June 3, 2018 (ICSE ’18 Companion), 2 pages.
https://doi.org/10.1145/3183440.3194997

1 MOTIVATION
Measuring document similarity is a key component of any IR tech-
nique. A similarity metric measures the similarity between two
documents. An IR technique typically computes similarity scores
between a query and candidate documents and ranks the latter
based on the decreasing value of the similarity score. Thus, it is
important to use appropriate similarity metric for different types
of SE documents since the notion of similarities may vary for docu-
ments containing source code and texts with non-standard English
vocabulary.

SE artifacts often contain a diverse set of information including
source code, bug reports, project descriptions, API documentation,
etc., which can be quite different from natural language [3]. For
example, a bug report that primarily contains natural language text
with domain specific keywords is linguistically very different than
source code or execution traces. In addition, the notion of simi-
larities may also vary for source code, text using domain-specific

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194997

non-standard vocabulary, and regular text written in natural lan-
guage. Thus, it is important to use appropriate similarity metric
based on their document types. Despite the importance of choosing
proper similarity metrics, it is not clear that how suitable standard
similarity metrics are for such diverse SE corpora.

In this work, we address this issue by systematically exploring
the effect similarity metrics choice for different software artifacts.
In particular, we evaluate the effectiveness of four popular met-
rics: Vector Space Model (VSM) [14], Latent Semantic Indexing
(LSI) [7], BM25 [12], and embedding based Word Mover’s Distance
(WMD) [5] on different SE documents. Each of these metrics has its
own benefit and therefore has its preferred domain. For example,
in SE literature, VSM [16, 19] and LSI [9, 10] are commonly used,
while BM25 is popular in general purpose search engine, and WMD
is the state-of-the-art similarity metric for natural language docu-
ment classification. Recently, researchers start proposing the word
embedding based models to improve different SE tasks [15, 18].
Thus, we choose different metrics that are known to be effective
for different SE tasks and analyze them thoroughly for SE artifacts.

2 EXPERIMENT
We conduct the experiment on three artifact types and measure the
performance of four similarity metrics.

2.1 SE Document Artifacts
We collect document artifacts from GitHub projects (i.e. Textual and
Code) and bug-reports [16] (e.g., mixture of code and text) dataset.
Textual Artifacts.We consider GitHub projects’ description and
readme content as textual artifacts. Project description on GitHub
is often short and concisely represent the project task. On the other
hand, the README file of a project that usually contains a detailed
description including how to install and run it.
Code Artifacts.We consider GitHub projects’ source code infor-
mation as code artifacts. In particular, we extract Method & Class
name, Import Package name, API name from GitHub projects. We
use Eclipse JDT [4] framework to collect these information.
Mixture of Text and Code. We use a benchmark bug report
dataset (i.e. JDT project) [16] which contains textual descriptions
of bugs, execution traces which is mostly code, and source code
information where the bug should be located.

2.2 Similarity Metrics
VSM represents documents as N-dimensional vectors where each
dimension corresponds to a separate word or term. Then the sim-
ilarity between two documents is computed as the cosine angle
between corresponding vectors.

https://doi.org/10.1145/3183440.3194997
https://doi.org/10.1145/3183440.3194997


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Md Masudur Rahman, Saikat Chakraborty, and Baishakhi Ray

BM25 is a probabilistic retrieval metric that ranks documents based
on the number of query terms present in each document. It treats a
particular matching term’s importance in the document and query
differently and uses document length normalization.
LSI projects a higher dimensional document-term co-occurrence
frequency matrix into a lower dimensional latent space to create
document vectors. After inferring the lower dimensional vector
of both query and documents, cosine similarity can be used to
compute the similarity between two vectors.
WMD is based on the concept that similar words should have simi-
lar context words [2] thus similar embedding. WMD [5] leverages
word embedding [11] to compute similarity between query and
documents.

2.3 Experimental Setup
We use similar GitHub projects to collect the ground-truth for the
artifacts extracted from GitHub (i.e. description, readme, method &
class, import package, and API). If two GitHub projects implement
similar functionality (e.g., media player, text editor, etc.) we consider
them as similar. Thus if two documents,D1 andD2 of a feature (e.g.,
description) come from similar functional project we consider these
two as relevant documents. If an IR model (e.g., BM25) can retrieve
D2 when we search with the query D1, we consider that as a hit
(i.e. correct retrieval) otherwise a miss (i.e. incorrect retrieval). We
manually annotate 1590 GitHub projects to its functional categories.

On the other hand, in the case of searching with the bug report,
if an IR model can retrieve the source file where the bug is located
we consider that as hit and otherwise a miss [16].

In all cases, we tune the models for each artifact to its optimal
performance and use standard mean average precision (MAP) and
mean reciprocal rank (MRR) [8] as our evaluation metrics.

2.4 Results
For textual artifacts, we find context-aware models such as LSI and
WMD are in general better, while the keyword based bag-of-words
(BOW)model VSM performs best for code only artifacts. In contrast,
for mixture (i.e. bug reports) documents, BM25 performs the best.
Surprisingly, BM25 is not that effective for text only and code only
artifacts.

3 IMPLICATION AND FUTUREWORK
Typically, SE researchers use well-established IR techniques to mea-
sure document similarity. The advantage of using such techniques
is that they are already stable, fine-tuned, and well explored. How-
ever, these models are primarily refined for natural language text
corpora. From our results, we find that these retrieval models are
highly sensitive to the nature of documents. Thus, for a particular
IR-based SE task (e.g., bug localization [16]), it is important to un-
derstand what type of similarity metric is suitable for its artifact
type.

To incorporate special characteristics (i.e. structure and vocabu-
lary) of SE documents, researchers have started adapting different
techniques: query reformulations (e.g., [1]), incorporating code
structure in IR systems (e.g., [13]), using domain-specific meta-
data (e.g., [16]), feature extraction (e.g., [17]), and deep learning
(e.g., [6]). In addition to these approaches, an informed similarity
model choice might lead to an improved performance. In future, we

want to investigate how we can incorporate this knowledge into
any IR-based SE task. Furthermore, we want to explore whether
this informed choice of similarity metrics can improve the overall
performance of SE tasks (e.g., bug localization [16]).

ACKNOWLEDGEMENTS
This work is sponsored by the National Science Foundation (NSF)
grant CCF-16-19123 and CNS-16-18771. The conclusions of the
paper are of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of NSF.

REFERENCES
[1] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,

and Tim Menzies. 2013. Automatic query reformulations for text retrieval in
software engineering. In Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 842–851.

[2] Zellig S Harris. 1954. Distributional structure. Word 10, 2-3 (1954), 146–162.
[3] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks

the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 763–773.

[4] Eclipse JDT. [n. d.]. "https://www.eclipse.org/jdt/". ([n. d.]).
[5] Matt J Kusner, Yu Sun, Nicholas I Kolkin, and Kilian Q Weinberger. 2015. From

word embeddings to document distances. In Proceedings of the 32nd International
Conference on Machine Learning (ICML 2015). 957–966.

[6] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2017.
Bug localization with combination of deep learning and information retrieval. In
Proceedings of the 25th International Conference on Program Comprehension. IEEE
Press, 218–229.

[7] Thomas K Landauer and Susan T Dumais. 1997. A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction, and representation
of knowledge. Psychological review 104, 2 (1997), 211.

[8] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

[9] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I Maletic. 2004.
An information retrieval approach to concept location in source code. In Reverse
Engineering, 2004. Proceedings. 11th Working Conference on. IEEE, 214–223.

[10] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting
similar software applications. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 364–374.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[12] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In Proceedings of
the 17th annual international ACM SIGIR conference on Research and development
in information retrieval. Springer-Verlag New York, Inc., 232–241.

[13] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
345–355.

[14] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[15] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 51–62.

[16] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files for
bug reports using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 689–699.

[17] Xin Ye, Razvan Bunescu, and Chang Liu. 2016. Mapping bug reports to relevant
files: A ranking model, a fine-grained benchmark, and feature evaluation. IEEE
Transactions on Software Engineering 42, 4 (2016), 379–402.

[18] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. 2016. From word
embeddings to document similarities for improved information retrieval in soft-
ware engineering. In Proceedings of the 38th International Conference on Software
Engineering. ACM, 404–415.

[19] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on bug reports.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 14–24.

https://www.eclipse.org/jdt/

	Abstract
	1 Motivation
	2 Experiment
	2.1 SE Document Artifacts
	2.2 Similarity Metrics
	2.3 Experimental Setup
	2.4 Results

	3 Implication and Future Work
	References

