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Abstract

This paper proposes an algorithm that aims to improve generalization for rein-
forcement learning agents by removing overfitting to confounding features. Our
approach consists of a max-min game theoretic objective. A generator transfers
the style of observation during reinforcement learning. An additional goal of the
generator is to perturb the observation, which maximizes the agent’s probability
of taking a different action. In contrast, a policy network updates its parameters to
minimize the effect of such perturbations, thus staying robust while maximizing
the expected future reward. Based on this setup, we propose a practical deep rein-
forcement learning algorithm, Adversarial Robust Policy Optimization (ARPO),
to find a robust policy that generalizes to unseen environments. We evaluate our
approach on Procgen and Distracting Control Suite for generalization and sample
efficiency. Empirically, ARPO shows improved performance compared to a few
baseline algorithms, including data augmentation.

1 Introduction

The reinforcement learning (RL) environments often provide observation, which is a high-
dimensional projection of the true state, complicating policy learning as the deep neural network
model might mistakenly correlate reward with irrelevant information. Thus deep neural networks
might overfit irrelevant features in the training data due to their high flexibility and the long-stretched
time duration of the RL training process, which leads to poor generalization (Hardt et al., 2016;
Zhang et al., 2018a; Cobbe et al., 2019, 2020; Zhang et al., 2018b; Machado et al., 2018; Gamrian
& Goldberg, 2019). These irrelevant features (e.g., background color) usually do not impact the
reward; thus, an optimal agent should avoid focusing on them during policy learning. Even worse,
this might lead to incorrect state representations, which prevent deep RL agents from performing
well even in slightly different environments. Thus, to learn a correct state representation, the agent
needs to avoid those features.

In recent times, generalization in RL has been explored extensively. In zero-shot generalization
framework (Zhang et al., 2018b; Song et al., 2020; Wang et al., 2019; Packer et al., 2018) the agent
is trained on a finite training set of MDP levels and then evaluated on the full distribution of the MDP
levels. The distribution of the MDP levels can be generated in various ways, including changing dy-
namics, exploit determinism, and adding irrelevant confounders to high-dimensional observation.
An agent trained in these setups can overfit any of these factors, resulting in poor generalization
performance. Many approaches have been proposed to address this challenges including various
data augmentation approaches such as random cropping, adding jitter in image-based observation
(Cobbe et al., 2019; Laskin et al., 2020a; Raileanu et al., 2020; Kostrikov et al., 2020; Laskin et al.,
2020b),random noise injection (Igl et al., 2019), network randomization (Osband et al., 2018; Burda
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Figure 1: Overview of our approach. The method consists of a minimax game theoretic objective. It first
applies a clustering approach to generate n group of clusters based on the different visual features in the ob-
servation. A generator is then used to style-translate observation from one cluster to another while maximizing
the change in action probabilities of the policy. In contrast, the policy network updates its policy parameters
to minimize the translation effect while optimizing for the RL objective that maximizes the expected future
reward.

et al., 2018; Lee et al., 2020), and regularization (Cobbe et al., 2019; Kostrikov et al., 2020; Igl
et al., 2019; Wang et al., 2020) have shown to improve generalization. The common theme of these
approaches is to increase diversity in the training data so as the learned policy would better gener-
alize. However, this perturbation is primarily done in isolation of the RL reward function, which
might change an essential aspect of the observation, resulting in sub-optimal policy learning. More-
over, the random perturbation in various manipulations of observations such as cropping, blocking,
or combining two random images from different environment levels might result in unrealistic ob-
servations that the agent will less likely observe during testing. Thus these techniques might work
poorly in the setup where agents depend on realistic observation for policy learning. It is also de-
sirable to train the agent with realistic observations, which helps it understand the environments’
semantics. Otherwise, the agent might learn unexpected and unsafe behaviors while entirely fo-
cusing on maximizing rewards even by exploiting flaws in environments such as imperfect reward
design.

This paper focuses on a particular form of generalization where the agent gets to observe a high-
dimensional projection of the true state. In contrast, the latent state dynamics remain the same
across all the MDP levels. This assumption has been shown to affect generalization (Song et al.,
2020) in well studied benchmarks (Nichol et al., 2018). It has been observed that the agent overfits
the scoreboard or timer and sometimes achieves the best training performance even without looking
at the other part of the observation. Consequently, this policy completely fails to generalize in test
environments. The high-capacity model even can memorize the whole training environment, thus
severely affecting the generalization (Zhang et al., 2018b).

This paper proposes a style transfer-based observation translation method that considers the obser-
vation’s content and reward signal. A generator performs the style transfer while the policy tries to
be robust toward such style changes. In particular, we propose a unified learning approach where
the style transfer is integrated into the reinforcement learning training. Thus the generator produces
more effective translation targeted toward RL objective, making the RL policy more robust.

In our setup, the trajectory data from the agent’s replay buffer is first clustered into different cat-
egories, and then observation is translated from one cluster’s style to another cluster’s style. Here
the style is determined by the attribute commonality of observation features in a cluster. The agent
should be robust toward changes of such features. Moreover, the translated trajectories correspond
to those that possibly appear in testing environments, assisting the agent in adapting to unseen sce-
narios.

Figure 1 shows an overview of our method. Our approach consists of a max-min game theoretic
objective where a generator network modifies the observation by style transferring it to maximize
the agent’s probability of taking a different action. In contrast, the policy network (agent) updates
its parameters to minimize the effect of perturbation while maximizing the expected future reward.
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Based on this objective, we propose a practical deep reinforcement learning algorithm, Adversarial
Robust Policy Optimization (ARPO), that aims to find a robust policy by mitigating the observational
overfitting and eventually generalizes to test environments.

We empirically show the effectiveness of our ARPO agent in generalization and sample efficiency on
challenging Procgen (Cobbe et al., 2020) and Distracting Control Suite (Stone et al., 2021) bench-
mark with image-based observation. The Procgen leverages procedural generation to create diverse
environments to test the RL agents’ generalization capacity. The distracting control adds various vi-
sual distractions on top of the Deepmind Control suite (Tassa et al., 2020) to facilitate the evaluation
of generalization performance.

Empirically, we observed that our agent ARPO performs better in generalization and sample effi-
ciency than the baseline PPO (Schulman et al., 2017) and a data augmentation-based RAD (Laskin
et al., 2020a) algorithm on the many Procgen environments. Furthermore, APRO performs better
compared to PPO and SAC (Haarnoja et al., 2018) on the two Distracting Control Suite environ-
ments in various setups.

In summary, our contributions are listed as follows:

• We propose Adversarial Robust Policy Optimization (ARPO), a deep reinforcement learn-
ing algorithm to find a robust policy that generalizes to test environments in a zero-shot
generalization framework.

• We evaluate our approach on challenging Procgen (Cobbe et al., 2020) and Distracting
Control Suite (Stone et al., 2021) benchmark in generalization ans sample efficiency set-
tings.

• Empirically, we observed that our agent ARPO performs better generalization and sample
efficiency performance compared to standard PPO (Schulman et al., 2017), SAC (Haarnoja
et al., 2018), and a data augmentation-based RAD (Laskin et al., 2020a) approach in various
settings.

2 Preliminaries and Problem Settings

Markov Decision Process (MDP) An MDP is denoted by M = (S,A,P, r) where at every
timestep t, from an state st ∈ S , the agent takes an action at from a set of actionsA. The agent then
receives a reward rt from the environment and move to a new state st+1 ∈ S based on the transition
probability P (st+1|st, at).
Reinforcement Learning. Reinforcement learning aims to learn a policy π ∈ Π that maps state to
actions. The policy’s objective is to maximize cumulative reward in an MDP, where Π is the set of
all possible policies. Thus, the policy which achieves the highest possible cumulative reward is the
optimal policy π∗ ∈ Π.

Generalization in Reinforcement Learning. In the zero-shot generalization framework (Song
et al., 2020), we assume the existence of a distribution of levels D over an MDP and a fixed optimal
policy π∗ which can achieve maximal return over levels generated from the distribution D. The
levels may differ in observational variety, such as different background colors. In this setup, the
agent has access to a fixed set of MDP levels during training the policy. The trained agent is then
tested on the unseen levels to measure the generalization performance of the agent. This scenario
is often called Contextual MDP (i.e., CMDP). A detailed analysis can be found in the survey paper
Kirk et al. (2021).

Style Transfer. The task of image-to-image translation is to change a particular aspect of a given
image to another, such as red background to green background. Generative adversarial network
(GAN)-based method has achieved tremendous success in this task (Kim et al., 2017; Isola et al.,
2017; Zhu et al., 2017; Choi et al., 2018). Given training data from two domains, these models
learn to style-translate images from one domain to another. The domain is defined as a set of images
sharing the same attribute value, such as similar background color and texture. The shared attributes
in a domain are considered as the “style” of that domain. Many translation methods require paired
images from two domains, which is not feasible in the reinforcement learning setup. The agent col-
lects the data during policy learning, and annotating them in pairs is not feasible. Thus, we leverage
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unpaired image to image translation, which does not require a one-to-one mapping of annotated
images from two domains.

In particular, we build upon the work of StarGAN (Choi et al., 2018) which is capable of learning
mappings among multiple domains efficiently. The model takes in training data of multiple domains
and learns the mappings between each pair of available domains using only a single generator. This
method automatically captures special characteristics of one image domain and figures out how
these characteristics could be translated into the other image collection, making it appealing in the
reinforcement learning setup. However, the RL agent generates experience trajectory data which is
not separated into domains. Thus, we further apply a clustering approach which first clusters the
trajectory observation into domains, and then we train the generator, which style-translates among
those domains.

3 Adversarial Robust Policy Optimization (ARPO)

Our approach consists of a max-min game theoretic objective where a generator network modifies
the observation by changing the style of it to maximize the agent’s probability of taking a different
action. In contrast, the policy network (agent) updates its parameters to minimize the effect of
perturbation while maximizing the expected future reward. Based on this objective, we propose a
practical deep reinforcement learning algorithm, Adversarial Robust Policy Optimization (ARPO),
to find a robust policy that generalizes to test environments. We now discuss the details of the policy
network and generator.

3.1 Policy Network

The objective of the policy network is two-fold: maximize the cumulative RL return during training
and be robust to the perturbation on the observation imposed by the generator. Ideally, the action
probability of the translated image should not change from the original image, as the translated
observation is assumed to represent the same semantic as the original observation.

The reinforcement learning loss Lπ can be optimized with various reinforcement learning mecha-
nisms, such as policy gradient (optimization). However, we do not make any assumption the type of
RL algorithms to use for optimizing Lπ; thus, any algorithms can be incorporated with our method.
Here we discuss the policy optimization formulation, which is based on the proximal policy opti-
mization (PPO) (Schulman et al., 2017) objective:

Lπ = −Et[
πθ(at|st)
πθold(at|st)

At] (1)

At = −V (st) + rt + γrr+1 + ...+ γT−t+1rT−1 + γT−tV (sT ). (2)
where, πθ is the current policy and πθold is the old policy; At is estimated from the sampled trajectory
by policy πθold leveraging a value function estimator denoted as V . Here, both the policy π and value
network V are represented as neural networks.

An additional objective of the policy is to participate in the adversarial game with the style transfer
generator. Thus the final policy loss Lθ is defined as follows:

Lθ = Lπ + β1KL[πθ(.|xt), πθ(.|x′
t)] (3)

The policy parameter θ is updated to minimize equation 3. For the observation xt at timestep t,
the KL-component measure the distortion in the action distribution of the policy πθ due to the per-
turbation (x′

t). The hyperparameter β1 determines the participation in an adversarial objective with
the generator. By minimizing the KL-part, the policy becomes robust to the change in perturbation
proposed by the generator.

3.2 Generator Network

It takes the observation xt as input and outputs the style-translated observation x′
t. The objective of

this network is to change the agent’s (policy network’s) probability of taking a different action for
the corresponding input observation. However, the content or semantic of the observations needs to
be intact, and the only style of the images will differ.
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The first step of this process is to curate a dataset with different style features such as background
color and texture of objects present in the observation. We first use experience trajectory observation
data from the environment and separate them into different classes based on visual features (Figure
2). The task of the generator is then to translate the images from one class images to another class
images. In this case, the “style” is defined as the commonality among images in a single class. We
now discuss details about how we separate the trajectory observation to get different clusters.

Figure 2: Overview of style transfer generator module. The experience trajectory for the task environment
are separated into different classes based on visual features using Gaussian Mixture Model (GMM) clustering
algorithm. The task of the generator is then to translate the image from one class image to another classes
images. In this case, the “style” is defined as the commonality among images in a single class. Given a new
observation, it first infers into its (source) cluster using GMM, and then the generator translated it to (target)
another cluster style. The target cluster is taken randomly from the rest of the cluster.

Clustering Trajectory Observation. The trajectory data is first clustered into n clusters. Then,
we use the Gaussian Mixture Model (GMM) for clustering and ResNet (He et al., 2016) for feature
extraction and dimension reduction. Firstly, a pre-trained (on ImageNet) ResNet model reduces an
RGB image into a 1000 dimensional vector. This step extracts useful information from the raw
image and reduces the dimension, allowing faster cluster training. Note that this process focuses
entirely on the visual aspect of the observation. After passing through the ResNet, the observation
dataset is clustered using GMM.

Generator Training. Generator G tries to fool discriminator D in an adversarial setting by gener-
ating a realistic image represented by the true image distribution. We extend the generator’s ability,
and an additional objective of the generator is to fool the RL agent (policy network) by transforming
the style of the original observation. For example, changing the background color to a different one
does not change the semantic of the observation, but the image style would be different. Ideally, the
action mapping of the policy needs to be the same on both the original and translated observation.
However, a policy that focuses on the irrelevant background color will suffer from this translation,
and thus its probability distribution deviates because of the style translation. This is defined as the
KL-divergence KL(πθ(.|xt), πθ(.|x′

t)), where xt is the given observation and x′
t is the translated

observation by the generator.

The generator tries to generate a style that eventually increases the KL quantity. On the other hand,
the policy should learn to be robust toward such changes. The policy training described above
addresses this and tries to minimize the KL-divergence due to the style transfer, which eventually
allows robust policy learning and ultimately prevents the agent from overfitting irrelevant features
from the high-dimensional observation.

We build on the generator on previous works (Choi et al., 2018; Zhu et al., 2017) which is a unified
framework for a multi-domain image to image translation. The discriminator loss is

LD = −Ladv + λclsLr
cls, (4)

which consist of the adversarial loss Ladv and domain classification loss Lr
cls. The discriminator

detects a fake image generated by the generator G from the real image in the given class data.

On the other hand, the generator loss is

LG = Ladv + λclsLf
cls + λrecLrec − β2KL(πθ(.|xt), πθ(.|x′

t)) (5)

which consists of image translation components and policy component which is the KL-part. From
the translation side, the Ladv is adversarial loss with discriminator Lf

cls is the loss of detecting fake
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image. Finally, a cycle consistency loss Lrec (Choi et al., 2018; Zhu et al., 2017) is used which
makes sure the translated input can be translated back to the original input, thus only changing the
domain related part and not the semantic. Some more details of these losses can be found in the
supplementary materials.

Our addition to the generator objective is the KL-part in equation 5 which tries to challenge the RL
agent and fool its policy by providing a more challenging translation. However, the eventual goal
of this adversarial game is to help the agent to be robust to any irrelevant features in the observa-
tions. The hyperparameter β2 control the participation in the adversarial objective of the generator
network.

Now we discuss a practical RL algorithm based on the above objectives.

3.3 ARPO Algorithm

The training of the policy network and the generator network happen in an alternating way. First, the
policy is trained on a batch of replay buffer trajectory observation, and then the generator parameters
are updated based on the objectives discussed above. The more overall training progresses, the better
the generator at translating observation, and the policy also becomes better and becomes robust to
irrelevant style changes. For stable training, the input images data for the generator is kept fixed
initially, and we apply the GMM cluster only at the beginning to generate different class images
(distribution). The pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1 Adversarial Robust Policy Optimization (ARPO)

1: Initialize parameter vectors for policy network and generator network
2: for each iteration do
3: for each environment step do
4: at ∼ πθ(at|xt)
5: xt+1 ∼ P (xt+1|xt, at)
6: rt ∼ R(xt, at)
7: D ←− D ∪ {(xt, at, rt, xt+1)}
8: end for
9: for each observation xt in D do

10: x′
t ←− Generator(xt) // generate translated observation

11: Compute Lπ from data D using Equation 1, and 2 // update policy for RL objective
12: Compute Lθ using Equation 3 // update policy with adversarial KL part
13: Update generator by computing Equation 6, and 5
14: end for
15: end for

Discussion on convergence. The adversarial min-max KL component KL(πθ(.|xt), πθ(.|x′
t)) be-

come zero when the RL policy is optimal (π∗) and the generators only perturbs (translates) the
irrelevant part of all observations. In that case, the optimal policy only focuses on the relevant part
of the observations, that is, the true state; thus, any changes in irrelevant part due to style transfer
will be ignored. At that point the KL component become zero as the π∗

θ(.|xt) = π∗
θ(.|x′

t). Note that
in practice, the algorithm is usually trained for limited timesteps, and thus the adversarial training
might not converge to optimal. However, empirically we observe that our algorithm ARPO achieves
improved performance in many challenging Procgen and Distracting control suite tasks.

4 Experiments

4.1 Setup

Our experiments cover both discrete (Procgen) and continuous (Distracting control) action spaces
with image-based observation.

Procgen Environment. We evaluate our proposed agent ARPO on the challenging RL generaliza-
tion benchmark Procgen (Cobbe et al., 2020). We use the standard evaluation protocol from Cobbe
et al. (2020) where the agent is allowed to train on only 200 levels of each environment, with the
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difficulty level set as easy. Then the agents are tested over more than 100K levels, full distribution.
Thus, to better generalize to the test environment, the agent must master the skill and avoid overfit-
ting to spurious features in the training environment. This setup is in-distribution generalization as a
fixed number of train levels are randomly taken from an i.i.d level distribution. The observations are
raw pixel images, and the environment varies drastically between levels; some snippets are given in
Figure 3.

Figure 3: Some snippets of different Procgen environments (Cobbe et al., 2020). The training (seen) levels
vary drastically from the testing (unseen) environment. The agent must master the skill without overfitting
irrelevant non-generalizable aspects of the environment to perform better in unseen levels.

Distracting Control Suite Environment. The distracting control adds various visual distractions on
top of the Deepmind Control suite (Tassa et al., 2020) to facilitate the evaluation of generalization
performance. We experimented on two distracting settings, background (dynamic) and color for
easy difficulty mode. In the distracting background, videos played in the background, and for the
color distraction, the body of the robot color changes in different agent interactions. The train and
test environments differ by different distractions, such as separate videos for train and test. As the
agent has to use image-based observation, the distractions make the task challenging. This setup is
an out-of-distribution generalization as the test time videos differ from train videos and are unseen
during training. Some snippets of the environments can be found in Figure 4.

Baselines. We compare our algorithm with Proximal Policy Optimization (PPO), an on-policy al-
gorithm motivated by how we can quickly optimize our policy while staying close to the current
policy. PPO performs effectively in many RL benchmarks, which include the Procgen environments
(Cobbe et al., 2020). Furthermore, we evaluated our method with a data augmentation technique,
RAD (Laskin et al., 2020a) on Procgen environments. RAD is a plug-and-play module that can be
used with existing RL algorithms and shows effective empirical performance in complex RL bench-
marks, including some Procgen environments. In particular, we evaluated Cutout Color augmen-
tation technique which has shown better results in many Procgen environments compared to other
augmentation techniques evaluated in Laskin et al. (2020a). This augmentation is applied on top of
standard PPO. Note that our ARPO algorithm can be easily plugged in with these data augmentation-
based methods. However, in this paper, we evaluated how our ARPO agent performs even when no
augmentation is used. Furthermore, in the Distracting control suite, in addition to PPO, we compare
ARPO with Soft Actor-Critic (SAC) (Haarnoja et al., 2018) which is an off-policy algorithm that
optimizes a stochastic policy.

Implementation. We implemented our ARPO on the Ray RLlib framework (Liang et al., 2018)
and used a CNN-based model for the policy network for these experiments. For all the experiments
with ARPO, we set the β1 = β2 = 20 (in equation 3, and 5). The generator’s hyperparameters are
set to λcls = 1, and λrec = 10. Number of cluster is set to 3. Details of model configurations and
parameters are given in the Appendix.

Figure 4: Some snippets from Distracting control suite (Stone et al., 2021).
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Table 1: [Train Reward] Sample efficiency results on Procgen environments. The results are the
after training agents for 20M timesteps. The mean value and standard deviation are calculated across
3 random seed runs. ARPO achieves the best generalization results in many environments compared
to PPO and RAD. Best agent is in Bold.

Env ARPO (ours) PPO RAD
jumper 8.46 ± 0.22 8.41 ± 0.07 7.94 ± 0.47
bigfish 10.69 ± 2.26 8.19 ± 1.96 7.48 ± 0.61
climber 7.56 ± 0.58 6.85 ± 0.92 6.23 ± 0.63

caveflyer 6.78 ± 0.48 6.14 ± 1.05 5.12 ± 0.49
miner 10.62 ± 0.83 7.87 ± 1.13 6.59 ± 1.16

fruitbot 27.29 ± 0.68 27.26 ± 0.96 26.88 ± 0.35
leaper 4.47 ± 0.35 3.98 ± 1.06 2.72 ± 0.51
ninja 8.07 ± 0.35 8.08 ± 0.78 6.11 ± 0.82

dodgeball 5.34 ± 0.4 5.13 ± 0.51 3.8 ± 0.31
maze 9.09 ± 0.18 7.77 ± 0.59 6.26 ± 0.42

plunder 8.66 ± 1.05 9.55 ± 1.03 8.14 ± 2.0
starpilot 24.61 ± 3.16 26.17 ± 1.22 27.36 ± 3.13

heist 5.1 ± 0.26 4.7 ± 0.44 3.93 ± 0.5
coinrun 8.54 ± 0.68 9.57 ± 0.09 9.15 ± 0.24

bossfight 4.11 ± 1.04 6.87 ± 0.56 7.97 ± 0.82
chaser 2.51 ± 0.17 2.82 ± 0.55 2.5 ± 0.27

4.2 Procgen Results

Sample Efficiency. We evaluated and compared our agent on the sample efficiency during training.
This result shows how quickly our agent achieves a better score during training. Table 1 shows the
results after training for 20 million timesteps. Learning curve can be found in Appendix.

In many environments, we see our agent ARPO perform better than the baselines PPO and RAD.
These results show that despite optimizing for the generalization, our adversarial training helps the
ARPO agent learn a robust policy which is also better during training.

Generalization. The results in Figure 5 show the test results of ARPO and baselines PPO and
RAD on 16 Procgen environments with image observation. Overall, ARPO performs better in many
environments. We observe that, almost in half of the environments, our agent ARPO outperforms
both baselines. It also performs comparably in a few other environments. Note that in some envi-
ronments such as Ninja, Plunder, Chaser, Heist, all the agents fail to obtain a reasonable training
accuracy (Cobbe et al., 2020) and thus perform poorly during testing (generalization). This result

Figure 5: Generalization result learning curve. Test performance comparison on Procgen environments with
image observation. ARPO performs better in many environments where it outperforms the baselines. The
results are averaged over 3 seeds.
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Table 2: [Test Reward] Generalization results on Procgen environments. The results are the after
training agents for 20M timesteps. The mean value and standard deviation are calculated across 3
random seed runs. ARPO achieves the best generalization results in many environments compared
to PPO and RAD. Best agent is in Bold.

Env ARPO (ours) PPO RAD
jumper 5.65 ± 0.34 5.96 ± 0.05 5.95 ± 0.28
bigfish 2.92 ± 0.73 2.24 ± 0.57 2.48 ± 0.55
climber 4.73 ± 0.47 4.37 ± 0.44 3.95 ± 0.57

caveflyer 5.46 ± 0.21 4.77 ± 0.13 4.54 ± 0.52
miner 6.45 ± 0.33 5.95 ± 0.38 5.4 ± 0.33

fruitbot 24.51 ± 0.29 24.4 ± 1.57 25.02 ± 1.98
leaper 3.96 ± 0.47 4.14 ± 1.13 2.71 ± 0.25
ninja 5.89 ± 0.47 6.44 ± 0.59 5.06 ± 0.32

dodgeball 2.02 ± 0.18 2.0 ± 0.03 1.68 ± 0.25
maze 5.37 ± 0.41 4.79 ± 0.35 5.49 ± 0.03

plunder 6.38 ± 0.22 7.88 ± 0.83 7.22 ± 2.01
starpilot 21.86 ± 0.58 26.56 ± 4.0 27.28 ± 0.55

heist 1.9 ± 0.49 2.18 ± 0.57 2.16 ± 0.27
coinrun 7.01 ± 0.97 8.53 ± 0.15 7.93 ± 0.26

bossfight 2.88 ± 0.73 6.4 ± 1.3 7.17 ± 1.1
chaser 2.18 ± 0.02 2.85 ± 0.75 2.21 ± 0.06

shows that our proposed agent ARPO achieves a strong performance and reduces the generalization
gap compared to the tested baselines on generalization.

We further show how each agent achieves generalization during the entire timesteps. Consequently,
we compute the reward score achieved by each agent after training for 20 million timesteps. Finally
we report mean and standard deviation of these scores across 3 seed runs. The generalization results
are computed by evaluating the trained agents on test levels (full distribution). The performance
is computed by evaluating each agent for 10 random episode trials after a training interval of 10.
Table 2 shows the results comparison for all the agents on Procgen environments. Similar to the
previous discussion, we see that in many of the environments, our ARPO agents perform better than
the baselines. ARPO performs better than both the baselines in many environments.

4.3 Distracting Control Results

Figure 6 shows the results of ARPO and PPO on Walker walk environment from distracting control
suite. We observe that ARPO performs better compared to the baseline algorithm PPO in both

Figure 6: Sample efficiency (Train) and generalization (Test) results on Distracting control Walker walk envi-
ronments. The results are averaged over 3 seeds.

sample efficiency (train) and generalization (test) for background and color distraction. Note that
we observe large variance (standard deviation) in the results across the run, particularly in test time.
These results correspond to the benchmark results where Stone et al. (2021) also find comparatively
larger variance in reported results. In some cases (Figure 6b), the test performance surpasses the
corresponding timestep’s train reward. This scenario might happen because the videos for train

9



and test environments have different difficulties. Thus in some cases, the agent finds better test
performance than the training. However, our ARPO’s performance remains better during testing
compared to PPO. Further, ARPO (and PPO) performs better compared to the off-policy SAC in
both sample efficiency and generalizations in our settings. Detailed results are in Appendix.

Furthermore, results analysis for Cheetah run environment is in the Appendix.

4.4 Qualitative Analysis of Adversarial Style Transfer

In this section we discuss how the generator performs in generating adversarially translated obser-
vation during agent training. Figure 7, 8, and 9 show sample translation from the generator. Please
see the corresponding caption for detailed discussion. Some additional qualitative results are in the
Appendix.

Figure 7: Sample translation of generator on background distraction for Walker-walk environment from
Distracted Control Suite benchmark. We see that the translated observations retain the semantic that is the
robot pose while changing non-essential parts. Interestingly, we observe that the adversarial generator blackout
some non-essential parts of the translated images. This scenario might indicate that the min-max objective
between policy network and generator tries to recover the actual state from the observation by removing parts
irrelevant to the reward.

Figure 8: Sample translation of generator on four Procgen environments. We see that the generator retains
most of the game semantic while changing the background color and the texture of various essential objects.

5 Related Work

Data augmentation in RL. In recent time, many approaches have been proposed to address gen-
eralization challenges including various data augmentation approaches (Cobbe et al., 2019; Laskin
et al., 2020a; Kostrikov et al., 2020; Raileanu et al., 2020; Laskin et al., 2020b; Igl et al., 2019;
Osband et al., 2018; Lee et al., 2020; Wang et al., 2020; Zhang et al., 2021; Rahman & Xue, 2023)
have shown to improve generalization. The common theme of these approaches is to increase di-
versity in the training data; however, these perturbations are primarily performed in isolation of the
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Figure 9: Sample translation of generator during various training phases on background distraction for
Walker-walk environment from Distracted Control Suite benchmark. [Second row] We see that when trans-
lated back to the same cluster (in the second row), the generated images get some distortion (e.g., blackout
some parts), while the essential parts remain mostly intact. This scenario might be happening due to the reg-
ularization of the cycle consistency loss by the KL component in equation 5. [Third row] We see that the
translation to a different cluster generates images that changes the irrelevant parts while mostly keeping the
semantic intact. In both the second and third row, the translation gets better as time progresses, suggesting the
adaptation of both policy and generator networks due to the min-max objective.

RL reward function, which might change crucial aspects of the observation, resulting in sub-optimal
policy learning. In contrast, we propose a style transfer that tries to generate semantically similar
but different visual style observation to train a robust policy. Furthermore, our style perturbation
takes into account the reward signal from the policy.

Note that the base RL algorithm (e.g., PPO) in our ARPO method still uses the original observa-
tion from the environment while participating in adversarial objectives (see Figure 1). Thus, data
augmentation can be applied to the original observations before feeding them to the base RL algo-
rithm to potentially improve the base RL agent, as observed in many data augmentation techniques
discussed above.

The experiment setup of SVEA Hansen et al. (2021) is different because they assume no visual dis-
traction during training but distraction during test time. This scenario is in contrast to the benchmark
we are evaluating. In this paper, we are also evaluating the existence of distraction during training.

Style Transfer in RL. Many approaches have been proposed which use style transfer to improve
reinforcement learning algorithms. Gamrian & Goldberg (2019) use image-to-image translation
between domains to learn the policy in zero-shot learning and imitation learning setup. They use
different levels’ data and train unpaired GANs between two levels (domains), which requires access
to the annotated agent’s trajectory data in both source and target domains. Furthermore, Smith et al.
(2019) performs pixel-level image translation via CycleGAN to convert the human demonstration to
a video of a robot. These translated data can then be used to convert the human demonstration into a
video of a robot used to construct a reward function that helps learn complex tasks. However, their
CycleGAN operates on two predefined domains, human demonstration and robot video.

In contrast, we first automatically generate the domains using a clustering algorithm and then train
the style-translation generator. In our case, we do not need the information of levels; instead, we
automatically cluster the trajectory data based on visual features of the observations. Additionally,
our visual-based clustering may put observations from multiple levels into a cluster, potentially
preventing GAN from overfitting Gamrian & Goldberg (2019) to any particular environment levels.

Adversarial Approach in RL. Adversarial methods have been used in the context of reinforcement
learning to improve policy training. Li et al. (2021) proposes to combine data augmentation with
auxiliary adversarial loss to improve generalization. In particular, they use an adversarial discrimi-
nator to predict the label of the observation. However, they need to know the domain label, limiting
the applicability as it might not be available, and the number of labels might be large, for example,
in procedural generation. In contrast, we use an unsupervised clustering that automatically finds out
similar visual features later used for generator training. (Pinto et al., 2017b) use adversarial min-max
training to learn robust policy against forces/disturbances in the system (Pinto et al., 2017b). In addi-
tion, adversarial training has been used between two robots to improve object grasping (Pinto et al.,
2017a) and in the context of multi-agent self-play scenario (Heinrich & Silver, 2016). Zhang & Guo
(2021) generate adversarial examples for observations in a trajectory by minimizing the cumulative
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reward objective of the reinforcement learning agent. In contrast to these methods, we use adver-
sarial visual-based style-transfer of the observation to guide robust policy learning by enforcing the
policy to produce similar output action distributions.

Generalization in RL. Many methods have been proposed to reduce the generalization gap be-
tween training and unseen test environment in the context of reinforcement learning. State learning
approaches (Higgins et al., 2017; Agarwal et al., 2021a; Zhang et al., 2020) and auto-encoder based
latent state learning (Lange et al., 2012; Lange & Riedmiller, 2010; Hafner et al., 2019) with re-
construction loss have been proposed. The sequential structure in RL (Agarwal et al., 2021a) and
behavioral similarity between states (Zhang et al., 2020) to learn invariant states have been leveraged
to improve RL robustness and generalization. In contrast, we learn the invariant state by providing
the RL agent with an additional variant of the same observation while retaining the reward structure
using an adversarial max-min objective.

Our primary focus is to demonstrate how the adversarial style transfer helps learn a robust policy and
improves the robustness of the base RL policy used. Moreover, in our case, the final policy is still
trained using original observation. Thus this policy can be regularized using the method proposed
in DRAC (Raileanu et al., 2020). The general data augmentation can still be used on observation
before passing it to policy. Thus our method might be applied to many existing algorithms, including
data augmentation and regularization. Combining our method with these algorithms could improve
performance; investigating them can be an interesting avenue for future work.

6 Discussion

In summary, we proposed an algorithm, Adversarial Robust Policy Optimization (ARPO), to im-
prove generalization for reinforcement learning agents by removing the effect of overfitting in high-
dimensional observation space. Our method consists of a max-min game theoretic objective where
a generator is used to transfer the style of high-dimensional observation (e.g., image), thus perturb
original observation while maximizing the agent’s probability of taking a different action for the
corresponding input observation. In contrast, a policy network updates its parameters to minimize
the effect of such translation, thus being robust to the perturbation while maximizing the expected
future reward. We tested our approaches on Procgen and distracting control benchmarks in gener-
alization setup and confirmed the effectiveness of our proposed algorithm. Furthermore, empirical
results show that our method generalizes better in unseen test environments than the tested baseline
algorithms.

Note that the lack of visual diversity in the observation of the environment might result in poor
clustering, which eventually leads to a less challenging style translation by the adversarial generator.
However, in those scenarios, the reinforcement learning algorithms often perform well as the train
and test environment remain consistent (e.g., same background). Furthermore, this setup might
lead the agent to overfit the training environment, which results in the agent performing poorly
in a slightly different environment (Song et al., 2020; Zhang et al., 2018b). In this paper, we are
interested in the scenario where the train and test environment are visually different, which we think
is a more practical setup (Cobbe et al., 2020; Stone et al., 2021).
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Appendix

A Additional Procgen Results

Figure 10 shows the sample efficiency results for ARPO, PPO, and RAD.

B Additional Distracting Control Results

Comparison with SAC on Walker Walk. Results comparison on Distracting Control for ARPO, PPO,
and SAC are in Figure 11 (Walker walk).We see that ARPO (and PPO) perform better compared to
the SAC in both sample efficiency (train) and generalization (test) in these settings.

Results on Cheetah run with background distraction.

Results for ARPO and PPO on Cheetah run with background distraction are in Figure 12. We see
that both agents perform comparably in both background and color distraction. We observe similar
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Figure 10: Sample efficiency results. Train performance (learning curve) comparison on Procgen environ-
ments. Despite using perturbation on the observation, our agent ARPO outperforms the baselines in many
environments, thus achieving better sample efficiency during training. The results are averaged over 3 seeds.

Figure 11: Distracting control Walker walk environment results (including SAC). The results are averaged
over 3 seeds. (a, c) Sample efficiency (train) (b, d) Generalization (test).

results for both the agents in this setup of Cheetah run environments. Note that in this training
timestep the PPO agents perform poorly in the training and testing. The highest achievable reward
for this environment is much higher (see Stone et al. (2021)). Consequently the the ARPO agent
could not improve over the base algorithm PPO. This suggest that the base algorithm needs to trained
sufficiently to achieve any reasonable reward before we benefit of the adversarial training.

Figure 12: Distracting control Cheetah run environment results. The results are averaged over 3 seeds. (a, c)
Sample efficiency (train), and (b, d) Generalization (test).

Note that the resulting score is low compared to the reported results in the benchmark paper Stone
et al. (2021) which suggests the PPO itself could not learn helpful behavior in this environment.

Comparison with SAC on Cheetah Run Results comparison on Distracting Control for ARPO, PPO,
and SAC on Cheetah run are in Figure 13.
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Figure 13: Distracting control Cheetah run environment results (including SAC). The results are averaged
over 3 seeds. (a, c) Sample efficiency (train), and (b, d) Generalization (test).

(a) (b)

Figure 14: The results are averaged over 3 seeds. (a) Our ARPO agent’s results on different cluster numbers.
It improves generalization (test) performance with the increase in cluster number in the Climber environment.
(b) Our ARPO agent’s results on different β values which determine participation on adversarial optimization.

C Ablation Study and Hyperparameters

C.1 Hyperparameters of ARPO

We conduct a study on how ARPO agent’s performance varies due to its hyperparameters: (a) the
number of clusters generated by the GMM model for generator training, and (b) β1, β2 which
indicate the amount of participation of policy and generator in the adversarial objective.

Figure 14 shows the ablation results. We observe that our ARPO agent shows improvement in gener-
alization (test) performance with the increase in number of cluster on Climber environment (Figure
14a). As the number of cluster increase, the generator has more option to choose for translation, and
thus the policy might face a hard challenge and thus learn a more robust policy. In this paper, we
report the ARPO agent’s results on cluster n cluster = 3. On the other hand, and ablation results
on different β values are shown in Figure 14b. When β values are large the test performance goes
up; however, training performance suffer a bit. In this paper, we report the results on β1 = β2 = 20,
which shows a balance in train and test performance.

C.2 KL Regularization

Figure 15 shows the KL regularization results in different policy iteration on four Procgen environ-
ments. For each environment, we run the experiment and collect KL value (KL(πθ(.|xt), πθ(.|x′

t)))
for each policy iteration. To calculate moving average, we select a window size of 500 and the
standard deviation is calculated on these 500 values, and showed in the shaded area in Figure 15.
Results analysis is in the caption.
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Figure 15: KL regularization during RL training for four Procgen environments. At the beginning of the
training, both the policy and generator behave randomly or outputting same action for all the images; thus, the
KL values become nearly zero. Gradually, the KL started to increase as the policy learning progressed with
the adversarial generated observation. Eventually, the policy tries to adjust to the changes in the observation,
and the KL values become stable (bigfish) or going downward (jumper, and climber). We see that in fruitbot
environment, the values started to increase at the end, which suggests a possible divergence. This scenario
might be an explanation of why the generalization performance started to drop at the end in Figure 5, possible
overfitting. Thus this KL measure might be a tool to detect possible divergence and overfitting. However,
each environment’s stability cutoff time (policy iteration) is different, suggesting that the KL regularization
behavior might be different depending on the environment complexity. Ideally, with enough training, the KL
values should converge to zero (again) if the policy reaches optimal (for true MDP state) and the generator fully
recovers the true state from the observation and changes all the irrelevant information from the observation.
Note that we limit the policy to train until a cutoff time (20 Million RL timesteps).

D Additional Qualitative Results

Figure 16 shows sample translation from the generator on color distracted environments.

Figure 16: Sample translation of generator on color distraction for Walker-walk and Cheetah-run environ-
ments from Distracted Control Suite benchmark.

E Training Loss of StarGAN Generator

The adversarial loss is calculated as the Wasserstein GAN (Arjovsky et al., 2017) objective with
gradient penalty which is defined as

Ladv = Ex[Dsrc]− Ex,c[Dsrc(G(x, c))]

−λgpEx̂[(||∇x̂Dsrc(x̂)|| − 1)2],
(6)

where x̂ is sampled uniformly along a straight line between a pair of real and generated fake images.
Here, the gradient penalty helps to stabilize the GAN training process and has been shown to perform
better than traditional GAN training (Choi et al., 2018; Arjovsky et al., 2017; Gulrajani et al., 2017).
We set the hyperparameter λgp = 10.
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The classification loss of real image is defined as

Lr
cls = Ex,c′ [− logDcls(c

′|x)], (7)

where Dcls(c
′|x) is the probability distribution over all clusteer labels. Similarly, the classification

loss of fake generated image is defined as

Lf
cls = Ex,c[− logDcls(c|G(x, c))], (8)

The reconstruction loss with the generator objective defined as

Lrec = Ex,c,c′ [||x−G(G(x, c), c′)||1], (9)

where we use the L1 norm.

F Environment Details

Procgen We conducted experiments on OpenAI Procgen Cobbe et al. (2020) benchmark, consist-
ing of diverse procedurally-generated environments with different action sets. This environment
has been used to measure how quickly (sample efficiency) a reinforcement learning agent learns
generalizable skills. These environments greatly benefit from the use of procedural content gener-
ation, the algorithmic creation of a near-infinite supply of highly randomized content. The design
principles consist of high diversity, tunable difficulty, shared action, shared observation space, and
tunable dependence on exploration. Procedural generation logic directs the level layout and other
game-specific details. Thus, to master any of these environments, agents must learn an effective
policy across all environment variations. We use all 16 environments available in this benchmarks.

All environments use a discrete 15 dimensional action space which generates 64 × 64 × 3 RGB
image observations. Note that some environments may use no-op actions to accommodate a smaller
subset of actions.

G Implementation Details

Procgen Experiments For experimenting on Procgen environments, we used RLlib Liang et al.
(2018) to implement our ARPO, and baselines PPO and RAD cutour color algorithms. For all the
agents’ policy network (model), we use a CNN architecture used in IMPALA Espeholt et al. (2018)
which is the best performing model in Procgen benchmark (Cobbe et al., 2020). We use the same
policy parameters for all agents for a fair comparison.

Policy learning hyperparameter settings for all the agents (ARPO, PPO, and RAD) are set same
for fair comparison and detect the effect of our proposed method (max-min adversarial objective
with perturbation network). These hyperparameters are given in Table 3. Note that only the custom
parameters are given here, other defaults parameter values can be found in the RLlib library Liang
et al. (2018).

Distracting Control Experiments For experimenting on Distracting Control Suite (Stone et al.,
2021) environments, we used RLlib Liang et al. (2018) to implement our ARPO, and baselines PPO
and SAC algorithms. We use the PPO’s CNN-based policy network (model) from RLlib for ARPO,
and PPO. The policy specific parameters for ARPO, and PPO are the same which are given in Table
4.

For SAC, we use it’s CNN-based model available in RLlib. The policy specific parameters are given
in Table 5. Note that only the custom parameters for the RLlib implementation are given here, other
defaults parameter values can be found in the RLlib library Liang et al. (2018).

Computing details. We used the following machine configuration to run our experiments: 20 core-
CPU with 256 GB of RAM, CPU Model Name: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz,
and a Nvidia A100 GPU.

H Comparison with DRAC

Figure 17 shows comparison with DRAC Raileanu et al. (2020) on Procgen Maze environment. We
see that our method ARPO performs better in sample efficiency during training compared to DRAC.
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Table 3: Hyperparameters for Procgen (RLlib) Experiments
Description Hyperparameters

Discount factor of the MDP gamma : 0.999
The GAE(lambda) parameter lambda : 0.95

The default learning rate lr : 5.0e − 4
Number of epochs per train batch num sgd iter : 3

Total SGD batch size sgd minibatch size : 2048
Training batch size train batch size : 16384

Initial coefficient for KL divergence kl coeff : 0.0
Target value for KL divergence kl target : 0.01

Coefficient of the value function loss vf loss coeff : 0.5
Coefficient of the entropy regularizer entropy coeff : 0.01

PPO clip parameter clip param : 0.2
Clip param for the value function vf clip param : 0.2

Clip the global amount grad clip : 0.5
Default preprocessors deepmind
PyTorch Framework framework : torch
Settings for Model custom model : impala cnn torch
Rollout Fragment rollout fragment length : 256

Table 4: ARPO, and PPO Hyperparameters for Distracting Control Experiments
Description Hyperparameters

Number of epochs per train batch num sgd iter : 3
Total SGD batch size sgd minibatch size : 256
Training batch size train batch size : 8192

PyTorch Framework framework : torch

Figure 17: Training curve comparison with DRAC on Procgen Maze environment.

The results are averaged over 2 random seed runs. We further show final results after training agents
for 14M timesteps. Table 6 shows mean and standard deviation of results. For both the agents, the
returns are smoothed using standard exponential averaging to account for the performance in previ-
ous timesteps. We see that our agent ARPO performs better in final results in train return compared
to DRAC. On the other hand, both agents show similar mean values for test return. However, our
method ARPO shows a smaller variance (0.24) compared to DRAC’s high variance (1.38). These

Table 5: SAC Hyperparameters for Distracting Control Experiments
Description Hyperparameters

Training batch size train batch size : 512
Timesteps per iteration timesteps per iteration : 1000
Timesteps per iteration learning starts : 5000
PyTorch Framework framework : torch
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Table 6: Results on Maze after 14M timesteps.

Eval ARPO (ours) DRAC
Train 8.55± 0.29 7.82± 0.66
Test 5.24 ± 0.24 5.22± 1.38

Figure 18: Results comparison of ARPO on SAC agent in Distracting control Walker walk en-
vironment with background distraction. Our agent ARPO with SAC base algorithm performs
better in training in terms of train return. In test return, ARPO achieves slightly better gen-
eralization at the early timesteps and is similar in the rest of the timesteps.

results demonstrate that overall our ARPO algorithm shows effective results compared to DRAC
in the Procgen Maze environment. Note that in this setting DRAC uses tuned data augmentation
(see the DRAC paper Raileanu et al. (2020)) which is crop in case of maze. On the other hand, our
method does not assume any such set of data augmentation. Instead, our method tries to figure out
such perturbation on observation as the training progresses.

Setup. We implemented the DRAC method following the original paper Raileanu et al. (2020). In
particular, we incorporated policy and value function regularization following the implementation
details in the original DRAC implementation. For a fair comparison, we keep all other hyperparam-
eters the same as we did for all other experiments.

I ARPO on SAC

In this experiment, we investigate the use of our technique on a different RL algorithm than PPO.
We choose off-policy SAC to demonstrate the implication of our method. Following a similar setup
as the PPO base algorithm, we regularize the policy using the KL term in Equation 3. The RL part
and generator train together alternately, similar to the PPO base setup. We name this version of our
agent ARPO-SAC.

Figure 18 shows the results comparison on walker walk background distraction environment. Our
agent ARPO-SAC shows better sample efficiency than SAC only baseline. It also shows slightly
better generalization compared to SAC.

Note that PPO is an on-policy algorithm that directly learns the policy function. In contrast, SAC
is an off-policy method that learns Q-functions and then generates policy from them. Thus, we see
that policy gradient-based algorithms such as PPO better more amenable to being used with the
adversarial setup. However, for the off-policy-based method such as SAC, Q-functions learning can
be regularized with the KL-term, which might show an even better performance boost. However,
investigating them in detail can be interesting future work.

J DCS Results with rliable Metric

We use the probabilistic algorithm comparison metric from rliable Agarwal et al. (2021b). Figure
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Figure 19: Probability comparison in walker-walk DCS for two detractors: Background video and color. We
see that ARPO strongly outperforms PPO with a high probability, a chance of 50-100%.

19 compares ARPO and PPO on Walker walk DCS environments. In particular, we use two envi-
ronment setups: walker-walk color distraction and walker-walk background video distraction. The
probability in Figure 19 gives a range of probability values based on the performance of these al-
gorithms in several random seeds. In this experiment, we use 3 random seed runs for each agent in
each environment. Based on this metric, we see that ARPO strongly outperforms PPO with a high
probability, a chance from 50-100%. Overall, the results show ARPO improves performance over
PPO in this setup.

K Visual diversity in training environments

We conducted experiments to investigate visual diversity in training environments. Figure 20 shows
the results on Procgen Fruitbot environment. We increase the training environment by allowing the
agent to have more training levels. We choose Fruitbot due to its visual diversity (e.g., various back-
ground colors). For this setup, we choose different train levels 100, 200, and 500 during training
and test on a fixed full distribution. We follow this use of full distribution as the test in the original
Procgen benchmark papers Cobbe et al. (2020) and many baselines evaluated on this benchmark
Raileanu et al. (2020); Laskin et al. (2020a). Despite similar training performance, we observe that
the test performance improved for 500 levels compared to 200 and 100. Furthermore, the number

Figure 20: [Left] Some snippets of Procgen Fruitbot environmen. [Right] Performance comparison of various
train level.

of train levels 200 performs slightly better than 100 level in test score. However, the train results re-
main similar for all the agents. Note that one potential reason for improving the test performance (as
observed in Procgen paper Cobbe et al. (2020)). However, here we observe no such change in per-
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Figure 21: Comparison of our ARPO with RAD color jitter data augmentation. We see that
color jitter augmentation performs slightly better in train return. However, in generalization
(test return), our ARPO agent performs better, especially in the initial timesteps.

formance during training. Thus, the performance improvement might be due to diverge observation
styles during training for our ARPO agent.

L Comparison with color jitter data augmentation

Figure 21 shows results comparing our ARPO agent with color jitter data augmentation on a walker-
walk background distraction environment. We follow RAD Laskin et al. (2020a) approach to use
the data augmentation. In particular, the observation is augmented using color jitter and then pass it
to the agent. The results are averaged over 3 random seed runs. For a fair comparison, all the RL,
environment, and hyperparameters are kept the same as PPO and ARPO.
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