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Estimating the Unseen: Improved Estimators for Entropy
and Other Properties
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We show that a class of statistical properties of distributions, which includes such practically relevant

properties as entropy, the number of distinct elements, and distance metrics between pairs of distributions,

can be estimated given a sublinear sized sample. Specifically, given a sample consisting of independent draws

from any distribution over at most k distinct elements, these properties can be estimated accurately using

a sample of size O (k/ logk ). For these estimation tasks, this performance is optimal, to constant factors.

Complementing these theoretical results, we also demonstrate that our estimators perform exceptionally

well, in practice, for a variety of estimation tasks, on a variety of natural distributions, for a wide range

of parameters. The key step in our approach is to first use the sample to characterize the “unseen” portion

of the distribution—effectively reconstructing this portion of the distribution as accurately as if one had

a logarithmic factor larger sample. This goes beyond such tools as the Good-Turing frequency estimation

scheme, which estimates the total probability mass of the unobserved portion of the distribution: We seek

to estimate the shape of the unobserved portion of the distribution. This work can be seen as introducing

a robust, general, and theoretically principled framework that, for many practical applications, essentially

amplifies the sample size by a logarithmic factor; we expect that it may be fruitfully used as a component

within larger machine learning and statistical analysis systems.
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1 INTRODUCTION

What can one infer about an unknown distribution based on a random sample? If the distribution
in question is relatively “simple” in comparison to the sample size—for example, if our sample
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37:2 G. Valiant and P. Valiant

consists of 1,000 independent draws from a distribution supported on 100 domain elements—then
the empirical distribution given by the sample will likely be an accurate representation of the true
distribution. If, on the other hand, we are given a relatively small sample in relation to the size
and complexity of the distribution—for example, a sample of size 100 drawn from a distribution
supported on 1,000 domain elements—then the empirical distribution may be a poor approximation
of the true distribution. In this case, can one still extract accurate estimates of various properties
of the true distribution?

Many real-world machine-learning and data analysis tasks face this challenge; indeed there are
many large datasets where the data only represent a tiny fraction of an underlying distribution we
hope to understand. This challenge of inferring properties of a distribution given a “too small” sam-
ple is encountered in a variety of settings, including text data (typically, no matter how large the
corpus, around 30% of the observed vocabulary only occurs once), customer data (many customers
or website users are only seen a small number of times), the analysis of neural spike trains [35],
and the study of genetic mutations across a population.1 Additionally, many database manage-
ment tasks employ sampling techniques to optimize query execution; improved estimators would
allow for either smaller sample sizes or increased accuracy, leading to improved efficiency of the
database system (see, e.g., References [21, 30]).

We introduce a general and robust approach for using a sample to characterize the “unseen” por-
tion of the distribution. Without any a priori assumptions about the distribution, one cannot know
what the unseen domain elements are. Nevertheless, one can still hope to estimate the “shape” or
histogram of the unseen portion of the distribution—essentially, we estimate how many unseen do-
main elements occur in various probability ranges. Given such a reconstruction, one can then use it
to estimate any property/functional of the distribution that only depends on the shape/histogram;
such properties are termed symmetric and include entropy and support size. In light of the long
history of work on estimating entropy by the neuroscience, statistics, computer science, and infor-
mation theory communities, it is compelling that our approach (which is agnostic to the property
in question) outperforms these entropy-specific estimators (see Section 3).

Additionally, we extend this intuition to develop estimators for properties of pairs of distribu-
tions, the most important of which are the distance metrics. We demonstrate that our approach can
accurately estimate the total variational distance (also known as statistical distance or �1 distance)
between distributions using small samples. To illustrate the challenge of estimating variational
distance (between distributions over discrete domains) given small samples, consider drawing two
samples, each consisting of 1,000 draws from a uniform distribution over 10,000 distinct elements.
Each sample can contain at most 10% of the domain elements, and their intersection will likely
contain only 1% of the domain elements; yet from this, one would like to conclude that these two
samples must have been drawn from nearly identical distributions.

For clarity, we summarize the performance guarantees of our approach in terms of the following
three concrete and practically relevant questions, each defined with respect to an arbitrarily small
constant error parameter ϵ > 0:

• Distinct Elements: Given n buckets, each of which contains one object that is not nec-
essarily distinct from those in the other buckets, how many buckets must one inspect to
estimate the total number of distinct objects to within ±ϵn, with high probability?

• Entropy Estimation: Given a sample obtained by taking independent draws from a dis-
tribution, p, of support size at most k, how large does the sample need to be to estimate

1For example, three different 2012 studies found that rare genetic mutations are especially abundant in humans and ob-

served that better statistical tools are needed to characterize this “rare events” regime. A better understanding of these

distributions of rare mutations would shed light on our evolutionary process and selective pressures [25, 29, 38].
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the entropy of the distribution, H (p) := −∑
x :p (x )>0 p (x ) logp (x ), to within ±ϵ , with high

probability?
• Distance: Given two samples obtained by taking independent draws from two distribu-

tions, p1,p2 of support size at most k , how large do the samples need to be to estimate the
total variation distance between the distributions (also referred to as �1 distance or “sta-
tistical distance”), Dtv (p1,p2) = 1

2

∑
x :p1 (x )+p2 (x )>0 |p1 (x ) − p2 (x ) |, to within ±ϵ, with high

probability?

We show that our approach performs the above three estimation tasks when given a sample

(or two samples in the case of distance estimation) of size n = O ( k
log k

), where the constant is

dependent on the error parameter ϵ . This performance is information theoretically optimal to
constant factors, as shown in Reference [39]. Prior to this work, no explicit estimators were known
to solve any of these problems using samples of size o(k ), even for ϵ = 0.49. See Section 1.4 for
formal statements of our more general result on recovering a representation of the distribution,
from which the estimation results follow immediately.

1.1 Previous Work: Estimating Distributions and Estimating Properties

There is a long line of work on inferring information about the unseen portion of a distribution,
beginning with independent contributions from both R. A. Fisher and Alan Turing during the
1940s. Fisher was presented with data on butterflies collected over a 2-year expedition in Malaysia
and sought to estimate the number of new species that would be discovered if a second 2-year
expedition were conducted [17]. (His answer was “≈75.”) This question was later revisited by I. J.
Good and Toulmin [18], who offered a nonparametric alternative to Fisher’s parametric model. At
nearly the same time, as part of the British WWII effort to understand the statistics of the German
enigma ciphers, Turing and Good were working on the related problem of estimating the total
probability mass accounted for by the unseen portion of a distribution [19, 37]. This resulted in
the Good-Turing frequency estimation scheme, which continues to be employed, analyzed, and
extended (see, e.g., References [26, 32, 33, 46, 47]).

More recently, in similar spirit to this work, Orlitsky et al. [2, 31] posed the following natu-
ral question: Given a sample, what distribution maximizes the likelihood of seeing the observed
species frequencies, that is, the number of species observed once, twice, and so on? (What Orlitsky
et al. term the pattern of a sample, we call the fingerprint, as in Definition 1.1.) Orlitsky et al. show
that such likelihood maximizing distributions can be found in some specific settings, though the
problem of finding or approximating such distributions for typical patterns/fingerprints may be
difficult. Recently, Acharya et al. showed that this maximum likelihood approach can be used to
yield a near-optimal algorithm for deciding whether two samples originated from identical distri-
butions versus distributions that have large distance [1].

In contrast to this approach of trying to estimate the “shape/histogram” of a distribution, there
has been nearly a century of work proposing and analyzing estimators for particular properties
(functionals) of distributions. A large portion of this literature focuses on analyzing the asymptotic
consistency and distribution of natural estimators, such as the “plug-in” estimator or variants
thereof (e.g., References [3, 5]. In Section 3, we describe several standard, and some recent,
estimators for entropy, though we refer the reader to Reference [35] for a thorough treatment.
There is also a large literature on the “unseen species” problem and the closely related “distinct
elements” problem, including the efforts of Efron and Thisted to estimate the total number of
words that Shakespeare knew (though might not have used in his extant works) [16]. Much of
this work is based heavily on heuristic arguments or strong assumptions on the true distribution
from which the sample is drawn and thus lies beyond the scope of our work; we refer the reader
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to Reference [12] and to Reference [11] for several hundred references. We end Section 3 by
demonstrating that our approach can accurately estimate the total number of distinct words that
appear in Hamlet based on a short contiguous passage from the text.

Since the early 2000s, the theoretical computer science community has spent significant ef-
fort developing estimators and establishing worst-case information-theoretic lower bounds on the
sample size required for various distribution estimation tasks, including entropy and support size
(e.g., [4, 6–10, 14, 20, 44]). In contrast to the more traditional analysis of asymptotic rates of con-
vergence for various estimators, this body of work aims to provide tight bounds on the sample
size required to ensure that, with high probability over the randomness of the sampling, a desired
error is achieved.

1.2 Subsequent Work

Subsequent to the initial dissemination of the preliminary versions of this work, there have been
several relevant followup works. The approach of this work—namely to use the sample to recover
a representation of the true distribution and then return the desired property value of the recov-
ered distribution—is quite different from the more typical approach towards property estimation.
The vast majority of estimators for entropy, for example, are linear functions of the summary
statistics of the sample, F1,F2, . . . , where Fi denotes the number of domain elements that occur
exactly i times in the sample. For example, the plug-in estimator is the linear estimator

∑
i ciFi

for ci = − i
n

log i
n

and the “best-upper bound” estimator of Paninski can be viewed as an effort
to heuristically find the “best” coefficients ci [35]. The work of this current article prompted the
question of whether there exist near optimal linear estimators or whether the more powerful com-
putation involved in the estimators of this work are necessary to achieving constant-factor optimal
entropy estimation. In Reference [41], we showed that, for a broad class of properties (function-
als) of distributions, there are constant factor optimal linear estimators. Similar results were also
independently obtained more recently [23, 48].

Despite the comparable theoretical performance for entropy estimation of the approach of
this work, and the subsequent linear estimators of References [23, 41, 48], the approach of this
work seems to yield superior performance in practice, particularly in the “hard” regime in which
the sample size is smaller than the true support size of the distribution. The proof approach of
Reference [41] provides some explanation for this disparity in performance: The linear estimators
of Reference [41] are (roughly) defined as duals (via linear programming duality) to the worst-case
instances for which entropy estimation is hardest. In this sense, the linear estimators are catering
to worst-case instances. In contrast, the approaches of this current work are not based on worst-
case instances (though also achieve constant factor optimal minimax error rates) and hence might
perform better on more typical “easy” instances. Additionally, it should be stressed that this ap-
proach also yields a histogram representation (i.e., an unlabeled representation) of the distribution
from which the sample is drawn. Such a representation can be used to reveal many further aspects
of the distribution, beyond estimating the value of a specific property.

The approach of this article—to recover the unlabeled histogram representation of the
distribution—is also useful for tasks that depend on the labels of the domain elements. In
Reference [43], the authors consider the problem of learning an arbitrary distribution over a dis-
crete support and develop an “instance optimal” algorithm that de-noises the empirical distribution
of a set of samples, whenever such a denoising is possible. Specifically, given n i.i.d. samples from
any discrete distribution, the learning algorithm outputs a labeled vector whose expected �1 dis-
tance to the true distribution is at most a factor of 1 + on (1) worse than the minimal expected error
that is achievable by any algorithm that takes as input the set of samples and is agnostic among
relabelings of the domain. One of the components of that algorithm is a slight strengthening of
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the histogram recovery algorithm of this work that removes the requirement that the samples be
drawn from a distribution of bounded support size. Among other consequences, that result implies
the following clean result: given n i.i.d. samples from any discrete distribution, one can accurately
estimate the number of new domain elements that will be observed in a second set of samples of
size up to Θ(n logn). This result was independently and simultaneously obtained by Reference [34]
via a linear estimator.

On the practical side, an adaptation of this approach of recovering the histogram was applied
to a large dataset of 60,000 human genomes to understand the relative frequencies of unobserved
genetic mutations of various types (synonymous, missense, and medically relevant mutations such
as loss-of-function mutations) [50]. Additionally, this recovered histogram allowed us to quantify
the value of sequencing additional genomes by making accurate predictions regarding the number
of new mutations of these various types that would likely be observed in larger sequenced cohorts.

1.3 Definitions and Examples

We begin by defining the fingerprint of a sample, which essentially removes all the label-
information from the sample. For the remainder of this article, we will work with the fingerprint
of a sample rather than the with the sample itself.

Definition 1.1. Given a sample X = (x1, . . . ,xn ), the associated fingerprint, F = (F1,F2, . . .), is
the “histogram of the histogram” of the sample. Formally, F is the vector whose ith component,
Fi , is the number of elements in the domain that occur exactly i times in sample X .

For estimating entropy, or any other property whose value is invariant to relabeling the distri-
bution support, the fingerprint of a sample contains all the relevant information (see Reference [9],
for a formal proof of this fact). We note that in some of the literature, the fingerprint is alternately
termed the pattern, histogram, histogram of the histogram, or collision statistics of the sample.

In analogy with the fingerprint of a sample, we define the histogram of a distribution, a repre-
sentation in which the labels of the (finite or countably infinite) domain have been removed.

Definition 1.2. The histogram of a distribution p, with a finite or countably infinite support,
is a mapping hp : (0, 1]→ N ∪ {0}, where hp (x ) is equal to the number of domain elements that
each occur in distribution p with probability x . Formally, hp (x ) = |{α : p (α ) = x }|, where p (α ) is
the probability mass that distribution p assigns to domain element α .We will also allow for “gen-
eralized histograms” in which hp does not necessarily take integral values.

Since h(x ) denotes the number of elements that have probability x , we have
∑

x :h (x )�0 x · h(x ) =
1, as the total probability mass of a distribution is 1.

Definition 1.3. Let D denote the set of all distributions and Dk denote the set of distributions
over the domain [k] = {1, . . . ,k }.

Definition 1.4. A symmetric distribution property π : D → R is a function that depends only on
the histogram of the distribution and hence is invariant to permuting the labels of the domain.

Both entropy and support size are symmetric distribution properties as follows:

• The Shannon entropy H (p) of a distribution p is defined to be

H (p) := −
∑

α ∈sup (p )

p (α ) log2 p (α ) = −
∑

x :hp (x )�0

hp (x )x log2 x .

• The support size is the number of domain elements that occur with positive probability:

|sup (p) | := |{α : p (α ) > 0}| =
∑

x :hp (x )�0

hp (x ).
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We provide an example to illustrate the above definitions:

Example 1.5. Consider a sequence of animals, obtained as a sample from the distribution of
animals on a certain island,X = (mouse,mouse,bird, cat ,mouse,bird,bird,mouse,doд,mouse ). We
have F = (2, 0, 1, 0, 1), indicating that two species occurred exactly once (cat and dog), one species
occurred exactly 3 times (bird), and one species occurred exactly 5 times (mouse).

Consider the following distribution of animals:

Pr (mouse ) = 1/2, Pr (bird ) = 1/4, Pr (cat ) = Pr (doд) = Pr (bear ) = Pr (wol f ) = 1/16.

The associated histogram of this distribution is h : (0, 1]→ Z defined by h(1/16) = 4, h(1/4) = 1,
h(1/2) = 1, and for all x � {1/16, 1/4, 1/2}, h(x ) = 0.

Our main theorem will apply to any symmetric distribution property that is sufficiently con-
tinuous with respect to changes in the distribution. To formalize this notion, we now define what
it means for two distributions to be “close.” In particular, distributions that are close under the
following metric will have similar histograms and hence similar values of entropy, support size,
and other symmetric properties.

Definition 1.6. For two distributions p1,p2 with respective histograms h1,h2, we define the rel-
ative earthmover distance between them, R (p1,p2) := R (h1,h2), as the minimum over all schemes
of moving the probability mass of the first histogram to yield the second histogram of the cost
of moving that mass, where the per-unit mass cost of moving mass from probability x to y is
| log(x/y) |. Formally, for x ,y ∈ (0, 1], the cost of moving x · h(x ) units of mass from probability x
to y is x · h(x ) | log x

y
|.

One can also define the relative earthmover distance via the following dual formulation (given
by the Kantorovich-Rubinstein theorem [24], though it can be intuitively seen as exactly what one
would expect from linear programming duality):

R (h1,h2) = sup
f ∈R

∑
x :h1 (x )+h2 (x )�0

f (x ) · x (h1 (x ) − h2 (x )) ,

where R is the set of differentiable functions f : (0, 1]→ R, s.t. | d
dx

f (x ) | ≤ 1
x

.
We provide a clarifying example of the above definition:

Example 1.7. Let p1 = Uni f [m], p2 = Uni f [�] be the uniform distributions overm and � distinct
elements, respectively. R (p1,p2) = | logm − log � |, since we must take all the probability mass at
probability x = 1/m in the histogram corresponding to p1, and move it to probability y = 1/�, at a
per-unit mass cost of | log m

� | = | logm − log � |.

As mentioned above, relative earthmover distance is the metric through which we state our
main results describing how, given a sample from a distribution p, we can reconstruct a distribu-
tion p̂ that approximates p (namely, R (p, p̂) is small). To motivate our choice of relative earthmover
distance, we note that relative earthmover distance is independent of element relabeling and es-
sentially declares two distributions close if the multiset of probabilities with which the elements of
one distribution occur can be approximately matched to the multiset of the second distribution—
with a logarithmically increasing cost of matching up more distant probabilities. Example 1.7 above
shows that the logarithmic weighting means that the relative earthmover distance between two
uniform distributions is exactly their difference in entropy. Further, relative earthmover distance
is similar to a label-invariant modification of the �1 distance between two distributions, where the
labels of the supports of the distributions are permuted to minimize the resulting �1 distance. The
following fact, whose elementary proof is given in Reference [43] characterizes this relationship:
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Fact 1 (Fact 1 in Reference [43]). Given two distributionsp1,p2, supported on the integers, there
exists a relabeling π of the support of p2 such that

1

2

∑
i

��p1 (i ) − p2 (π (i ))�� ≤ R (p1,p2).

Minor variants of the | log x
y
| weighting in Definition 1.6 would not significantly affect the anal-

ysis, though the logarithm is a simple and natural choice.
Throughout, we will restrict our attention to properties that satisfy a weak notion of continuity,

defined via the relative earthmover distance.

Definition 1.8. A symmetric distribution property π is (ϵ,δ )-continuous if for all distributions
p1,p2 with respective histograms h1,h2 satisfying R (h1,h2) ≤ δ it follows that |π (p1) − π (p2) | ≤ ϵ .

We note that both entropy and support size are easily seen to be continuous with respect to the
relative earthmover distance.

Fact 2. For a distribution p ∈ Dk , and δ > 0

• The entropy,H (p) := −∑
i p (i ) · logp (i ) is (δ ,δ )-continuous, with respect to the relative earth-

mover distance.
• The support size |sup (p) | := |{i : p (i ) > 0}| is (nδ ,δ )-continuous, with respect to the relative

earthmover distance, over the set of distributions which have no probabilities in the interval
(0, 1

n
).

As we will see in Example 1.10 below, the fingerprint of a sample is intimately related to the
Binomial distribution; the theoretical analysis will be greatly simplified by reasoning about the
related Poisson distribution, which we now define:

Definition 1.9. We denote the Poisson distribution of expectation λ as Poi (λ) and write

poi (λ, j ) := e−λ λ j

j ! to denote the probability that a random variable with distribution Poi (λ) takes

value j.

Example 1.10. Let D be the uniform distribution with support size 1,000. Then hD (1/1,000) =
1,000, and for all x � 1/1,000, hD (x ) = 0. Let X be a sample consisting of 500 independent draws
fromD. Each element of the domain, in expectation, will occur 1/2 times inX , and thus the number
of occurrences of each domain element in the sampleX will be roughly distributed as Poi (1/2)—of
course, the exact distribution will be Binomial (500, 1/1,000). By linearity of expectation, the ex-
pected fingerprint satisfies E[Fi ] ≈ 1000 · poi (1/2, i ). Thus we expect to see roughly 303 elements
once, 76 elements twice, 13 elements 3 times, and so on, and, in expectation, 607 domain elements
will not be seen at all.

1.4 Statement of Main Theorems

Our main theorem guarantees the performance of a novel algorithm for approximating an arbitrary
unknown discrete distribution given a sample whose size is sublinear in the support size of the
distribution. The performance is described in terms of the relative earthmover distance metric R
(Definition 1.6), which is a distance metric between distributions that captures the similarity of
distribution up to relabeling the supports and has the property that two distributions that are close in
relative earthmover distance have similar values of entropy, support size, and other well-behaved
symmetric properties.

Theorem 1.11. There exist absolute positive constants α , β such that for any c > 0 and any k > kc

(where kc is a constant dependent on c), given a sample of size n = c k
log k

consisting of independent

Journal of the ACM, Vol. 64, No. 6, Article 37. Publication date: October 2017.



37:8 G. Valiant and P. Valiant

draws from a distribution p ∈ Dk , with probability at least 1 − e−kα
over the randomness in the

selection of the sample, our algorithm returns a distribution p̂ such that

R (p, p̂) ≤ β
√
c
.

In other words, for any desired accuracy, ϵ > 0, up to constant factors, a sample of size k
ϵ 2 log k

is

sufficient to estimate the histogram of any distribution supported on at most k elements. While our
results are stated in terms of the error ϵ and an upper bound on the support size, k , the algorithm
does not depend on either of these parameters and is given only the sample as input; hence both
Theorem 1.11 and its corollaries below can naturally be interpreted as bounds on convergence
rates.

In subsequent work [43], essentially the same algorithm was shown to obtain an analogous
result in the more general setting where there is no bound (k) on the support size of the distribution
in question. Instead, the theorem (Theorem 2 in References [43]) shows that given n independent
draws, the algorithm will accurately recover the portion of the histogram corresponding to the
probability values larger than Ω(n/ logn).

For estimating entropy and the support size, Theorem 1.11 together with Fact 2 yields the fol-
lowing:

Corollary 1.12. There exist absolute positive constantsα ,γ such that for any positive ϵ < 1, there

exists kϵ such that for any k > kϵ , given a sample of size at least
γ

ϵ 2
k

log k
drawn from any p ∈ Dk , our

estimator will output a pair of real numbers (Ĥ , Ŝ ) such that with probability at least 1 − e−kα

• Ĥ is within ϵ of the entropy of p, and

• Ŝ is within kϵ of the support size of p, provided none of the probabilities in p lie in (0, 1
k

).

For the distinct elements problem, the above corollary implies that by randomly selecting (with

replacement)
γ

ϵ 2
k

log k
buckets to inspect, our algorithm will return an estimate of the number of

distinct elements accurate to within ±ϵk , with probability of failure at most e−kα
.

These estimators have the optimal dependence on k , up to constant factors. We show the fol-
lowing information theoretic lower bounds in Reference [39]:

Theorem. There exists a constant c and integer k0 such that for any k ≥ k0, no estimator has the

property that, when given a sample of size c k
log k

drawn from any p ∈ Dk , it can estimate the entropy

of p to within accuracy ± log 2
2 with probability of success at least 0.51. The analogous statement holds

for estimating the support size to ±k
4 , for distributions p ∈ Dk such that for all i , p (i ) � (0, 1

k
).

Phrased differently, let S denote a sample of size n, with S ←
n
p denoting the process of assigning

a sample of size n via independent draws from p ∈ Dk , and let Ĥ : [k]n → R denote an arbitrary
estimator that maps a sample S to an estimate of the entropy of the distribution from which the

sample was drawn. The above theorem states that there exists a constant c such that for n = c k
log k
,

inf
Ĥ

sup
p∈Dk

Pr
S←

n
p

[
|Ĥ (S ) − H (p) | > log 2

2

]
> 0.49,

where the infimum is taken over all possible estimators.
Our entire estimation framework generalizes to estimating properties of pairs of distributions.

As in the setting described above for properties of a single distribution, given a pair of samples
drawn independently from two (possibly different) distributions, we can characterize the perfor-
mance of our estimators in terms of returning a representation of the pair of distributions. For
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clarity, we state our performance guarantees for estimating total variation distance (�1 distance);
see Theorem 5.6 in Section 5 for the more general formulation.

Theorem 1.13. There exist absolute positive constants α ,γ such that for any positive ϵ < 1, there

exists kϵ such that for any k > kϵ , given a pair of samples of size n =
γ

ϵ 2
k

log k
drawn independently,

respectively, from p,q ∈ Dk , our estimator will output a number d̂ such that with probability at least

1 − e−kα

|d̂ − Dtv (p,q) | ≤ ϵ,

where Dtv (p,q) =
∑

i
1
2 |p (i ) − q(i ) | is half the �1 distance between distributions p and q.

In Reference [39], we show that the above performance is optimal in its dependence on k , up to
constant factors:

Theorem. There exist a constant c and integer k0 such that for any k > k0, no estimator, when

given a pair of samples of size c k
log k

drawn from any p,q ∈ Dk can estimate Dtv (p,q) to within

accuracy ±0.49 with probability of success at least 0.51.

1.5 Outline

In Section 2, we motivate and describe our approach of posing the inverse problem “given a sample,
what is the histogram of the distribution from which it was drawn” as an explicit optimization
problem. We show, perhaps surprisingly, that we can capture the essential features of this problem
via a linear program—rendering it both computationally tractable, as well as amenable to a rich set
of analysis tools. Furthermore, our general linear program formulation allows for considerable
flexibility in tailoring both the objective function and constraints for specific estimation tasks.

In Section 3, we illustrate the performance and robustness of our approach for several estimation
tasks on both synthetic, and real data. Section 4 summarizes the structure and main components of
the proof of Theorem 1.11. Section 5 describes how to extend our approach to the two distribution
setting, which yields our results for estimating the total variation distance between pairs of dis-
tributions, Theorem 1.13. Section 6 gives a self-contained proof of Theorem 1.11. The proof of our
two-distribution analog of Theorem 1.13 closely parallels the proof in the one distribution setting,
and we defer this proof to Appendix A. Appendix B contains some additional empirical results
demonstrating that the performance of our approach is robust to different implementation deci-
sions and choices of parameters. Appendix C provides a Matlab implementation of our approach,
which was used to produce our empirical results.

2 ESTIMATING THE UNSEEN

Given the fingerprint F of a sample of size n, drawn from a distribution with histogram h, our
high-level approach is to find a histogram h′ that has the property that if one were to take n
independent draws from a distribution with histogram h′, the fingerprint of the resulting sample
would be similar to the observed fingerprint F . The hope is then that h and h′ will be similar and,
in particular, have similar entropies, support sizes, and so on.

As an illustration of this approach, suppose we are given a sample of size n = 500, with finger-
print F = (301, 78, 13, 1, 0, 0, . . .); recalling Example 1.10, we recognize that F is very similar to
the expected fingerprint that we would obtain if the sample had been drawn from the uniform
distribution over support 1, 000. Although the sample only contains 391 unique domain elements,
one might be inclined to conclude that the true distribution is close to the uniform distribution
over 1,000 elements, and the entropy is roughly H (Uni f (1, 000)) = log2 (1, 000), for example. Our
results show that this intuition is justified, and rigorously quantify the extent to which such rea-
soning may be applied.
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37:10 G. Valiant and P. Valiant

In general, how does one obtain a “plausible” histogram from a fingerprint in a principled fash-
ion? We must start by understanding how to obtain a plausible fingerprint from a histogram.

Given a distribution D, and some domain element α occurring with probability x = D (α ),
the probability that it will be drawn exactly i times in n independent draws from D is
Pr [Binomial (n,x ) = i] ≈ poi (nx , i ). By linearity of expectation, the expected ith fingerprint entry
will roughly satisfy

E[Fi ] ≈
∑

x :hD (x )�0

h(x )poi (nx , i ). (1)

This mapping between histograms and expected fingerprints is linear in the histogram, with coeffi-
cients given by the Poisson probabilities. Additionally, it is not hard to show thatVar [Fi ] ≤ E[Fi ],
and thus the fingerprint is tightly concentrated about its expected value. This motivates a “first mo-
ment” approach. We will, roughly, invert the linear map from histograms to expected fingerprint
entries, to yield a map from observed fingerprints, to plausible histograms h′.

There is one additional component of our approach. For many fingerprints, there will be a
large space of equally plausible histograms. To illustrate, suppose we obtain fingerprint F =
(10, 0, 0, 0, . . .) and consider the two histograms given by the uniform distributions with respec-
tive support sizes 10,000, and 100,000. Given either distribution, the probability of obtaining the
observed fingerprint from a set of 10 samples is > .99, yet these distributions are quite different
and have very different entropy values and support sizes. They are both very plausible—which
distribution should we return?

To resolve this issue in a principled fashion, we strengthen our initial goal of “returning a his-
togram that could have plausibly generated the observed fingerprint”: We instead return the sim-
plest histogram that could have plausibly generated the observed fingerprint. Recall the example
above, where we observed only 10 distinct elements, but to explain the data, we could either infer
an additional 9,990 unseen elements or an additional 99,990. In this sense, inferring “only” 9,990
additional unseen elements is the simplest explanation that fits the data, in the spirit of Occam’s
razor.2

2.1 The Algorithm

We pose this problem of finding the simplest plausible histogram as a pair of linear programs. The
first linear program will return a histogramh′ that minimizes the distance between its expected fin-

gerprint and the observed fingerprint, where we penalize the discrepancy between Fi and E[F h′
i ]

in proportion to the inverse of the standard deviation of Fi , which we estimate as 1/
√

1 + Fi , since
Poisson distributions have variance equal to their expectation. The constraint that h′ corresponds
to a histogram simply means that the total probability mass is 1, and all probability values are
nonnegative. The second linear program will then find the histogram h′′ of minimal support size,
subject to the constraint that the distance between its expected fingerprint, and the observed fin-
gerprint, is not much worse than that of the histogram found by the first linear program.

To make the linear programs finite, we consider a fine mesh of values x1, . . . ,x� ∈ (0, 1] that
between them discretely approximate the potential support of the histogram. The variables of
the linear program, h′1, . . . ,h

′
�

will correspond to the histogram values at these mesh points, with
variable h′i representing the number of domain elements that occur with probability xi , namely
h′(xi ).

2The practical performance seems virtually unchanged if one returns the “plausible” histogram of minimal entropy instead

of minimal support size (see Appendix B).
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A minor complicating issue is that this approach is designed for the challenging “rare events”
regime, where there are many domain elements each seen only a handful of times. By contrast if
there is a domain element that occurs very frequently, say, with probability 1/2, then the number of
times it occurs will be concentrated about its expectation of n/2 (and the trivial empirical estimate
will be accurate), though fingerprint Fn/2 will not be concentrated about its expectation, as it
will take an integer value of 0, 1, or 2. Hence we will split the fingerprint into the “easy” and
“hard” portions and use the empirical estimator for the easy portion, and our linear programming
approach for the hard portion. The full algorithm is below (see our websites or Appendix C for
Matlab code).3

Algorithm 1. Estimate Unseen

Input: Fingerprint F = F1, F2, . . . , Fm, derived from a sample of size n,

vector x = x1, . . . , x� with 0 < xi ≤ 1, and error parameter δ > 0.

Output: List of pairs (y1, h′y1
), (y2, h′y2

), . . . , with yi ∈ (0, 1], and h′yi
≥ 0.

• Initialize the output list of pairs to be empty, and initialize a vector F ′ to be equal to F .

• For i = 1 to n,

◦ If
∑

j∈{i−�
√

i�, . . .,i+�
√

i�} Fj ≤ 2
√

i (i.e., if the fingerprint is “sparse” at index i )

Set F ′i = 0, and append the pair (i/n, Fi ) to the output list.4

• Let vopt be the objective function value returned by running Linear Program 1 on input F ′, x .

• Let h be the histogram returned by running Linear Program 2 on input F ′, x, vopt , δ .

• For all i s.t. hi > 0, append the pair (xi , hi ) to the output list.

Linear Program 1. Find Plausible Histogram

Input: Fingerprint F = F1, F2, . . . , Fm, derived from a sample of size n,

vector x = x1, . . . , x� consisting of a fine mesh of points in the interval (0, 1].

Output: vector h′ = h′1, . . . , h′
�
, and objective value vopt ∈ R.

Let h′1, . . . , h′
�

and vopt be, respectively, the solution assignment, and corresponding objective function value of

the solution of the following linear program, with variables h′1, . . . , h′
�
:

Minimize:

m∑
i=1

1
√

1 + Fi

�������Fi −
�∑

j=1

h′j · poi (nx j, i )

�������
Subject to:

∑�
j=1 x j h′j =

∑
i Fi /n, and ∀j, h′j ≥ 0.

Linear Program 2. Find Simplest Plausible Histogram

Input: Fingerprint F = F1, F2, . . . , Fm, derived from a sample of size n,

vector x = x1, . . . , x� consisting of a fine mesh of points in the interval (0, 1],

optimal objective function value vopt from Linear Program 1, and error parameter δ > 0.

Output: vector h′ = h′1, . . . , h′
�
.

Let h′1, . . . , h′
�

be the solution assignment of the following linear program, with variables h′1, . . . , h′
�
:

Minimize:
∑�

j=1 h′j Subject to:
∑m

i=1
1√

1+Fi

���Fi −
∑�

j=1 h′j · poi (nx j , i )��� ≤ vopt + δ,∑�
j=1 x j h′j =

∑
i Fi /n, and ∀j, h′j ≥ 0.

3A unified approach is possible, using an earthmover distance metric as part of the linear programs to cleanly circumvent

these issues. Such an approach yields comparable theoretical performance guarantees, though the experimental results

this approach yielded were indistinguishable from those presented here and thus do not seem to justify the additional

computational expense.
4This scheme for partitioning the fingerprint into the “easy” regime (on which we use the empirical distribution) and “hard”

regime (for which we employ the linear programs) is what we recommend in practice and produced the experimental results

of Section 3. For simplicity of exposition, we prove Theorem 1.11 for the slight variant with a fixed transition point s—that

is, the linear programs are run on {Fi : i ≤ s }.
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The following restatement of our main theorem characterizes the worst-case performance guar-
antees of the above algorithm, establishing the constant-factor optimal guarantees for entropy es-
timation and the distinct elements problem and implying bounds on the error of estimating any
symmetric distribution property that is Lipschitz continuous with respect to the relative earth-
mover distance metric. While the theorem characterizes the performance of Algorithm 1 in terms
of the support size, k , we stress that the algorithm does not depend on k and hence can be applied
in settings where k is unknown.

Theorem 1.11. There exist absolute positive constants α , β and an assignment of the parameters
δ = δ (n) and x = x1, . . . ,x� in Algorithm 1 such that for any c > 0 and k sufficiently large, given a

sample of sizen = c k
log k

consisting of independent draws from a distributionp ∈ Dk , with probability

at least 1 − e−kα
over the randomness in the selection of the sample, Algorithm 1 returns a distribution

p̂ such that

R (p, p̂) ≤ β
√
c
.

The proof of Theorem 1.11 is rather technical, with the cornerstone being the construction of
an explicit earthmoving scheme via a Chebyshev polynomial construction. We give a detailed
overview of the proof in Section 4 and give the complete proof in Section 6.

3 EMPIRICAL RESULTS

In this section, we demonstrate that Algorithm 1 performs well, in practice. We begin by briefly
discussing the five entropy estimators to which we compare our estimator in Figure 1. The first
three are standard and are, perhaps, the most commonly used estimators [35]. We then describe
two more recently proposed estimators that have been shown to perform well in some practical
settings [45].

The “naive” estimator: the entropy of the empirical distribution, namely, given a fingerprint
F derived from a sample of size n, Hnaive (F ) := −∑

i Fi
i
n
| log2

i
n
|.

The Miller-Madow corrected estimator [27]: the naive estimator Hnaive corrected to try
to account for the second derivative of the logarithm function, namely HMM (F ) := Hnaive (F ) +
(
∑

i Fi )−1
2n

, though we note that the numerator of the correction term is sometimes replaced by
various related quantities, see Reference [36].

The jackknifed naive estimator [15, 49]: H J K (F ) := k · Hnaive (F ) − n−1
n

∑n
j=1 H

naive

(F −j ), where F −j is the fingerprint given by removing the contribution of the jth sample.
The coverage adjusted estimator (CAE) [13]: Chao and Shen proposed the CAE, which is

specifically designed to apply to settings in which there is a significant component of the dis-
tribution that is unseen and was shown to perform well in practice in Reference [45].5 Given a
fingerprint F derived from a set of n samples, let Ps := 1 − F1/n be the Good-Turing estimate of
the probability mass of the “seen” portion of the distribution [19]. The CAE adjusts the empiri-
cal probabilities according to Ps and then applies the Horvitz-Thompson estimator for population
totals [22] to take into account the probability that the elements were seen. This yields:

HCAE (F ) := −
∑

i

Fi

(i/n)Ps log2 ((i/n)Ps )

1 − (1 − (i/n)Ps )n .

5One curious weakness of the CAE, is that its performance is exceptionally poor on some simple large instances. Given a

sample of size n from a uniform distribution over n elements, it is not hard to show that the bias of the CAE is unbounded,

growing proportionally to log n . For comparison, even the naive estimator has error bounded by a constant in the limit as

n → ∞ in this setting. This bias of the CAE is easily observed in our experiments as the “hump” in the top row of Figure 1.
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Fig. 1. Plots depicting the RMSE of each entropy estimator over 500 trials, plotted as a function of the sample
size; note the logarithmic scaling of the x-axis. The samples are drawn from six classes of distributions:
the uniform distribution, Uni f [k] that assigns probability pi = 1/k for i = 1, 2, . . . ,k ; an even mixture of

Uni f [ k
5 ] and Uni f [ 4k

5 ], which assigns probability pi =
5

2k
for i = 1, . . . , k

5 and probability pi =
5

8k
for i =

k
5 + 1, . . . ,k ; the Zipf distribution Zip f [k] that assigns probability pi =

1/i∑k
j=1 1/j

for i = 1, 2, . . . ,k and is

commonly used to model naturally occurring “power law” distributions, particularly in natural language
processing; a modified Zipf distribution with power–law exponent 0.6, Zip f 2[k], that assigns probability

pi =
1/i0.6∑k

j=1 1/j0.6
for i = 1, 2, . . . ,k ; the geometric distributionGeom[k], which has infinite support and assigns

probability pi = (1/k ) (1 − 1/k )i , for i = 1, 2 . . .; and, last, an even mixture of Geom[k/2] and Zip f [k/2]. For
each distribution, we considered three settings of the parameterk :k = 1, 000 (left column),k = 10, 000 (center
column), andk = 100, 000 (right column). In each plot, the sample size,n, ranges over the interval [k0.6,k1.25].

Appendix B contains additional empirical results showing that the performance of our estimator is extremely
robust to varying the parameters of the algorithm and changing the specifics of the implementation of our
high-level approach.
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The Best Upper Boundestimator [35]: The final estimator to which we compare ours is the
Best Upper Bound (BUB) estimator of Paninski. This estimator is obtained by searching for a mini-
max linear estimator, with respect to a certain error metric. The linear estimators of Reference [41]
can be viewed as a variant of this estimator with provable performance bounds.6 The BUB esti-
mator requires, as input, an upper bound on the support size of the distribution from which the
samples are drawn; if the bound provided is inaccurate, the performance degrades considerably, as
was also remarked in Reference [45]. In our experiments, we used Paninski’s implementation of the
BUB estimator (publicly available on his website), with default parameters. For the distributions
with finite support, we gave the true support size as input, and thus we are arguably comparing
our estimator to the best-case performance of the BUB estimator.

Figure 1 compares the root-mean-squared error (RMSE) of these estimators with the estimator
obtained by returning the entropy of the histogram returned by Algorithm 1, which we refer to as
the unseen estimator. All experiments were run in Matlab, with the RMSE errors calculated based
on 500 independent trials. The error parameter α in Algorithm 1 was set to be 0.5 for all trials,
and the vector x = x1,x2, . . . used as the support of the returned histogram was chosen to be a
coarse geometric mesh, with x1 = 1/n2, and xi = 1.1xi−1. The experimental results are essentially
unchanged if the parameter α varied within the range [0.25, 1], if x1 is decreased, or if the mesh is
made more fine (see Appendix B). Appendix C contains our Matlab implementation of Algorithm 1
(also available from our websites).

The unseen estimator performs far better than the three standard estimators, dominates the CAE
estimator for larger sample sizes and on samples from the Zipf distributions and also dominates the
BUB estimator, even for the uniform and Zipf distributions for which the BUB estimator received
the true support sizes as input. The consistently good performance of the unseen estimator over
all the classes of distributions is especially startling given that Algorithm 1 is designed to compute
a representation of the distribution rather than specifically tailored to estimate entropy.

3.1 Estimating �1 Distance and Number of Words in Hamlet

The other two properties that we consider do not have such widely accepted estimators as entropy,
and thus our evaluation of the unseen estimator will be more qualitative. We include these two
examples here, because they are of a substantially different flavor from entropy estimation, and
highlight the flexibility of our approach.

Figure 2 shows the results of estimating the total variation distance (�1 distance). Because total
variation distance is a property of two distributions instead of one, fingerprints and histograms are
two-dimensional objects in this setting (see Definitions 5.1 and 5.2 in Section 5), and Algorithm 1
and the linear programs are extended accordingly, replacing single indices by pairs of indices, and
Poisson coefficients by corresponding products of Poisson coefficients.

Finally, in contrast to the synthetic tests above, we also evaluated our estimator on a real-data
problem which may be seen as emblematic of the challenges in a wide gamut of natural language
processing problems: Given a (contiguous) fragment of Shakespeare’s Hamlet, estimate the number
of distinct words in the whole play. We use this example to showcase the flexibility of our linear
programming approach—our estimator can be customized to particular domains in powerful and
principled ways by adding or modifying the constraints of the linear program. To estimate the
histogram of word frequencies in Hamlet, we note that the play is of length ≈25,000, and thus the
minimum probability with which any word can occur is 1

25,000 . Thus in contrast to our previous

approach of using Linear Program 2 to bound the support of the returned histogram, we instead
simply modify the input vector x of Linear Program 1 to contain only probability values ≥ 1

25,000 ,

6We also implemented the linear estimators of Reference [41], though found that the BUB estimator performed better.
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Fig. 2. Plots depicting the estimated total variation distance (�1 distance) between two uniform distributions
on k = 10, 000 points, in three cases: the two distributions are identical (left plot, d = 0), the supports over-
lap on half their domain elements (center plot, d = 0.5), and the distributions have disjoint supports (right
plot, d = 1). The estimate of the distance is plotted along with error bars at plus and minus one standard
deviation; our results are compared with those for the naive estimator (the distance between the empirical

distributions). The unseen estimator can be seen to reliably distinguish between the d = 0, d = 1
2 , and d = 1

cases even for samples as small as several hundred.

Fig. 3. Estimates of the total number of distinct word forms in Shakespeare’s Hamlet (excluding stage direc-
tions and proper nouns) as a functions of the length of the passage from which the estimate is inferred. The
true value, 4,268, is shown as the horizontal line.

and forgo running Linear Program 2. The results are plotted in Figure 3. The estimates converge
towards the true value of 4,268 distinct words extremely rapidly and are slightly negatively biased,
perhaps reflecting the fact that words appearing close together are correlated.

In contrast to Hamlet’s charge that “there are more things in heaven and earth...than are dreamt
of in your philosophy,” we can say that there are almost exactly as many things in Hamlet as can
be dreamt of from 10% of Hamlet.

4 OVERVIEW OF PROOF OF THEOREM 1.11

In this section, we give a detailed high-level overview of the proof of Theorem 1.11. The complete
proof is given in Section 6 and fleshes out the scaffold described here. The proof of Theorem 1.11
decomposes into three main parts, described in the following three sections.

4.1 Compartmentalizing the Probabilistic Portion of the Proof

The first part of the proof argues that with high probability (over the randomness in the indepen-
dent draws of the sample) the sample will be a “faithful” sample from the distribution—no domain
element occurs too much more frequently than one would expect, and the fingerprint entries are
reasonably close to their expected values. This part of the proof is intuitively obvious and will
follow trivially from a union bound over tail bounds on Poisson random variables and Chernoff
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tail bounds. Having thus compartmentalized the probabilistic component of our theorem, we will
then argue that the algorithm will always be successful whenever it receives a “faithful” sample as
input.

The following condition defines what it means for a sample from a distribution to be “faithful”
with respect to positive constants B,D ∈ (0, 1):

Definition 4.1. A sample of sizen with fingerprintF , drawn from a distributionp with histogram
h, is said to be faithful with respect to positive constants B,D ∈ (0, 1) if the following conditions
hold:

• For all i , �������Fi −
∑

x :h (x )�0

h(x ) · poi (nx , i )
������� ≤ max

(
F

1
2+D

i ,nB ( 1
2+D)

)
.

• For all domain elements i, letting p (i ) denote the true probability of i , the number of times
i occurs in the sample from p differs from n · p (i ) by at most

max
(
(n · p (i ))

1
2+D ,nB ( 1

2+D)
)
.

The following lemma follows easily from basic tail bounds on Poisson random variables and
Chernoff bounds.

Lemma 4.2. For any constants B,D ∈ (0, 1), there is a constant α > 0 and integer n0 such that for
any n ≥ n0, a sample of size n consisting of independent draws from a distribution is “faithful” with
respect to B,D with probability at least 1 − e−nα

.

4.2 The Existence of a “Good” Feasible Point of the Linear Program

The second component of the proof argues that (provided the sample in question is “faithful”), the
histogram of the true distribution, rounded to be supported at values in the set X of probabilities
corresponding to the linear program variables, is a feasible point, v, of the linear program Find
Plausible Histogram with reasonably small objective function value. Recall that the linear pro-
gram aims to find distributions that “could reasonably have generated” the observed fingerprint
F ; this portion of the proof guarantees that, provided the sample is faithful, the true distribution,
h, minimally modified, will in fact be such a feasible point, v . This portion of the proof is also
intuitively clear—the objective function measures the deviation between the expected fingerprint
entries (given by the process of drawing the sample from the returned histogram) and the observed
fingerprint of the sample; because we are considering the objective function value corresponding
to the true histogram (rounded slightly to be supported at probability values in set X ), we expect
that the observed fingerprint entries will be closely concentrated about these expectations.

Lemma 4.3. Given constants B,D, there is an integer n0 such that for any n ≥ n0 and k < n1+B/2

the following holds: Given a distribution of support size at most k with histogram h, and a “faithful”
sample of sizen with respect to the constantsB,D with fingerprint F , linear program Find Plausible
Histogram has a feasible point v = v1, . . . ,v� with objective value

∑ 1
√

1 + Fi

�������Fi −
�∑

j=1

vj · poi (nx j , i )

������� ≤ n2B ,

such that
∑

i vi ≤ k and v is close in relative earthmover distance to the true histogram of the distri-
bution, h, namely if hv is the histogram obtained by appending the “large probability” portion of the
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empirical fingerprint to v , then

R (h,v ) ≤ 1

ncB,D
= o(1),

where cB,D > 0 is a constant that is dependent on B,D .

4.3 The Chebyshev Earthmoving Scheme

The final component of the proof, which is the technical heart of the proof, will then argue that
given any two feasible points of linear program Find Plausible Histogram that both have rea-
sonably small objective function values and both have similar support sizes, they must be close
in relative earthmover distance. Since we have already established that the histogram of the true
distribution (appropriately rounded) will be a feasible point with small objective function value,
it will follow that the solution output by the algorithm must also have small objective func-
tion value, and correspond to a distribution of comparable (or smaller) support size and hence
must be close in relative earthmover distance to the true distribution from which the sample

was drawn. This component of the proof gives rise to the logarithmic term in the n = O ( k
log k

)

bounds on the sample size necessary for accurate estimation of distributions supported on a most k
elements.

To establish this component of the proof, we define a class of earthmoving schemes, which
will allow us to directly relate the relative earthmover distance between two distributions to the
discrepancy in their respective fingerprint expectations. The main technical tool is a Chebyshev
polynomial construction, though for clarity, we first describe a simpler scheme that provides some
intuition for the Chebyshev construction. We begin by describing the form of our earthmoving
schemes; since we hope to relate the cost of such schemes to the discrepancy in expected
fingerprints, we will require that the schemes be formulated in terms of the Poisson functions
poi (nx , i ).

Definition 4.4. For a given n, a β-bump earthmoving scheme is defined by a sequence of posi-
tive real numbers {ci }, the bump centers, and a sequence of functions { fi } : (0, 1]→ R such that∑∞

i=0 fi (x ) = 1 for each x , and each function fi may be expressed as a linear combination of Poisson
functions, fi (x ) =

∑∞
j=0 ai jpoi (nx , j ), such that

∑∞
j=0 |ai j | ≤ β .

Given a histogram h, the scheme works as follows: For each x such that h(x ) � 0, and each
integer i ≥ 0, move xh(x ) · fi (x ) units of probability mass from x to ci . We denote the histogram
resulting from this scheme by (c, f ) (h).

Definition 4.5. A bump earthmoving scheme (c, f ) is [ϵ,k]-good if, for any generalized histogram
h of support size

∑
x h(x ) ≤ k , the relative earthmover distance between h and (c, f ) (h) is at most

ϵ .

The crux of the proof of correctness of our estimator is the explicit construction of a surprisingly
good earthmoving scheme. We will show that for any sufficiently large n and k = δn logn for a

δ ∈ [1/ logn, 1], there exists an [O (
√
δ ),k]-good O (n0.3)-bump earthmoving scheme. In fact, we

will construct a single scheme for all such δ . We begin by defining a simple scheme that illustrates
the key properties of a bump earthmoving scheme, and its analysis.

Perhaps the most natural bump earthmoving scheme is where the bump functions fi (x ) =

poi (nx , i ) = e−nx (nx )i

i ! and the bump centers ci =
i
n

. For i = 0, we may, for example, set c0 =
1

2n
to

avoid a logarithm of 0 when evaluating relative earthmover distance. This is a valid earthmoving
scheme, since

∑∞
i=0 fi (x ) = 1 for any x .
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The motivation for this construction is the fact that, for any i , the amount of probability mass
that ends up at ci in (c, f ) (h) is exactly i+1

n
times the expectation of the i + 1st fingerprint in a

Poi (n)-sample from h:

((c, f ) (h)) (ci ) =
∑

x :h (x )�0

h(x )x · fi (x ) =
∑

x :h (x )�0

h(x )x · poi (nx , i )

=
∑

x :h (x )�0

h(x ) · poi (nx , i + 1)
i + 1

n

=
i + 1

n
E[Fi+1].

Consider applying this earthmoving scheme to two histograms h,д with nearly identical fin-
gerprint expectations. Letting h′ = (c, f ) (h) and д′ = (c, f ) (д), by definition both h′ and д′ are
supported at the bump centers ci , and by the above equation, for each i , |h′(ci ) − д′(ci ) | =
i+1
n
|∑x (h(x ) − д(x ))poi (nx , i + 1) |, where this expression is exactly i+1

n
times the difference be-

tween the i + 1st fingerprint expectations of h and д. In particular, if h and д have nearly identical
fingerprint expectations, then h′ and д′ will be very similar. Analogs of this relation between
R ((c, f ) (д), (c, f ) (h)) and the discrepancy between the expected fingerprint entries correspond-
ing to д and h will hold for any bump earthmoving scheme, (c, f ). Sufficiently “good” earthmoving
schemes (guaranteeing that R (h,h′) and R (д,д′) are small) thus provides a powerful way of bound-
ing the relative earthmover distance between two distributions in terms of the discrepancy in their
fingerprint expectations.

The problem with the “Poisson bump” earthmoving scheme described in the previous paragraph
is that it not very “good”: It incurs a very large relative earthmover cost, particularly for small
probabilities. This is due to the fact that most of the mass that starts at a probability below 1

n

will end up in the zeroth bump, no matter if it has probability nearly 1
n

or the rather lower 1
k

.
Phrased differently, the problem with this scheme is that the first few “bumps” are extremely fat.
The situation gets significantly better for higher Poisson functions: Most of the mass of Poi (i ) lies
within relative distanceO ( 1√

i
) of i , and hence the scheme is relatively cheap for larger probabilities

x � 1
n
. We will therefore construct a scheme that uses regular Poisson functions poi (nx , i ) for

i ≥ O (logn) but takes great care to construct “skinnier” bumps below this region.
The main tool of this construction of skinnier bumps is the Chebyshev polynomials. For each

integer i ≥ 0, the ith Chebyshev polynomial, denoted Ti (x ), is the polynomial of degree i such
that Ti (cos(y)) = cos(i · y). Thus, up to a change of variables, any linear combination of cosine
functions up to frequency s may be re-expressed as the same linear combination of the Chebyshev
polynomials of orders 0 through s . Given this, constructing a “good” earth-moving scheme is an
exercise in trigonometric constructions.

Before formally defining our bump earthmoving scheme, we give a rough sketch of the key
features. We define the scheme with respect to a parameter s = O (logn). For i > s, we use the fat
Poisson bumps: That is, we define the bump centers ci =

i
n

and functions fi = poi (nx , i ). For i ≤ s,
we will use skinnier “Chebyshev bumps”; these bumps will have roughly quadratically spaced

bump centers ci ≈ i2

n log n
,with the width of the ith bump roughly i

n log n
(as compared to the larger

width of
√

i
n

of the ith Poisson bump). At a high level, the logarithmic factor improvement in our

O ( k
log k

) bound on the sample size necessary to achieve accurate estimation arises, because the

first few Chebyshev bumps have widthO ( 1
n log n

), in contrast to the first Poisson bump, poi (nx , 1),

which has width O ( 1
n

).
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Fig. 4. A plot of the “skinny” function д2 (y) (without the scaling factor) for the value s = 12. This is the main
ingredient in the Chebyshev bumps construction of Definition 4.6.

Definition 4.6. The Chebyshev bumps are defined in terms ofn as follows. Let s = 0.2 logn. Define
д1 (y) =

∑s−1
j=−s cos(jy). Define

д2 (y) =
1

16s

(
д1

(
y − 3π

2s

)
+ 3д1

(
y − π

2s

)
+ 3д1

(
y +

π

2s

)
+ д1

(
y +

3π

2s

))
,

and, for i ∈ {1, . . . , s − 1}, define дi
3 (y) := д2 (y − iπ

s
) + д2 (y + iπ

s
), д0

3 = д2 (y), and дs
3 = д2 (y + π ).

Let ti (x ) be the linear combination of Chebyshev polynomials so ti (cos(y)) = дi
3 (y). We thus define

s + 1 functions, the “skinny bumps,” to be Bi (x ) = ti (1 − xn
2s

)
∑s−1

j=0 poi (xn, j ), for i ∈ {0, . . . , s}. That

is, Bi (x ) is related to дi
3 (y) by the coordinate transformation x = 2s

n
(1 − cos(y)), and scaling by∑s−1

j=0 poi (xn, j ).

See Figure 4 for a plot of д2 (y), illustrating a “skinny Chebyshev bump.” The Chebyshev bumps
of Definition 4.6 are “third order”; If, instead, we had considered the analogous less-skinny “second
order” bumps by defining д2 (y) := 1

8s
(д1 (y − π

s
) + 2д1 (y) + д1 (y + π

s
)), then the results would still

hold, though the proofs are slightly more cumbersome.

Definition 4.7. The Chebyshev earthmoving scheme is defined in terms of n as follows: As in
Definition 4.6, let s = 0.2 logn. For i ≥ s + 1, define the ith bump function fi (x ) = poi (nx , i − 1) and
associated bump center ci =

i−1
n

. For i ∈ {0, . . . , s} let fi (x ) = Bi (x ), and for i ∈ {1, . . . , s}, define

their associated bump centers ci =
2s
n

(1 − cos( iπ
s

)), and let c0 := c1.

The following lemma characterizes the key properties of the Chebyshev earthmoving scheme.
Namely (1) that the scheme is, in fact, an earthmoving scheme, (2) that each bump can be expressed
as a low-weight linear combination of Poisson functions, and (3) that the scheme incurs a small
relative-earthmover cost.

Lemma 4.8. The Chebyshev earthmoving scheme, of Definition 4.7 has the following properties:

(1) For any x ≥ 0, ∑
i≥0

fi (x ) = 1,

hence the Chebyshev earthmoving scheme is a valid earthmoving scheme.
(2) Each Bi (x ) may be expressed as

∑∞
j=0 ai jpoi (nx , j ) for ai j satisfying

∞∑
j=0

|ai j | ≤ 2n0.3.

(3) There is an absolute constant C such that the Chebyshev earthmoving scheme is [C
√
δ ,k]-

good, for k = δn logn, and δ ≥ 1
log n
.
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4.4 Putting the Pieces Together

Given the lemmas described in the above sections, we now sketch how to assemble these pieces
into a proof of Theorem 1.11. Let p denote the true histogram of the distribution of support size at

most k from which the sample of size n = c k
log k

was drawn. Lemma 4.2 guarantees that with prob-

ability at least 1 − e−nΘ(1)
, the sample will be “faithful” (see Definition 4.1), in which case Lemma 4.3

guarantees that there exists a feasible point of the linear program Find Plausible Histogram with
objective function value at mostn2β , such that the corresponding histogram (after the “large proba-

bility” portion of the empirical fingerprint is appended),hv , satisfies R (p,hv ) ≤ 1/nΘ(1) = o(1), and
the effective support size of histogram hv satisfies

∑
hv ≤ 2k . Hence if we set the error param-

eter, δ of algorithm Find Simplest Plausible Histogram, to equal n2β , then we are guaranteed

that this linear program will output a point ĥLP that has effective support size at most 2k , and
would yield an objective value of at most vopt + δ ≤ 2n2β for the linear program Find Plausible
Histogram.

Let ĥ denote the histogram returned by the whole algorithm—consisting of the solution to lin-

ear program Find Simplest Plausible Histogram, ĥLP , with the large probability portion of the

empirical fingerprint appended. Note that we aim to show that R (hv , ĥ) = O (1/
√
c ), from which,

by the triangle inequality, it will follow that R (p, ĥ) = O (1/
√
c ), as desired.

To show this, we leverage the Chebyshev earthmoving scheme (Definition 4.7). First, note that

the “large probability” regions of ĥ and hv are identical, thus it remains to bound the relative
earthmover distance between their small-probability regions. To this order, let дv and д denote

the results of applying the Chebyshev earthmoving schemes to hv and ĥ, respectively. The third

condition of Lemma 4.8 guarantees that R (дv ,hv ) = O (1/
√
c ), and R (д, ĥ) = O (1/

√
c ). Hence, all

that remains, is to bound R (дv ,д).

The high-level idea is that we know that ĥ and hv have similar fingerprint expectations, be-
cause they both have small values for the objective function of linear program Find Plausible
Histogram. The second condition of Lemma 4.8 shows that, essentially, one can translate this
discrepancy in fingerprint expectations to a bound on the relative earthmover distance at a cost

of a factor of O (n0.3), and a normalizing factor of O (
log n

n
). Formally, letting ci denote one of the

first O (logn) bump centers, with fj (x ) =
∑

�≥0 a�, j · poi (xn, �) denoting the jth bump function of
the earthmoving scheme, we have the following where

∑
x is shorthand for

∑
x :ĥ (x )+hv (x )�0:

|д(ci ) − дv (ci ) | =
������
∑

x

(ĥ(x ) − hv (x ))x fi (x )
������

=

�������
∑

x

(ĥ(x ) − hv (x ))x
∑
j≥0

ai jpoi (xn, j )

�������
=

�������
∑
j≥0

ai j

∑
x

(ĥ(x ) − hv (x ))xpoi (xn, j )

�������
=

�������
∑
j≥1

ai, j−1
j

n

∑
x

(ĥ(x ) − hv (x ))poi (xn, j )

�������
≤
�������
∑
i, j

ai, j

�������
�������
∑
j≥1

j

n

∑
x

(ĥ(x ) − hv (x ))poi (xn, j )

������� .
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Because the large probability portions of ĥ andhv are identical, the bulk of the above discrepancy
is accounted for by the first O (logn) fingerprint expectations, hence the above sum is effectively
over j ∈ [1,O (logn)], in which case the above quantity is bounded by the discrepancy in finger-

print expectations, multiplied by a factor of at most |∑i, j ai, j | jn = O (n0.3 log n

n
) = O (n−0.7 logn).

The proof concludes by noting that the bounds of O (n2β ) on the objective function values of

ĥ and hv , which are the discrepancies in fingerprint expectations normalized by a factor of
1√

1+Fi
≥ 1/
√
n + 1, immediately implies that the discrepancies in fingerprint expectations (unnor-

malized) are bounded byO (n1/2+2B ). Hence, choosing 2B to be a sufficiently small constant yields
that O (n1/2+2Bn−0.7 logn) = o(1).

Hence we have the following:

R (p, ĥ) ≤ R (p,hv ) + R (hv ,дv ) + R (дv ,д) + R (д, ĥ) = o(1) +O (1/
√
c ) + o(1) +O (1/

√
c ) = O (1/

√
c ),

where the “o” and “O” notation is with respect to n. The details of this high-level proof overview
are given in a self-contained fashion in Section 6.

5 PROPERTIES OF PAIRS OF DISTRIBUTIONS

Our general approach for constructing constant-factor optimal estimators for symmetric proper-
ties of distributions can be extended to yield constant-factor optimal estimators for many natural
symmetric properties of pairs of distributions, including total variation distance (�1 distance). In
analogy with the single-distribution setting, given a pair of distributions over a common domain,
a property of the pair of distributions is symmetric if its value is invariant to permutations of the
domain.

For properties of pairs of distributions, an estimator receives two samples as input, one drawn
from the first distribution and one drawn independently from the second distribution. As with the
analysis of estimators for properties of a single distribution, we begin by extending our definitions
of fingerprints and histograms to this two-distribution setting.

Definition 5.1. The fingerprint F of a sample of size n1 from distribution p1 and a sample of size
n2 from distribution p2 is a n1 × n2 matrix, whose entry F (i, j ) is given by the number of domain
elements that are seen exactly i times in the sample from p1 and exactly j times in the sample from
p2.

Definition 5.2. The histogram hp1,p2 : [0, 1]2 \ {(0, 0)} → N ∪ 0 of a pair of distributions p1,p2 is
defined by letting hp1,p2 (x ,y) be the number of domain elements that occur with probability x in
distribution p1 and probability y in distribution p2.

Thus for any two-dimensional histogram h corresponding to a pair of distributions, we have∑
x,y :h (x,y )�0

x · h(x ,y) =
∑

x,y :h (x,y )�0

y · h(x ,y) = 1.

As in the case with symmetric properties of single distributions, symmetric properties of pairs of
distributions are functions of only the histogram of the pair of distributions, and, given any estima-
tor that takes as input the actual pair of samples, there is an estimator of equivalent performance
that takes as input the fingerprint F derived from such a pair of samples.

Both total variation distance (�1 distance), and Kullback-Leibler divergence are symmetric prop-
erties:
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Example 5.3. Consider a pair of distributions p1,p2 with histogram h:

• The total variation distance (�1 distance) is given by

Dtv (p1,p2) =
1

2

∑
(x,y ):h (x,y )�0

h(x ,y) · |x − y |.

• The Kullback-Leibler divergence is given by

DK L (p1 | |p2) =
∑

(x,y ):h (x,y )�0

h(x ,y) · x log
x

y
.

We will use the following two-dimensional earthmover metric on the set of two-dimensional
generalized histograms. Note that it does not make sense to define a strict analog of the relative
earthmover distance of Definition 1.6, since a given histogram entry h(x ,y) does not correspond
to a single quantity of probability mass—it corresponds to xh(x ,y) mass in one distribution and
yh(x ,y) mass in the other distribution. Thus the following metric is in terms of moving histogram
entries rather than probability mass.

Definition 5.4. Given two two-dimensional generalized histograms h1,h2, their histogram dis-
tance, denotedW (h1,h2), is defined to be the minimum over all schemes of moving the histogram
values in h1 to yield h2, where the cost of moving histogram value c at location x ,y to loca-
tion x ′,y ′ is c ( |x − x ′| + |y − y ′|) . To ensure that such a scheme always exists, in the case that∑

x,y :x+y>0 h1 (x ,y) <
∑

x,y :x+y>0 h2 (x ,y), one proceeds as if

h1 (0, 0) =
∑

x,y :x+y>0

h2 (x ,y) −
∑

x,y :x+y>0

h1 (x ,y)

and analogously for the case in which h2 contains fewer histogram entries.

We provide an example of the above definitions:

Example 5.5. Define distributions p1 = Unif[k], and p2 = Unif[k/2], where the k/2 support ele-
ments of distribution p2 are contained in the support of p1. The corresponding histogram hp1,p2 , is

defined as hp1,p2 ( 1
k
, 2

k
) = k

2 , hp1,p2 ( 1
k
, 0) = k

2 , and hp1,p2 (x ,y) = 0 for all other values of x ,y.

Considering a second pair of distributions, q1 = q2 = Uni f [k/4], with histogram hq1,q2 ( 4
k
, 4

k
) =

k
4 , we have

W (hp1,p2 ,hq1,q2 ) =
k

4

(���� 1k − 4

k

���� + ���� 2k − 4

k

����) + k

4

(���� 1k − 0
���� + ���� 2k − 0

����)
+
k

2

(���� 1k − 0
���� + ����0 − 0

����) = 5

2
,

since the optimal scheme is to move k/4 histogram entries in hp1,p2 from (1/k, 2/k ) to location
(4/k, 4/k ), and all the remaining histogram entries must be moved to (0, 0) to yield histogram
hq1,q2 .

We note that �1 distance is 1-Lipschitz with respect to the above distance metric:

Fact 3. For any pair of two-dimensional generalized histograms, h,h′

W (h,h′) ≥
�������

∑
x,y :h (x,y )�0

h(x ,y) |x − y | −
∑

x,y :h′(x,y )�0

h′(x ,y) |x − y |
������� .

Hence if h = hp1,p2 and h′ = hq1,q2 are histograms corresponding to pairs of distributions, then
W (hp1,p2 ,hq1,q2 ) ≥ |Dtv (p1,p2) − Dtv (q1,q2) |.
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Both our algorithm for estimating properties of pairs of distributions and its analysis parallel
their analogs in the one-distribution setting. For simplicity, we restrict our attention to the
setting in which one obtains samples of size n from both distributions—though our approach
extends naturally to the setting in which one obtains samples of different sizes from the two
distributions.

Theorem 5.6. There exist absolute constants α ,γ > 0 such that for any c > 0, for sufficiently large

k , given two samples of size n = c k
log k

consisting of independent draws from each of two distributions,

p,q ∈ Dk with a two-dimensional histogramhp,q , with probability at least 1 − e−nα
over the random-

ness in the selection of the sample, our algorithm returns a two-dimensional generalized histogram
дLP such that

W (дLP ,hp,q ) ≤ γ
√
c
.

Together with Fact 3, this immediately implies our O (k/loдk ) sample estimator for total varia-
tion distance, Theorem 1.13. The proof of Theorem 5.6 closely parallels that of its one distribution
analog, Theorem 1.11, and the complete proof is provided in Appendix A.

6 PROOF OF THEOREM 1.11

We begin by restating Algorithm 1 in a form that our proofs can more easily reference. The one
difference between this algorithm, and Algorithm 1 (beyond relabeling variables) is the manner
in which the fingerprint is partitioned into the “easy” regime for which the empirical estimate is
applied, and the “hard” regime for which the linear programming approach is applied. Here, for
simplicity, we analyze the partitioning scheme that simply chooses a fixed cutoff and applies the
naive empirical estimator to any fingerprint entry Fi for i above the cutoff and applies the linear
programming approach to the smaller fingerprint indices.

For clarity of exposition, we state the algorithm in terms of three positive constants, B,C, and
D, which can be defined arbitrarily provided the following inequalities hold:

0.1 > B > C > B
(

1

2
+D

)
>
B
2
> D > 0.

Linear Program 3.

Given a n-sample fingerprint F :

• Define the set X := { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

nB+nC
n }.

• For each x ∈ X , define the associated LP variable vx .

The linear program is defined as follows:

Minimize

nB∑
i=1

1
√

1 + Fi

������Fi −
∑

x∈X

poi (nx, i ) · vx

������
Subject to:

•
∑

x∈X x · vx +
∑n

i=nB+2nC
i
n Fi = 1 (total prob. mass = 1)

• ∀x ∈ X , vx ≥ 0 (histogram entries are non-negative)
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Linear Program 4.

Given a n-sample fingerprint F and value val :

• Define the set X := { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

nB+nC
n }.

• For each x ∈ X , define the associated LP variable vx .

The linear program is defined as follows:

Minimize
∑

x∈X

vx , (minimize support size of histogram corresponding to vx )

Subject to:

•
∑nB

i=1
1√
Fi+1

��Fi −
∑

x∈X poi (nx, i )vx
�� ≤ val + n2B (expected fingerprints are close to F )

•
∑

x∈X x · vx +
∑n

i=nB+2nC
i
n Fi = 1 (total prob. mass = 1)

• ∀x ∈ X , vx ≥ 0 (histogram entries are non-negative)

Algorithm 2. Estimate Unseen

Input: n-sample fingerprint F .

Output: Histogram дLP .

• Let val be the objective function value of the solution to Linear Program 3, on input F .

• Let v = (vx1, vx2, . . .) be the solution to Linear Program 4, on input F and val .

• Let дLP be the histogram formed by setting дLP (xi ) = vxi for all i , and then for each integer j ≥ nB + 2nC ,

incrementing дLP ( j
n ) by Fj .

For convenience, we restate Theorem 1.11 in terms of the above algorithm.

Theorem 1.11. For any choice of constants B,C, andD that satisfy 0.1 > B > C > B ( 1
2 +D) >

B
2 > D > 0, there exist absolute constants a,b > 0 such that for any c > 0, there is a constant kc such

that given a sample of size n = c k
log k

consisting of independent draws from a distribution p ∈ Dk

with k > kc , with probability at least 1 − e−ka
over the randomness in the selection of the sample,

Algorithm 2 returns a histogram дLP such that

R (p,дLP ) ≤ b
√
c
.

The proof of Theorem 1.11 decomposes into three main parts, addressed in the following three
sections.

6.1 Compartmentalizing the Probabilistic Portion of the Proof

We first argue that with high probability (over the randomness in the independent draws of the
sample) the sample will be a “faithful” sample from the distribution—no domain element occurs
too much more frequently than one would expect, and the fingerprint entries are reasonably close
to their expected values. This part will follow from a union bound over tail bounds on Poisson
random variables and Chernoff tail bounds. The remainder of the proof will then argue that the
algorithm will always be successful whenever it receives a “faithful” sample as input.

The following condition defines what it means for a sample from a distribution to be “faithful”
with respect to positive constants B,D ∈ (0, 1):
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Definition 6.1. A sample of sizen with fingerprintF , drawn from a distributionp with histogram
h, is said to be faithful with respect to positive constants B,D ∈ (0, 1) if the following conditions
hold:

• For all i , �������Fi −
∑

x :h (x )�0

h(x ) · poi (nx , i )
������� ≤ max

(
F

1
2+D

i ,nB ( 1
2+D)

)
.

• For all domain elements i, letting p (i ) denote the true probability of i , the number of times
i occurs in the sample from p differs from n · p (i ) by at most

max
(
(n · p (i ))

1
2+D ,nB ( 1

2+D)
)
.

The following lemma is proven via the standard “Poissonization” technique (see, e.g., Refer-
ence [28]).

Lemma 6.2. For any constants B,D ∈ (0, 1), there is a constant α > 0 and integer n0 such that for
any n ≥ n0, a sample of size n consisting of independent draws from a distribution is “faithful” with

respect to B,D with probability at least 1 − e−nα
.

Proof. We first analyze the case of a Poi (n)-sized sample drawn from a distribution with his-
togram h. Thus

E[Fi ] =
∑

x :h (x )�0

h(x )poi (nx , i ).

Additionally, the number of times each domain element occurs is independent of the number of
times the other domain elements occur, and thus each fingerprint entry Fi is the sum of indepen-
dent random 0/1 variables, representing whether each domain element occurred exactly i times in
the sample (i.e., contributing 1 towards Fi ). By independence, Chernoff bounds apply.

We split the analysis into two cases, according to whether E[Fi ] ≥ nB . In the case that E[Fi ] <
nB ,we leverage the basic Chernoff bound that ifX is the sum of independent 0/1 random variables
with E[X ] ≤ S, then for any δ ∈ (0, 1),

Pr[|X − E[X ]| ≥ δS] ≤ 2e−δ 2S/3.

Applied to our present setting where Fi is a sum of independent 0/1 random variables, provided
E[Fi ] < nB , we have

Pr
[
|Fi − E[Fi ]| ≥ (nB )

1
2+D

]
≤ 2e

−( 1

(nB )1/2−D )2 nB
3 = 2e−n2BD/3.

In the case that E[Fi ] ≥ nB , the same Chernoff bound yields

Pr
[
|Fi − E[Fi ]| ≥ E[Fi ]

1
2+D

]
≤ 2e

−( 1

E[Fi ]1/2−D )2 E[Fi ]
3 = 2e−(E[Fi ]2D )/3 ≤ 2e−n2BD/3.

A union bound over the first n fingerprints shows that the probability that given a sample (consist-
ing of Poi (n) draws), the probability that any of the fingerprint entries violate the first condition

of faithful is at most n · 2e− n2BD
3 ≤ e−nΩ(1)

as desired.
For the second condition of “faithful,” in analogy with the above argument, for any λ ≤ S, and

δ ∈ (0, 1),

Pr[|Poi (λ) − λ | > δS] ≤ 2e−δ 2S/3.
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Hence for x = n · p (i ) ≥ nB , the probability that the number of occurrences of domain element i

differs from its expectation ofn · p (i ) by at least (n · p (i ))
1
2+D is bounded by 2e−(n ·p (i ))2D/3 ≤ e−nΩ(1)

.
Similarly, in the case that x = n · p (i ) < nB ,

Pr
[
|Poi (x ) − x | > nB ( 1

2+D)
]
≤ e−nΩ(1)

.

Thus we have shown that provided we are considering a sample of size Poi (n), the probability

that the conditions hold is at least 1 − e−nΩ(1)
. To conclude, note that Pr[Poi (n) = n] > 1

3
√

n
, and

hence the probability that the conditions do not hold for a sample of size exactly n (namely the
probability that they do not hold for a sample of size Poi (n), conditioned on the sample size being

exactly n) is at most a factor of 3
√
n larger, and hence this probability of failure is still e−nΩ(1)

, as
desired.

6.2 The Existence of a “Good” Feasible Point of the Linear Program

The second component of the proof argues that (provided the sample in question is “faithful”), the
histogram of the true distribution, rounded to be supported at values in the set X of probabilities
corresponding to the linear program variables, is a feasible point, v of Linear Program 3 with ob-
jective function value at most nB . This portion of the proof is also intuitively clear—the objective
function measures the deviation between the expected fingerprint entries (given by the process
of drawing the sample from the returned histogram) and the observed fingerprint of the sam-
ple; because we are considering the objective function value corresponding to the true histogram
(rounded slightly to be supported at probability values in set X ), we expect that the observed fin-
gerprint entries will be closely concentrated about these expectations.

Lemma 6.3. Given constants B,D, there is an integer n0 such that for any n ≥ n0 and k < n1+B/2

the following holds: Given a distribution of support size at most k with histogram h, and a “faithful”
sample of sizen with respect to the constantsB,D with fingerprint F , linear program Find Plausible
Histogram has a feasible point v = v1, . . . ,v� with objective value

∑ 1
√

1 + Fi

�������Fi −
�∑

j=1

vj · poi (nx j , i )

������� ≤ n2B ,

such that
∑

i vi ≤ k , and v is close in relative earthmover distance to the true histogram of the distri-
bution, h, namely if hv is the histogram obtained by appending the “large probability” portion of the
empirical fingerprint to v , then

R (h,v ) ≤ 1

ncB,D
= o(1),

where cB,D > 0 is a constant that is dependent on B,D .

Before giving a formal proof, we describe the high-level intuition of the proof. Roughly, we

construct the desiredv by taking the portion ofh with probabilities at most nB+nC

n
and rounding the

support ofh to the closest multiple of 1/n2, to be supported at points in the setX = {1/n2, 2/n2, . . .}.
We will then need to adjust the total probability mass accounted for in v to ensure that the first
constraint of the linear program is satisfied, namely the total (implicit) probability mass is 1; this
adjusting of mass must be accomplished while ensuring that the fingerprint expectations do not
change significantly, to ensure that objective function value remains small.

The “support size” of v,
∑

x vx , will easily be bounded by 2k , since we are assuming that the
support size of the distribution corresponding to the true histogram, h, is bounded by k , and the
rounding will at most double this value. To argue that v is a feasible point of the linear program,
we note that the mesh X is sufficiently fine to guarantee that the rounding of the support of a
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histogram to probabilities that are integer multiples of 1/n2 does not greatly change the expected
fingerprints, and hence the expected fingerprint entries associated with v will be close to those of
h. Our definition of “faithful” guarantees that all fingerprint entries are close to their expectations,
and hence the objective function will be small. (Intuitively, the reader should be convinced that
there is some suitably fine mesh for which rounding issues are benign; there is nothing special
about 1/n2 except that it simplifies some of the proof.)

To bound the relative earthmover distance between the true histogram h and the histogram hv

associated to v , we first note that the portion of hv corresponding to probabilities below nB+nC

n

will be extremely similar to h, because it was created from h. For probabilities above nB+2nC

n
, hv

and h will be similar, because these “frequently occurring” elements will appear close to their ex-
pected number of times, by the second condition of “faithful” and hence the relative earthmover
distance between the empirical histogram and the true histogram in this frequently occurring re-
gion will also be small. Finally, the only remaining region is the relatively narrow intermediate re-
gion of probabilities, which is narrow enough so probability mass can be moved arbitrarily within
this intermediate region while incurring minimal relative earthmover cost. The formal proof of
Lemma 6.3 containing the details of this argument is given below.

Proof of Lemma 6.3. We explicitly definev as a function of the true histogramh and fingerprint
of the sample, F , as follows:

(1) Define h′ such that h′(x ) = h(x ) for all x ≤ nB+nC

n
, and h′(x ) = 0 for all x > nB+nC

n
.

(2) Initialize v to be 0, and for each x ≥ 1/n2 s.t. h′(x ) � 0 increment vx̄ by h′(x ), where x̄ =
max(z ∈ X : z ≤ x ) is x rounded down to the closest point in the set X = {1/n2, 2/n2, . . .}.

(3) Let m :=
∑

x ∈X xvx +mF , where mF :=
∑

i≥nB+2nC
i
n
Fi . If m < 1, then increment vy by

(1 −m)/y, where y = nB+nC

n
. Otherwise, if m ≥ 1, for all x ∈ X scale vx by a factor of

s =
1−mF
m−mF

, after which the total probability massmF +
∑

x ∈X xvx will be 1.

We first note that the above procedure is well defined, since mF ≤ 1, and, hence, when m > 1
and the scaling factor s is applied, s will be positive.

Note that by construction, the first and second conditions of the linear program are triv-
ially satisfied. We now consider the objective function value. Note that since C > 1

2B, we have∑
i≤nB poi (n

B + nC, i ) = o(1/n), so the fact that we are truncating h at probability nB+nC

n
in the

first step in our construction of v , has little effect on the first nB “expected fingerprints”: specifi-
cally, for i ≤ nB , ∑

x :h (x )�0

(h′(x ) − h(x )) poi (nx , i ) = o(1).

Together with the first condition of the definition of faithful, by the triangle inequality, for each i ,

1
√
Fi + 1

�������Fi −
∑

x :h′ (x )�0

h′(x )poi (nx , i )

������� ≤ max
(
F Di ,n

B ( 1
2+D)

)
+ o(1).

We now analyze how the discretization contributes to the expected fingerprints. To this end, note

that | d
d x

poi (nx , i ) | ≤ n, and since we are discretizing to multiples of 1/n2, the discretization alters

the contribution of each domain element to each “expected fingerprint” by at most n/n2 = 1/n
(including those domain elements with probability <1/n2 which are effectively rounded to 0).
Thus, since the support size is bounded byk , the discretization alters each “expected fingerprint” by

at mostk/n, and thus contributes at mostnB k
n

to the quantity
∑nB

i=1
1√
Fi+1

��Fi −
∑

x ∈X poi (nx , i )vx
�� .
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To conclude our analysis of the objective function of the linear program for the point v , we
consider the effect of the final adjustment of probability mass in the construction of v . In the
case that m ≤ 1, where m is the amount of mass in v before the final adjustment (as defined in

the final step in the construction of v), mass is added to vy , where y = nB+nC

n
, and thus since∑

i≤nB poi (ky, i ) = o(1/n), this added mass—no matter how much—alters each
∑

x ∈X vxpoi (kx , i )
by at most o(1).

In the case wherem > 1 and we must scale down the low-frequency portion of the distribution
by the quantity s < 1, we must do a more delicate analysis. We first bound s in such a way that
we can leverage the definition of “faithful.” Recall that by definition at the start of the third step

of the construction of v , we have s =
1−mF
m−mF

=
∑

i<nB+2nC
i
n Fi∑

x∈X xvx
. We lowerbound this expression via

an upperbound on the denominator, noting that
∑

x ∈X xvx is at most the total probability mass

below frequency nB+nC

n
in the true histogram h, which by Poisson tail bounds is at most o(1/n)

less than the total mass implied by expected fingerprints up to nB + 2nC . Namely, letting E[Fi ] =∑
x :h (x )�0 h(x ) · poi (nx , i ) be the expected fingerprints of sampling from the true distribution, we

have s ≥
∑

i<nB+2nC
i
n Fi∑

i<nB+2nC
i
k

E[Fi ]
− o(1/n).

We bound this expression using the definition of “faithful”: For each i , we have E[Fi ] ≤ Fi +

max(F
1
2+D

i ,nB ( 1
2+D) ) ≤ Fi + F

1
2+D

i + nB ( 1
2+D) . To bound s , we must bound the sum of these

terms, each scaled by i
n

. Because x
1
2+D is a concave function, and letting z :=

∑
i<nB+2nC

i
n
=

O ( n2B

n
), Jensen’s inequality gives that

∑
i<nB+2nC

i
n
F

1
2+D

i ≤ z ( 1
z

∑
i<nB+2nC

i
n
Fi )

1
2+D . Thus, defin-

ing the mass implied by the low-frequency fingerprints to bemS :=
∑

i<nB+2nC
i
n
Fi , we bound one

over the expression in our bound for s as
∑

i<nB+2nC
i
n E[Fi ]∑

i<nB+2nC
i
n Fi

≤ 1 + ( z
mS

)
1
2−D + nB ( 1

2+D) z
mS

. Thus s is

at least 1 over this last expression, minus o(1/n), which we bound via the inequality 1
1+x
≥ 1 − x

(for positive x ) as: s ≥ 1 −O (n(2B−1)( 1
2−D) )m

−( 1
2−D)

S
−O (n2B+B ( 1

2+D)−1)/mS .
Recall that v is scaled by s at the end of the third step of its construction, and thus to analyze

the contribution of this scaling to the objective function value, we bound the total quantity which

will be scaled,
∑nB

i=1
1√
Fi+1

∑
x ∈X poi (nx , i )vx at the beginning of step 3. We make use of the bounds

on the first constraint derived above, for each i:

1
√
Fi + 1

�������Fi −
∑

x :h′ (x )�0

poi (nx , i )vx

������� ≤ max
(
F Di ,n

B ( 1
2+D)

)
+
k

n
+ o(1),

which can be rearranged to

1
√
Fi + 1

∑
x :h′ (x )�0

poi (nx , i )vx ≤
Fi√
Fi + 1

+max
(
F Di ,n

B ( 1
2+D)

)
+
k

n
+ o(1)

≤
√
Fi +O (nB ( 1

2+D) ).

The Cauchy-Schwarz inequality yields that
∑

i≤nB
√
Fi ≤

√∑
i≤nB

i
n
Fi

√∑
i≤nB

n
i
, which is

bounded by
√
mSO (

√
n logn).

Thus scaling by s in step 3 modifies the first constraint of the linear program by at most the
product of s − 1 and 1√

Fi+1

∑
x :h′ (x )�0 poi (nx , i )vx , which we have thus bounded as

min
(
1,O (n(2B−1)( 1

2−D) )m
−( 1

2−D)

S
+O (n2B+B ( 1

2+D)−1)/mS

) (√
mSO (

√
n logn) +O (nB ( 3

2+D) )
)
.
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When mS < n3B−1, we bound the left parenthetical expression by 1 and the right expression is

bounded by O (
√
n3B logk + nB ( 3

2+D) ) = O (nB ( 3
2+D) ).

Otherwise, whenmS ∈ [n3B−1, 1], we bound the product of the first parenthetical with the right-

most term O (nB ( 3
2+D) ) by simply O (nB ( 3

2+D) ). We bound the remaining two cross-terms as

O
(
n(2B−1)( 1

2−D)
)
m
−( 1

2−D)

S

√
mSO (

√
n logn) ≤ O (nB+D )

and

O
(
n2B+B ( 1

2+D)−1
)
/mS
√
mSO (

√
n logn) ≤ O

(
nB (1+D)

)
.

Thus the total contribution of the scaling by s to the objective function is O (nB ( 3
2+D) ).

Thus for sufficiently large n, the objective function value of the constructed point will be
bounded by n2B .

We now turn to analyzing the relative earthmover distance R (h,hv ). Consider applying the
following earthmoving scheme to hv to yield a new histogram д. The following scheme applies in
the case that no probability mass was scaled down from v in the final step of its construction; in
the case that v was scaled down, we consider applying the same earthmoving scheme, with the
modification that one never moves more than xhv (x ) mass from location x .

• For each x ≤ nB+nC

n
, move x̄h(x ) units of probability from location x̄ to x , where as above,

x̄ = max(z ∈ X : z ≤ x ) is x rounded down to the closest point in set X = {1/n2, 2/n2, . . .}.
• For each domain element i that occurs j ≥ nB + 2kC times, move j

n
units of probability mass

from location j
n

to location p (i ), where p (i ) is the true probability of domain element i .

By our construction of hv , it follows that the above earthmoving scheme is a valid scheme to
apply to hv , in the sense that it never tries to move more mass from a point than was at that point.
And д is the histogram resulting from applying this scheme to hv . We first show that R (hv ,д)
is small, since probability mass is only moved relatively small distances. We will then argue that
R (д,h) is small: Roughly, this follows from first noting that д and h will be very similar below

probability value kB+nC

n
, and from the second condition of “faithful” д and h will also be quite

similar above probability nB+4nB

n
. Thus the bulk of the disparity between д and h is in the very

narrow intermediate region, within which mass may be moved at the small per-unit-mass cost of

log nB+O (nC )
nB

≤ O (nC−B ).
We first seek to bound R (hv ,д). To bound the cost of the first component of the scheme, con-

sider some x ≥ n1/2

n2 . The per-unit-mass cost of applying the scheme at location x is bounded by

log x
x−1/n2 < 2n−1/2. From the bound on the support size of h and the construction of hv , the total

probability mass in hv at probabilities x ≤ n1/2

n2 is at most n
n3/2 < nB/2−1/2, and hence this mass can

be moved anywhere at costnB/2−1/2 log(n2). To bound the second component of the scheme, by the
second condition of “faithful” for each of these frequently occurring domain elements that occur

j ≥ nB + 2nC times with true probabilityp (i ), we have that |n · p (i ) − j | ≤ (n · p (i ))
1
2+D , and hence

the per-unit-mass cost of this portion of the scheme is bounded by log nB−nB ( 1
2 +D)

nB
≤ O (nB (− 1

2+D) ),
which dominates the cost of the first portion of the scheme. Hence

R (hv ,д) ≤ O
(
nB (− 1

2+D)
)
.
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We now consider R (h,д). To this end, we will show that∑
x�[nB−1, nB+4nC

k
]

x |h(x ) − д(x ) | ≤ O
(
nB (−1/2+D)

)
.

First, consider the case that there was no scaling down of v in the final step of the construction.

For x ≤ nB−1, we have д(x ) = x̄
x
h(x ), and hence for x > n1/2

n2 , |h(x ) − д(x ) | ≤ h(x )n−1/2. On the

other hand,
∑

x ≤ n1/2

n2

xh(x ) ≤ n−1/2+B/2, since the support size of h is at most n ≤ n1+B/2. Includ-

ing the possible removal of at most n−1/2+D units of mass during the scaling in the final step of
constructing v , we have that ∑

x ≤nB−1

x |h(x ) − д(x ) | ≤ O
(
n−1/2+B/2

)
.

We now consider the “high probability” regime. From the second condition of “faithful,” for each

domain element i whose true probability is p (i ) ≥ nB+4nC

n
, the number of times i occurs in the

faithful sample will differ from its expectation n · p (i ) by at most (n · p (i ))
1
2+D . Hence from our

condition that C > B ( 1
2 +D) this element will occur at least nB + 2nC times, in which case it

will contribute to the portion of hv corresponding to the empirical distribution. Thus for each
such domain element, the contribution to the discrepancy |h(x ) − д(x ) | is at most (n · p (i ))−1/2+D .
Hence

∑
x ≥nB−1+4nC−1 x |h(x ) − д(x ) | ≤ nB (−1/2+D), yielding the claim that∑

x�[nB−1, nB+4nC
n ]

x |h(x ) − д(x ) | ≤ O
(
nB (−1/2+D)

)
.

To conclude, note that all the probability mass in д and h at probabilities below 1/n2 can be
moved to location 1/n2 incurring a relative earthmover cost bounded by maxx ≤1/n2 kx | logxn2 | ≤
k
n2 ≤ nB/2

n
. After such a move, the remaining discrepancy between д(x ) and h(x ) for x �

[ nB

n
, nB+4nC

n
] can be moved to probability nB/n at a per-unit-mass cost of at most logn2, and hence

a total cost of at most O (nB (−1/2+D) logn2). After this move, the only region for which д(x ) and

h(x ) differ is the narrow region with x ∈ [ nB

n
, nB+4nC

n
],within which mass may be moved arbitrar-

ily at a total cost of log(1 + 4nC−B ) ≤ O (nC−B ). Hence we have

R (h,hv ) ≤ R (h,д) + R (д,hv ) ≤ O
(
nC−B + nB (−1/2+D) logn

)
. �

6.3 Similar Expected Fingerprints Imply Similar Histograms

In this section, we argue that if two histograms h1,h2 corresponding to distributions with support
size at most 2k have the property that their expected fingerprints derived from Poi (n)-sized sam-
ples are very similar, then R (h1,h2) must be small. This will guarantee that any two feasible points
of Linear Program 4 that both have small objective function values correspond to histograms that
are close in relative earthmover distance. The previous section established the existence of a fea-
sible point with small objective function value that is close to the true histogram, hence by the
triangle inequality, all such feasible points must be close to the true histogram; in particular, the
optimal point—the solution to the linear program—will correspond to a histogram that is close to
the true histogram of the distribution from which the sample was drawn, completing our proof of
Theorem 1.11.

We define a class of earthmoving schemes, which will allow us to directly relate the relative
earthmover cost of two distributions to the discrepancy in their respective fingerprint expecta-
tions. The main technical tool is a Chebyshev polynomial construction, though, for clarity, we
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first describe a simpler scheme that provides some intuition for the Chebyshev construction. We
begin by describing the form of our earthmoving schemes; since we hope to relate the cost of such
schemes to the discrepancy in expected fingerprints of Poi (n)-sized samples, we will require that
the schemes be formulated in terms of the Poisson functions poi (nx , i ).

Definition 6.4. For a given n, a β-bump earthmoving scheme is defined by a sequence of posi-
tive real numbers {ci }, the bump centers, and a sequence of functions { fi } : (0, 1]→ R such that∑∞

i=0 fi (x ) = 1 for each x , and each function fi may be expressed as a linear combination of Poisson
functions, fi (x ) =

∑∞
j=0 ai jpoi (nx , j ), such that

∑∞
j=0 |ai j | ≤ β .

Given a generalized histogram h, the scheme works as follows: For each x such that h(x ) � 0,
and each integer i ≥ 0, move xh(x ) · fi (x ) units of probability mass from x to ci . We denote the
histogram resulting from this scheme by (c, f ) (h).

Definition 6.5. A bump earthmoving scheme (c, f ) is [ϵ,k]-good if for any generalized histogram
h of support size

∑
x h(x ) ≤ k , the relative earthmover distance between h and (c, f ) (h) is at most

ϵ .

The crux of the proof of correctness of our estimator is the explicit construction of a surprisingly
good earthmoving scheme. We will show that for any n and k = δn logn for some δ ∈ [1/ logn, 1],

there exists an [O (
√
δ ),k]-good O (n0.3)-bump earthmoving scheme. In fact, we will construct a

single scheme for all δ . We begin by defining a simple scheme that illustrates the key properties
of a bump earthmoving scheme, and its analysis.

Perhaps the most natural bump earthmoving scheme is where the bump functions fi (x ) =
poi (nx , i ) and the bump centers ci =

i
n

. For i = 0, we may, for example, set c0 =
1

2n
to avoid a

logarithm of 0 when evaluating relative earthmover distance. This is a valid earthmoving scheme
since

∑∞
i=0 fi (x ) = 1 for any x .

The motivation for this construction is the fact that, for any i , the amount of probability mass
that ends up at ci in (c, f ) (h) is exactly i+1

n
times the expectation of the i + 1st fingerprint in a

Poi (n)-sample from h:

((c, f ) (h)) (ci ) =
∑

x :h (x )�0

h(x )x · fi (x ) =
∑

x :h (x )�0

h(x )x · poi (nx , i )

=
∑

x :h (x )�0

h(x ) · poi (nx , i + 1)
i + 1

n

=
i + 1

n

∑
x :h (x )�0

h(x ) · poi (nx , i + 1).

Consider applying this earthmoving scheme to two histograms h,д with nearly identical fin-
gerprint expectations. Letting h′ = (c, f ) (h) and д′ = (c, f ) (д), by definition both h′ and д′ are
supported at the bump centers ci , and by the above equation, for each i , |h′(ci ) − д′(ci ) | =
i+1
n
|∑x (h(x ) − д(x ))poi (nx , i + 1) |, where this expression is exactly i+1

n
times the difference be-

tween the i + 1st fingerprint expectations of h and д. In particular, if h and д have nearly identical
fingerprint expectations, then h′ and д′ will be very similar. Analogs of this relation between
R ((c, f ) (д), (c, f ) (h)) and the discrepancy between the expected fingerprint entries correspond-
ing to д and h will hold for any bump earthmoving scheme, (c, f ). Sufficiently “good” earthmoving
schemes (guaranteeing that R (h,h′) and R (д,д′) are small) thus provides a powerful way of bound-
ing the relative earthmover distance between two distributions in terms of the discrepancy in their
fingerprint expectations.

The problem with the “Poisson bump” earthmoving scheme described in the previous paragraph
is that it not very “good”: It incurs a very large relative earthmover cost, particularly for small
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probabilities. This is due to the fact that most of the mass that starts at a probability below 1
n

will end up in the zeroth bump, no matter if it has probability nearly 1
n

, or the rather lower 1
k

.
Phrased differently, the problem with this scheme is that the first few “bumps” are extremely fat.
The situation gets significantly better for higher Poisson functions: Most of the mass of Poi (i ) lies
within relative distanceO ( 1√

i
) of i , and hence the scheme, is relatively cheap for larger probabilities

x � 1
n
. We will therefore construct a scheme that uses regular Poisson functions poi (nx , i ) for

i ≥ O (logn) but takes great care to construct “skinnier” bumps below this region.
The main tool of this construction of skinnier bumps is the Chebyshev polynomials. For each

integer i ≥ 0, the ith Chebyshev polynomial, denoted Ti (x ), is the polynomial of degree i such
that Ti (cos(y)) = cos(i · y). Thus, up to a change of variables, any linear combination of cosine
functions up to frequency s may be re-expressed as the same linear combination of the Chebyshev
polynomials of orders 0 through s . Given this, constructing a “good” earthmoving scheme is an
exercise in trigonometric constructions.

Before formally defining our bump earthmoving scheme, we give a rough sketch of the key
features. We define the scheme with respect to a parameter s = O (logn). For i > s, we use the fat
Poisson bumps: that is, we define the bump centers ci =

i
n

and functions fi = poi (nx , i ). For i ≤ s,
we will use skinnier “Chebyshev bumps”; these bumps will have roughly quadratically spaced

bump centers ci ≈ i2

n log n
,with the width of the ith bump roughly i

n log n
(as compared to the larger

width of
√

i
n

of the ith Poisson bump). At a high level, the logarithmic factor improvement in our

O ( k
log k

) bound on the sample size necessary to achieve accurate estimation arises, because the

first few Chebyshev bumps have widthO ( 1
n log n

), in contrast to the first Poisson bump, poi (nx , 1),

which has width O ( 1
n

).

Definition 6.6. The Chebyshev bumps are defined in terms ofn as follows. Let s = 0.2 logn. Define
д1 (y) =

∑s−1
j=−s cos(jy). Define

д2 (y) =
1

16s

(
д1

(
y − 3π

2s

)
+ 3д1

(
y − π

2s

)
+ 3д1

(
y +

π

2s

)
+ д1

(
y +

3π

2s

))
,

and, for i ∈ {1, . . . , s − 1} define дi
3 (y) := д2 (y − iπ

s
) + д2 (y + iπ

s
), and д0

3 = д2 (y), and дs
3 = д2 (y +

π ). Let ti (x ) be the linear combination of Chebyshev polynomials so ti (cos(y)) = дi
3 (y). We thus de-

fine s + 1 functions, the “skinny bumps,” to be Bi (x ) = ti (1 − xk
2s

)
∑s−1

j=0 poi (xk, j ), for i ∈ {0, . . . , s}.
That is, Bi (x ) is related to дi

3 (y) by the coordinate transformation x = 2s
n

(1 − cos(y)), and scaling

by
∑s−1

j=0 poi (xn, j ).

The Chebyshev bumps of Definition 6.6 are “third order”; if, instead, we had considered the
analogous less skinny “second-order” bumps by defining д2 (y) := 1

8s
(д1 (y − π

s
) + 2д1 (y) + д1 (y +

π
s

)), then the results would still hold, though the proofs are slightly more cumbersome.

Definition 6.7. The Chebyshev earthmoving scheme is defined in terms of n as follows: As in
Definition 6.6, let s = 0.2 logn. For i ≥ s + 1, define the ith bump function fi (x ) = poi (nx , i − 1) and
associated bump center ci =

i−1
n

. For i ∈ {0, . . . , s} let fi (x ) = Bi (x ), and for i ∈ {1, . . . , s}, define

their associated bump centers ci =
2s
n

(1 − cos( iπ
s

)), and let c0 := c1.

The following lemma characterizes the key properties of the Chebyshev earthmoving scheme.
Namely, that the scheme is, in fact, an earthmoving scheme, that each bump can be expressed as a
low-weight linear combination of Poisson functions, and that the scheme incurs a small relative-
earthmover cost.

Journal of the ACM, Vol. 64, No. 6, Article 37. Publication date: October 2017.



Estimating the Unseen 37:33

Lemma 6.8. The Chebyshev earthmoving scheme, of Definition 6.7 has the following properties:

• For any x ≥ 0, ∑
i≥0

fi (x ) = 1,

hence the Chebyshev earthmoving scheme is a valid earthmoving scheme.
• Each Bi (x ) may be expressed as

∑∞
j=0 ai jpoi (nx , j ) for ai j satisfying

∞∑
j=0

|ai j | ≤ 2n0.3.

• The Chebyshev earthmoving scheme is [O (
√
δ ),n]-good, for n = δn logn, and δ ≥ 1

log n
, where

the O notation hides an absolute constant factor.

The proof of the above lemma is quite involved, and we split its proof into a series of lemmas.
The first lemma below shows that the Chebyshev scheme is a valid earthmoving scheme (the first
bullet in the above lemma):

Lemma 6.9. For any x
s∑

i=−s+1

д2

(
x +

πi

s

)
= 1, and

∞∑
i=0

fi (x ) = 1.

Proof. д2 (y) is a linear combination of cosines at integer frequencies j, for j = 0, . . . , s, shifted
by ±π/2s and ±3π/s2. Since

∑s
i=−s+1 д2 (x + π i

s
) sums these cosines over all possible multiples of

π/s , we note that all but the frequency 0 terms will cancel. The cos(0y) = 1 term will show up once
in each д1 term, and thus 1 + 3 + 3 + 1 = 8 times in each д2 term, and thus 8 · 2s times in the sum
in question. Together with the normalizing factor of 16s, the total sum is thus 1, as claimed.

For the second part of the claim,

∞∑
i=0

fi (x ) = ��	
s∑

j=−s+1

д2

(
cos−1

(xn
2s
− 1

)
+
π j

s

)
��
s−1∑
j=0

poi (xn, j ) +
∑
j≥s

poi (xn, j )

= 1 ·
s−1∑
j=0

poi (xn, j ) +
∑
j≥s

poi (xn, j ) = 1.

�

We now show that each Chebyshev bump may be expressed as a low-weight linear combination
of Poisson functions.

Lemma 6.10. Each Bi (x ) may be expressed as
∑∞

j=0 ai jpoi (nx , j ) for ai j satisfying

∞∑
j=0

|ai j | ≤ 2n0.3.

Proof. Consider decomposing дi
3 (y) into a linear combination of cos(�y), for � ∈ {0, . . . , s}.

Since cos(−�y) = cos(�y), д1 (y) consists of one copy of cos(sy), two copies of cos(�y) for each �
between 0 and s , and one copy of cos(0y); д2 (y) consists of ( 1

16s
times) eight copies of different

д1 (y)’s, with some shifted to introduce sine components, but these sine components are canceled
out in the formation of дi

3 (y), which is a symmetric function for each i . Thus since each д3 contains

at most two д2’s, each дi
3 (y) may be regarded as a linear combination

∑s
�=0 cos(�y)bi� with the

coefficients bounded as |bi� | ≤ 2
s
.
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Since ti was defined so ti (cos(y)) = дi
3 (y) =

∑s
�=0 cos(�y)bi� , by the definition of Chebyshev

polynomials we have ti (z) =
∑s

�=0T� (z)bi� . Thus the bumps are expressed as

Bi (x ) = �	
s∑

�=0

T�

(
1 − xn

2s

)
bi�


� ��	
s−1∑
j=0

poi (xn, j )
�� .
We further express each Chebyshev polynomial via its coefficients asT� (1 − xn

2s
) =

∑�
m=0 β�m (1 −

xn
2s

)m and then expand each term via binomial expansion as (1 − xn
2s

)m =
∑m

q=0 (− xn
2s

)q ( m
q

) to yield

Bi (x ) =
s∑

�=0

�∑
m=0

m∑
q=0

s−1∑
j=0

β�m

(
−xn

2s

)q
(
m

q

)
bi� poi (xn, j ).

We note that in general we can reexpress xq poi (xn, j ) = xq x j n j e−xn

j ! = poi (xn, j + q)
(j+q )!
j !nq , which

finally lets us express Bi as a linear combination of Poisson functions, for all i ∈ {0, . . . , s}:

Bi (x ) =
s∑

�=0

�∑
m=0

m∑
q=0

s−1∑
j=0

β�m

(
− 1

2s

)q
(
m

q

)
(j + q)!

j!
bi� poi (xn, j + q).

It remains to bound the sum of the absolute values of the coefficients of the Poisson functions.
That is, by the triangle inequality, it is sufficient to show that

s∑
�=0

�∑
m=0

m∑
q=0

s−1∑
j=0

�����β�m

(
− 1

2s

)q
(
m

q

)
(j + q)!

j!
bi�

����� ≤ 2n0.3.

We take the sum over j first: The general fact that
∑�

m=0

(
m+i

i

)
=

(
i+�+1
()i+1

)
implies that∑s−1

j=0
(j+q )!

j ! =
∑s−1

j=0

(
j+q
q

)
q! = q!

(
s+q
q+1

)
= 1

q+1
(s+q )!
(s−1)! , and, further, since q ≤ m ≤ � ≤ s we have s +

q ≤ 2s , which implies that this final expression is bounded as 1
q+1

(s+q )!
(s−1)! = s

1
q+1

(s+q )!
s ! ≤ s · (2s )q .

Thus we have

s∑
�=0

�∑
m=0

m∑
q=0

s−1∑
j=0

�����β�m

(
− 1

2s

)q
(
m

q

)
(j + q)!

j!
bi�

����� ≤
s∑

�=0

�∑
m=0

m∑
q=0

�����β�ms

(
m

q

)
bi�

�����
= s

s∑
�=0

|bi� |
�∑

m=0

|β�m |2m .

Chebyshev polynomials have coefficients whose signs repeat in the pattern (+, 0,−, 0), and thus

we can evaluate the innermost sum exactly as |T� (2i) |, for i =
√
−1. Since we bounded |bi� | ≤ 2

s

above, the quantity to be bounded is now s
∑s

�=0
2
s
|T� (2i) |. Since the explicit expression for Cheby-

shev polynomials yields |T� (2i) | = 1
2 [(2 −

√
5)� + (2 +

√
5)�] and since |2 −

√
5|� = (2 +

√
5)−� we

finally bound s
∑s

�=0
2
s
|T� (2i) | ≤ 1 +

∑s
�=−s (2 +

√
5)� < 1 + 2+

√
5

2+
√

5−1
· (2 +

√
5)s < 2 · (2 +

√
5)s < 2 ·

k0.3, as desired, since s = 0.2 logn and log(2 +
√

5) < 1.5 and 0.2 · 1.5 = 0.3. �

We now turn to the main thrust of Lemma 6.8, showing that the scheme is [O (
√
δ ),k]-good,

where k = δn logn, and δ ≥ 1
log n

; the following lemma, quantifying the “skinnyness” of the

Chebyshev bumps is the cornerstone of this argument.
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Lemma 6.11. |д2 (y) | ≤ π 7

y4s4 for y ∈ [−π ,π ] \ (−3π/s, 3π/s ), and |д2 (y) | ≤ 1/2 everywhere.

Proof. Since д1 (y) =
∑s−1

j=−s cos jy = sin(sy) cot(y/2), and since sin(α + π ) = − sin(α ), we have
the following:

д2 (y) =
1

16s

(
д1

(
y − 3π

2s

)
+ 3д1

(
y − π

2s

)
+ 3д1

(
y +

π

2s

)
+ д1

(
y +

3π

2s

))
=

1

16s

(
sin(ys + π/2)

(
cot

(y
2
− 3π

4s

)
− 3 cot

(y
2
− π

4s

)
+3 cot

(y
2
+

π

4s

)
− cot

(y
2
+

3π

4s

)))
.

Note that (cot(
y

2 −
3π
4s

) − 3 cot(
y

2 −
π
4s

) + 3 cot(
y

2 +
π
4s

) − cot(
y

2 +
3π
4s

)) is a discrete approximation

to (π/2s )3 times the third derivative of the cotangent function evaluated aty/2. Thus it is bounded

in magnitude by (π/2s )3 times the maximum magnitude of d3

dx 3 cot(x ) in the rangex ∈ [
y

2 −
3π
4s
,

y

2 +
3π
4s

]. Since the magnitude of this third derivative is decreasing for x ∈ (0,π ), we can simply eval-

uate the magnitude of this derivative at
y

2 −
3π
4s
. We thus have d3

dx 3 cot(x ) = −2(2+cos(2x ))

sin4 (x )
, whose

magnitude is at most 6
(2x/π )4 for x ∈ (0,π ]. For y ∈ [3π/s,π ], we trivially have that

y

2 −
3π
4s
≥ y

4 ,

and thus we have the following bound:����cot
(y

2
− 3π

4s

)
− 3 cot

(y
2
− π

4s

)
+ 3 cot

(y
2
+

π

4s

)
− cot

(y
2
+

3π

4s

) ���� ≤ ( π
2s

)3 6

(y/2π )4
≤ 12π 7

y4s3
.

Since д2 (y) is a symmetric function, the same bound holds for y ∈ [−π ,−3π/s]. Thus |д2 (y) | ≤
12π 7

16s ·y4s3 <
π 7

y4s4 for y ∈ [−π ,π ] \ (−3π/s, 3π/s ). To conclude, note that д2 (y) attains a global maxi-

mum at y = 0, with д2 (0) = 1
16s

(6 cot(π/4s ) − 2 cot(3π/4s )) ≤ 1
16s

24s
π
< 1/2. �

Lemma 6.12. The Chebyshev earthmoving scheme of Definition 6.7 is [O (
√
δ ),k]-good, where k =

δn logn, and δ ≥ 1
log n

.

Proof. We split this proof into two parts: first we will consider the cost of the portion of the
scheme associated with all but the first s + 1 bumps, and then we consider the cost of the skinny
bumps fi with i ∈ {0, . . . , s}.

For the first part, we consider the cost of bumps fi for i ≥ s + 1; that is the relative earthmover
cost of movingpoi (xn, i ) mass from x to i

n
, summed over i ≥ s . By definition of relative earthmover

distance, the cost of moving mass from x to i
n

is | log xn
i
|, which, since logy ≤ y − 1, we bound by

xn
i
− 1 when i < xn and i

xn
− 1 otherwise. We thus split the sum into two parts.

For i ≥ �xn�, we have poi (xn, i ) ( i
xn
− 1) = poi (xn, i − 1) − poi (xn, i ). This expression telescopes

when summed over i ≥ max{s, �xn�} to yield poi (xn,max{s, �xn�} − 1) = O ( 1√
s

).

For i ≤ �xn� − 1, we have, since i ≥ s , that poi (xn, i ) ( xn
i
− 1) ≤ poi (xn, i ) ((1 + 1

s
) xn

i+1 − 1) =

(1 + 1
s

)poi (xn, i + 1) − poi (xn, i ). The 1
s

term sums to at most 1
s
, and the rest telescopes to

poi (xn, �xn�) − poi (xn, s ) = O ( 1√
s

). Thus in total, fi for i ≥ s + 1 contributes O ( 1√
s

) to the relative

earthmover cost, per unit of weight moved.
We now turn to the skinny bumps fi (x ) for i ≤ s . The simplest case is when x is outside the re-

gion that corresponds to the cosine of a real number—that is, when xn ≥ 4s . It is straightforward to
show that fi (x ) is very small in this region. We note the general expression for Chebyshev poly-

nomials: Tj (x ) = 1
2 [(x −

√
x2 − 1) j + (x +

√
x2 − 1) j ], whose magnitude we bound by |2x | j . Fur-

ther, since 2x ≤ 2
e
ex , we bound this by ( 2

e
) je |x |j , which we apply when |x | > 1. Recall the defi-

nition fi (x ) = ti (1 − xn
2s

)
∑s−1

j=0 poi (xn, j ), where ti is the polynomial defined so ti (cos(y)) = дi
3 (y),
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that is, ti is a linear combination of Chebyshev polynomials of degree at most s and with coef-
ficients summing in magnitude to at most 2, as was shown in the proof of Lemma 6.10. Since
xn > s , we may bound

∑s−1
j=0 poi (xn, j ) ≤ s · poi (xn, s ). Further, since z ≤ ez−1 for all z, letting z =

x
4s

yields x ≤ 4s · e x
4s −1, from which we may bound poi (xn, s ) = (xn)s e−xn

s ! ≤ e−xn

s ! (4s · e xn
4s −1)s =

4s ss

es ·e3xn/4s !
≤ 4se−3xn/4. We combine this with the above bound on the magnitude of Cheby-

shev polynomials, Tj (z) ≤ ( 2
e

) je |z |j ≤ ( 2
e

)se |z |s , where z = (1 − xn
2s

) yields Tj (z) ≤ ( 2
e2 )se

xn
2 . Thus

fi (x ) ≤ poly (s )4se−3xn/4 ( 2
e2 )se

xn
2 = poly (s ) ( 8

e2 )se−
xn
4 . Since xn

4 ≥ s in this case, fi is exponentially

small in both x and s; the total cost of this earthmoving scheme, per unit of mass above 4s
n

is ob-
tained by multiplying this by the logarithmic relative distance the mass has to move, and summing
over the s + 1 values of i ≤ s , and thus remains exponentially small, and is thus trivially bounded
by O ( 1√

s
).

To bound the cost in the remaining case, when xn ≤ 4s and i ≤ s , we work with the trigono-
metric functions дi

3, instead of ti directly. For y ∈ (0,π ], we seek to bound the per-unit-mass rela-

tive earthmover cost of, for each i ≥ 0, moving дi
3 (y) mass from 2s

n
(1 − cos(y)) to ci . (Recall from

Definition 6.7 that ci =
2s
n

(1 − cos( iπ
s

)) for i ∈ {1, . . . , s}, and c0 = c1.) For i ≥ 1, this contribution
is at most

s∑
i=1

����дi
3 (y) (log(1 − cos(y)) − log

(
1 − cos

( iπ
s

)) ���� .
We analyze this expression by first showing that for any x ,x ′ ∈ (0,π ],

��log(1 − cos(x )) − log(1 − cos(x ′))�� ≤ 2| logx − logx ′|.

Indeed, this holds because the derivative of log(1 − cos (x )) is positive, and strictly less than the

derivative of 2 logx ; this can be seen by noting that the respective derivatives are
sin(y )

1−cos(y ) and
2
y

, and we claim that the second expression is always greater. To compare the two expressions,

cross-multiply and take the difference, to yield y siny − 2 + 2 cosy, which we show is always at
most 0 by noting that it is 0 when y = 0 and has derivative y cosy − siny, which is negative since
y < tany. Thus we have that | log(1 − cos(y)) − log(1 − cos( iπ

s
)) | ≤ 2| logy − log iπ

s
|; we use this

bound in all but the last step of the analysis. Additionally, we ignore the
∑s−1

j=0 poi (xn, j ) term as it

is always at most 1.
Case 1: y ≥ π

s
.

We will show that

����д0
3 (y)

(
logy − log

π

s

) ���� +
s∑

i=1

����дi
3 (y)

(
logy − log

iπ

s

) ���� = O
(

1

sy

)
,

where the first term is the contribution from f0, c0. For i such thaty ∈ ( (i−3)π
s
, (i+3)π

s
), by the second

bounds on |д2 | in the statement of Lemma 6.11, дi
3 (y) < 1, and for each of the at most 6 such i ,

|(logy − log max{1,i }π
s

) | < 1
sy

, to yield a contribution of O ( 1
sy

). For the contribution from i such

that y ≤ (i−3)π
s

or y ≥ (i−3)π
s

, the first bound of Lemma 6.11 yields |дi
3 (y) | = O ( 1

(ys−iπ )4 ). Roughly,

the bound will follow from noting that this sum of inverse fourth powers is dominated by the first
few terms. Formally, we split up our sum over i ∈ [s] \ [

ys

π
− 3,

ys

π
+ 3] into two parts according to

whether i > ys/π :
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s∑
i≥ ys

π +3

1

(ys − iπ )4

����(logy − log
iπ

s

) ���� ≤
∞∑

i≥ ys
π +3

π 4

(
ys

π
− i )4

(
log i − log

ys

π

)

≤ π 4

∫ ∞

w=
ys
π +2

1

(
ys

π
−w )4

(
logw − log

ys

π

)
. (2)

Since the antiderivative of 1
(α−w )4 (logw − logα ) with respect to w is

−2w (w2 − 3wα + 3α2) logw + 2(w − α )3 log(w − α ) + α (2w2 − 5wα + 3α2 + 2α2 logα )

6(w − α )3α3
,

the quantity in Equation (2) is equal to the above expression evaluated with α =
ys

π
, andw = α + 2,

to yield

O

(
1

ys

)
− log

ys

π
+ log

(
2 +

ys

π

)
= O

(
1

ys

)
.

A nearly identical argument applies to the portion of the sum for i ≤ ys

π
+ 3, yielding the same

asymptotic bound of O ( 1
ys

).

Case 2:
ys

π
< 1.

The per-unit mass contribution from the 0th bump is trivially at most |д0
3 (y) (log

ys

π
− log 1) | ≤

log
ys

π
. The remaining relative earthmover cost is

∑s
i=1 |дi

3 (y) (log
ys

π
− log i ) |. To bound this sum,

we note that log i ≥ 0, and log
ys

π
≤ 0 in this region, and thus split the above sum into the corre-

sponding two parts, and bound them separately. By Lemma 6.11, we have:

s∑
i=1

дi
3 (y) log i ≤ O �	1 +

∞∑
i=3

log i

π 4 (i − 1)4

� = O (1).

s∑
i=1

дi
3 (y) log

ys

π
≤ O (logys ) ≤ O

(
1

ys

)
,

since for ys ≤ π , we have | logys | < 4/ys .
Having concluded the case analysis, recall that we have been using the change of variables

x = 2s
n

(1 − cos(y)). Since 1 − cos(y) = O (y2), we have xn = O (sy2). Thus the case analysis yielded

a bound of O ( 1
ys

), which we may thus express as O ( 1√
sxn

).

For a distribution with histogram h, the cost of moving earth on this region, for bumps fi where
i ≤ s is thus

O ��	
∑

x :h (x )�0

h(x ) · x · 1
√
sxn


�� = O
��	

1
√
sn

∑
x :h (x )�0

h(x )
√
x
�� .

Since
∑

x x · h(x ,y) = 1, and
∑

x h(x ) ≤ n, by the Cauchy-Schwarz inequality,∑
x

√
xh(x ) =

∑
x

√
x · h(x )

√
h(x ) ≤

√
n,

and hence since k = δn logn, the contribution to the cost of these bumps is bounded byO (
√

k
sn

) =

O (
√
δ ). As we have already bounded the relative earthmover cost for bumps fi for i > s at least

this tightly, this concludes the proof. �

We are now equipped to assemble the pieces and prove Theorem 1.11.

Proof of Theorem 1.11. Let д be the generalized histogram returned by Algorithm 2, and let
h be the generalized histogram constructed in Lemma 6.3—assuming the sample from the true
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distribution p is “faithful,” which occurs with probability 1 − e−nΩ(1)
by Lemma 6.2. Lemma 6.3 as-

serts that R (p,h) = O ( 1
nΩ(1) ). Let h′,д′ be the generalized histograms that result from applying

the Chebyshev earthmoving scheme of Definition 6.7 to h and д, respectively. By Lemma 6.8,
R (h,h′) = O (

√
1/c ), and R (д,д′) = O (

√
1/c ). Our goal is to bound R (p,д), which we do via the

triangle inequality as

R (p,д) ≤ R (p,h) + R (h,h′) + R (h′,д′) + R (д′,д) = O (
√

1/c ) + R (д′,h′).

We now show that R (д′,h′) = O ( 1
nΩ(1) ), completing the proof.

Our strategy to bound this relative earthmover distance is to construct an earthmoving scheme
that equates д′ and h′ whose cost can be related to the terms of the first constraint of the linear
program. By definition, д′,h′ are generalized histograms supported at the bump centers ci . Our
earthmoving scheme is defined as follows: for each i � [nB ,nB + 2nC], if h′(ci ) > д′(ci ), then we

move ci (h′(ci ) − д′(ci )) units of probability mass inh′ from location ci to location nB

n
; analogously,

if h′(ci ) < д′(ci ), then we move ci (д′(ci ) − h′(ci )) units of probability mass in д′ from location

ci to location nB

n
. After performing this operation, the remaining discrepancy in the resulting

histograms will be confined to probability range [ nB

n
, nB+2nC

n
], and hence can be equated at an

additional cost of at most

log
nB + 2nC

nB
= O (nC−B ) = O

(
1

nΩ(1)

)
.

We now analyze the relative earthmover cost of equalizing h′(ci ) and д′(ci ) for all i � [nB ,nB +

2nC] by moving the discrepancy to location nB

n
. Since all but the first s + 1 bumps are simply the

standard Poisson bumps fi (x ) = poi (xn, i − 1), for i > s we have

|h′(ci ) − д′(ci ) | =
�������

∑
x :h (x )+д (x )�0

(h(x ) − д(x ))x · poi (nx , i − 1)

�������
=

�������
∑

x :h (x )+д (x )�0

(h(x ) − д(x ))poi (nx , i )
i

k

������� .
Recall by construction that h(x ) = д(x ) for all x > nB+nC

n
. Thus by tail bounds for Poissons, the

total relative earthmover cost of equalizing h′ and д′ for all bump centers ci with i > nB + 2nC is

trivially bounded by o(
log n

n
).

Next, we consider the contribution of the discrepancies in the Poisson bumps with centers ci

for i ∈ [s + 1,nB]. Since
∑

i≤nB poi (nx , i ) = o(1/n2) for x ≥ nB+nC

n
, the discrepancy in the first nB

expected fingerprints of д,h is specified, up to negligible error, by the terms in the first constraint
of the linear program:

∑
i<nB

�������
∑

x :h (x )+д (x )�0

(h(x ) − д(x ))poi (nx , i )
i

n

�������
≤

∑
i<nB

i

n
·
√
n + 1
√
Fi + 1

��	
�������Fi −

∑
x :д (x )�0

д(x )poi (nx , i )

������� +
�������Fi −

∑
x :h (x )�0

h(x )poi (nx , i )

�������

��

≤ O (n3B−1/2) = O
(

1

nΩ(1)

)
.
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Finally, we consider the contribution of the discrepancies in the first s + 1 = O (logn) bump
centers, corresponding to the skinny Chebyshev bumps. Note that for such centers, ci , the cor-
responding bump functions fi (x ) are expressible by definition as fi (x ) =

∑
j≥0 ai jpoi (xn, j ), for

some coefficients ai j ,where
∑

j≥0 ai j ≤ β . Thus we have the following, where
∑

x is shorthand for∑
x :h (x )+д (x )�0:

|h′(ci ) − д′(ci ) | =
������
∑

x

(h(x ) − д(x ))x fi (x )
������

=

�������
∑

x

(h(x ) − д(x ))x
∑
j≥0

ai jpoi (xn, j )

�������
=

�������
∑
j≥0

ai j

∑
x

(h(x ) − д(x ))xpoi (xn, j )

�������
=

�������
∑
j≥1

ai, j−1
j

n

∑
x

(h(x ) − д(x ))poi (xn, j )

������� .
Since ai j = 0 for j > logn, and since each Chebyshev bump is a linear combination of only the

first 2s < logn Poisson functions, the total cost of equalizing h′ and д′ at each of these Chebyshev
bump centers is bounded as

β

�������
log n∑
i=1

i

n

∑
x

(h(x ) − д(x ))poi (xn, j )

������� | log c0 | logn,

where the | log c0 | term, for c0 being the first bump center, is a crude upper bound on the per-unit

mass relative earthmover cost of moving the mass to probability nB

n
, and the final factor of logn

is because there are at most s < logn centers corresponding to “skinny” bumps. We bound this
via the triangle inequality and an appeal to the first constraint of the linear program, as above,

yielding a bound of O (βn2B log3 n√
n

). Since β = O (n0.3) from Lemma 6.8, this contribution is thus

also O ( 1
nΩ(1) ).

We have thus bounded all the parts of R (д′,h′) by O ( 1
nΩ(1) ), completing the proof. �

We note that what we actually proved applies rather more generally than to just Linear
Program 4. As long as the second and third constraints are satisfied, then if the left-hand side
of the first constraint, and the objective function are somewhat small, similar results hold.

Proposition 6.13. For any c > 0, for sufficiently large k , given the fingerprint F from a “faithful”

sample of size n = c k
log k

from a distribution p ∈ Dk , consider any vector vx indexed by elements

x ∈ X := { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

nB+nC

n
} such that

• ∑
x ∈X x · vx +

∑n
i=nB+2nC

i
n
Fi = 1

• ∀x ∈ X ,vx ≥ 0

Let A :=
∑

x ∈X vx , and let B :=
∑nB

i=1
1√
Fi+1

��Fi −
∑

x ∈X poi (nx , i )vx
��.

Appending the high-frequency portion of F to v as in Algorithm 2, returns a histogram дLP such
that

R (p,дLP ) ≤ O ��	
1
√
c
+

√
A

n logn
+
B log3 n

n0.2


�� .
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This implies, for example, that the results of Theorem 1.11 hold even when the right-hand side
of the first constraint of Linear Program 4 is increased by any constant factor, and, instead of
optimizing the objective function, any point with objective less than a constant multiple of k is
chosen. (Of course, in practice one usually does not know k—the support size of the unknown
distribution—so minimizing the objective function is a natural way to guarantee this criterion.)
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