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Abstract

Pearson’s chi-squared test, from 1900, is the standard statistical tool for “hypothesis testing
on distributions”: namely, given samples from an unknown distribution Q that may or may not
equal a hypothesis distribution P , we want to return “yes” if P = Q and “no” if P is far from
Q. While the chi-squared test is easy to use, it has been known for a while that it is not “data
efficient”, it does not make the best use of its data. Precisely, for accuracy ε and confidence
δ, and given n samples from the unknown distribution Q, a tester should return “yes” with
probability > 1 − δ when P = Q, and “no” with probability > 1 − δ when |P − Q| > ε. The
challenge is to find a tester with the best tradeoff between ε, δ, and n.

We introduce a new tester, efficiently computable and easy to use, which we hope will replace
the chi-squared tester in practical use. Our tester is found via a new non-convex optimization
framework that essentially seeks to “find the tester whose Chernoff bounds on its performance
are as good as possible”. This tester is 1+o(1) optimal, in that the number of samples n needed
by the tester is within 1+o(1) factor of the samples needed by any tester, even non-linear testers
(for the setting: accuracy ε, confidence δ, and hypothesis P ). We complement this algorithmic
framework with matching lower bounds saying, essentially, that “our tester is instance-optimal,
even to 1 + o(1) factors, to the degree that Chernoff bounds are tight”. Our overall non-convex
optimization framework extends well beyond the current problem and is of independent interest.

1 Introduction

In this paper we consider the statistical problem of “hypothesis testing of distributions”, and
provide a principled yet practical new approach to optimal performance. The standard approach
in practice is Pearson’s chi-squared test (described below), invented in 1900, and remaining one of
the most widely used tests in statistics, a bedrock of the field. Nonetheless, the chi-squared test
was invented before the advent of principled methodical approaches to data-efficient statistics, and
from this perspective looks a bit ad-hoc. Since 1900, many post-hoc justifications of the chi-squared
test have been developed, as well as “patches” to tailor its performance to certain situations.

∗Work partially funded by NSF award CCF-2127806
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Figure 1: Performance of Various Uniformity Testers. Plots show the result of numerical experi-
ments comparing the performance of our new tester to 3 standard testers, that respectively threshold
the chi-squared metric, the total variation distance, and the number of singleton elements in the
data. The left plot shows ε = 0.9, with error δ (maximum of Type I and Type II errors) plotted
as a function of n = k. The yellow dotted line, expressing a brute force computation of the ground
truth optimal tester, is visually synonymous with our tester for the range of parameters for which
we could compute it, k = n ≤ 50. The right plot shows similar plots for ε = 0.7, and ε = 0.45, for
larger ranges of n = k. In all cases in this paper, our tester was optimized and computed in < 1s
in Matlab. The choice of threshold for each tester significantly affects its performance, and in all
cases (except [VV17] which specifies its thresholds) we were as generous as possible, choosing the
threshold of lowest error rate.

The most standard TCS model that captures many of the use cases of the chi-squared test is
as follows: we start with a known hypothesis distribution P of support size n; we receive k samples
from an unknown distribution Q, and wish to return a “yes” or “no” answer distinguishing, as
well as possible, whether our hypothesis P is correct—namely P = Q—versus far from correct.
Explicitly, given an ℓ1 distance bound ε, and a failure probability δ, we want to say “yes” with
probability ≥ 1−δ when the samples are from P , and we want to say “no” with probability ≥ 1−δ
when the samples are from any distribution Q such that ||P − Q||1 ≥ ε. The goal is to find the
algorithm with the best tradeoff between the number of samples k, the accuracy threshold ε, and
the confidence 1− δ, for any given hypothesis P .

There are thus 3 equivalent ways of viewing our problem: given k data points and an allowed
failure rate δ, find the tester that optimizes the accuracy ϵ; alternatively, given k data points
and a required accuracy ϵ, find the tester with the smallest failure rate δ; or, finally, given an
allowed failure probability δ and a required accuracy ϵ, find the minimum amount of data k needed.
Algorithms for any of these formulations can be transparently reparameterized/reformulated to
solve the problem from the other perspectives (via a black-box binary search reduction).

We set out to solve this bedrock problem of statistics, in a way that is practical, robust, and
extensible.

Our algorithm: This paper presents a new algorithm for this problem, arising from a novel
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Figure 2: Performance of Testers on a Nonuniform Distribution with a Single Heavy Element. Plots
show performance of testers on distributions composed of one element with weight 1

2 and n elements
each with weight 1

2n , with ε = 0.9 and k ranging over 20, 30, or 40.

optimization framework. Our algorithm makes optimal use of its data, even up to 1+ o(1) factors:
phrased in terms of optimizing the failure probability in terms of a given number of samples k and
accuracy ϵ, we show that the log failure rate log 1

δ of the tester returned by our algorithm converges
to within 1 + o(1) factor of optimal (see Theorem 4). This is not just an instance-optimal result,
but a sub-constant-factor tight result. Complementing the theoretical analysis, simulations show
that our tester outperforms all other testers in a variety of settings. Of particular interest is the
simplest (and thus most widely studied) setting of the uniform distribution hypothesis. Despite
our tester being designed for far more general settings, we significantly outperform all other testers
proposed for this iconic setting—most notably the total variation (TV) tester, the collisions tester
(which is synonymous with the chi-squared tester in this special case), and the singletons tester. In
particular, for small uniform distributions, we can derive, via brute force numerics, the ground-truth
optimal tester; as seen in Figure 1, the performance of our algorithm is visually indistinguishable
from the optimal. The fact that our tester is visually indistinguishable from optimal on small inputs
is particularly striking given that we analytically expect its performance to get ever more optimal
for larger inputs.

While the chi-squared estimator—and many variants—perform fairly well on uniform distribu-
tions, the nonuniform case is far more challenging and exposes giant performance gulfs. See Figure
2, showing a massive practical advantage of our tester over chi-squared. When n = 80 and k = 40,
effectively no meaningful information can be learned using a chi-squared test, yet our test’s error
rate remains less than 10%.

Our new algorithmic approach: Our algorithmic approach is surprisingly direct: for the prob-
lem of hypothesis testing on distributions, we consider all testers from a flexible and general class—
called “semilinear testers”, see Definition 1—and return the best one, via an optimization setup.

The direct approach is daunting, because describing the performance of an arbitrary algorithm—
let alone optimizing it—is already challenging. For an algorithm to be effective, its error rate must
be as small as possible, where by statistical convention, we say that a “type I error” is when
we accidentally reject the hypothesis P = Q when it is true, and a “type II error” is when we
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accidentally accept the hypothesis when |P −Q| ≥ ε. The failure rate of our tester is the maximum
failure over these two cases. Within the case of type II error, there is a third nested optimization
problem, we we must necessarily consider the worst-case error over all distributions Q that are
ε-far from our hypothesis. Finally, even fixing a certain tester, a certain error-type, and a certain
alternative distribution Q, we bound the failure rate via a Chernoff bound, which is a 4th level of
optimization. In short, we cleanly capture the challenge of designing an optimal tester via a 4-level
non-convex optimization setup, which on its surface is not encouraging.

The main point of the paper is that, despite appearances, our optimization problem is 1)
algorithmically tractable, admitting effective code; 2) partially analytically tractable, showing that
optimal testers have an intriguing “log cosh” shape; 3) naturally provides matching lower bounds,
showing that even though we only optimize over semilinear algorithms, we asymptotically achieve
the best performance possible from any algorithm. The generality of this new framework suggests
that such an optimization approach might provide canonical optimal solutions for a much wider
array of related problems that we have not begun to explore yet.

Semilinear testers: We now introduce the class of “semilinear” estimators and testers. Semilinear
estimators are simple yet flexible, expressing for each domain element, an arbitrary function of the
number of times this element is sampled, while summing linearly across different domain elements.
The goal of this paper is to find the “right” tester from this class, instead of an ad-hoc tester from
a larger class.

Definition 1. Given a sample space (domain) indexed by j, a semilinear estimator is represented by
a table with coefficients ci,j . Given several samples from a distribution on this domain, we represent
the samples by their histogram, with sj counting the number of times element j was sampled. The
semilinear estimator c, on sample s, will return

∑
j csj ,j . Namely, for each domain element j, the

number sj records the number of times this element occured in the sample, and we look up, in the
jth column of our table c, its sthj entry, and add up all these csj ,j . A semilinear threshold tester
consists of a semilinear estimator and a threshold γ: it returns “yes” if the semilinear estimate is
below the threshold γ, else “no”. Without loss of generality, we may set the threshold γ to be 0.

Example 1. The Pearson chi-squared test, for a given hypothesis P , and given k samples from
some distribution Q, represented as a histogram s, computes the estimate∑

j

(sj − kPj)
2

Pj

and returns “yes” if it is below some threshold. Namely, it computes the squared difference between
the number of times each domain element is seen, versus its expectation (if the hypothesis is true),
normalized by its expectation. The Pearson chi-squared test is thus a semilinear tester.

As a related example (discussed more below), the uniformity tester of Gupta and Price [GP22]
computes the “Huber statistic” of sj−kPj instead of simply squaring it, but since this function can
be represented as a lookup table for each potential value of sj , this statistic is also semilinear. By
contrast, the instance-optimal tester of Valiant and Valiant [VV17] is not quite semilinear, because
it essentially computes two semilinear threshold tests and returns the OR of them.
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1.1 Main Results

The main results are an algorithmic upper bound for hypothesis testing on distributions, and a
lower bound that matches it, provided that “Chernoff bounds are tight”. While there is a long and
celebrated history in statistics of analyzing “reverse” Chernoff bounds, under the name “the large
deviations principle”, these tools typically give insight only in the limit as the number of samples
goes to infinity, without commenting on the rate of convergence; and without further foundational
statistical work in this direction, our lower bounds are necessarily also of this flavor. See Section 5
for more discussion.

Towards this end, we introduce the limit that we use for our lower bounds: we start with a
fixed hypothesis distribution P of support size n, and consider taking Poi(k) samples from it; in the
limit, we essentially repeat this process s times, for some positive integer s → ∞. Technically, this
corresponds to taking Poi(ks) samples from a version of P that has each domain element subdivided
into s identical copies of itself:

Definition 2. Given a distribution P supported on n elements, define P sub(s), read as “P subdi-
vided s times” to be the distribution supported on ns elements, where each domain element of P
is subdivided into s new domain elements of P sub(s), each of 1

s times the original probability mass.

Our main results are about the optimum of the overall optimization problem, which we denote
∆(P, k, ε):

Definition 3. Given a distribution P , a bound ε on the ℓ1 distance that we wish to test for, and
a number of samples k, let ∆(P, k, ε) be the optimal objective value of the nonconvex optimization
problem of Equation 1.

Our main results—including both upper and lower bounds—are summarized in the following
theorem.

Theorem 4. Given a distribution P of support size n, a bound ε on the ℓ1 distance that we wish
to test for, and a number of samples k, then:

• In polynomial time, we can compute ∆(P, k, ε), along with (a representation of) coefficients
ci,j to a semilinear threshold tester such that, given Poi(k) samples from either P or an
arbitrary distribution Q with ℓ1 distance ≥ ε from P , the tester distinguishes these cases
except with error probability ≤ e∆(P,k,ε).

• For positive integer s, on the problem of testing the hypothesis P sub(s) with Poi(k · s) samples,
the same tester as above, with coefficients ci,j, will have error probability ≤ es·∆(P,k,ε).

• By contrast, for any sequence of testers Ts indexed by s—including arbitrary nonlinear
testers—letting δs denote the failure probability of tester s for testing the hypothesis P sub(s)

with Poi(k · s) samples to accuracy ε, we have that

lim inf
s→∞

1

s
log δs ≥ ∆(P, k, ε)
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1.2 Perspective

1.2.1 The choice of ℓ1 metric

We briefly comment on the choice of the ℓ1 metric in defining the hypothesis testing problem: our
tester is asked to reject the hypothesis P on any distribution Q such that |P −Q|1 ≥ ε. However
many other distance metrics are possible, including the KL-divergence, Hellinger distance, or chi-
squared divergence—all of which show up in related statistical contexts. We choose ℓ1 for this paper
both because it is standard for work in the statistical property testing field for related estimation
tasks. Further, and importantly, since ℓ1 distance is equivalent to total variation distance, it
exactly captures how distinguishable a single sample from P versus Q is, thus making it a natural
benchmark.

However, the optimization framework introduced in this paper is far more general than just
the ℓ1 distance distribution hypothesis testing framework we work with here. Many aspects of
our analysis extend unchanged to other metrics, and understanding the implications of this would
presumably yield interesting follow-up papers. In short, we choose the ℓ1 metric but the approach
we introduce here is not in any way wed to it.

1.2.2 Comparison with [VV17]

Our main result is a bit unusual in comparison with standard results about testing properties of
distributions. Compare, for example, with the main theorem of [VV17] which describes a precise
formula for the number of samples needed to run accurate hypothesis testing as a function of
the distribution P , and the accuracy ε (that paper assumes δ = Θ(1) ): the main result there
characterizes the number of samples in terms of the ℓ 2

3
norm of the hypothesis P . By contrast, our

optimization framework is a rather opaque expression compared to the ℓ 2
3
norm result of [VV17].

We view our current approach as furthering and complementing the goals of [VV17], for the
following reasons. First, our results here are tighter, both in theory, and in practice. While [VV17]
obtained performance that was tight to constant factors, the results here are 1 + o(1) tight, and
in simulations (see figures in Section 1) are essentially identical to performance of the ground
truth optimal algorithm in situations where the ground truth can be numerically ascertained.
Constant factors are often critical in data-efficiency contexts, and a focus of increasing recent
interest. Second, while the current paper does not provide a clean formula for the performance of
our new algorithm—see Equation 1 and below, which presumably have no closed-form solution—
the formula from [VV17] is already shown to be constant-factor tight by that paper, so may be
used here as a closed-form estimate of the performance of our algorithm as well. The fact that
our optimization framework does not appear to have a closed-form solution is not a fault of our
paper but a fact of nature: this expression is optimal yet this expression is not simple. This paper
provides access to optimality via an algorithm that efficiently finds the testing coefficients and the
objective value; and this seems like the best that can be hoped for.

1.2.3 Comparison to [GP22]

This recent paper focuses on the distribution hypothesis testing problem, restricted to the case of
uniform distributions. The paper shares our focus on 1+ o(1)-tight analysis. The main results are
identifying an asymptotic regime where Pearson’s chi-squared test performs optimally, and then
modifying the chi-squared test—in a semilinear way, to instead compute the Huber function on each
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domain element—leading to 1 + o(1)-optimal performance across a fairly wide range of parameter
space.

The main distinction between our paper and [GP22] is that we consider generic distributions
instead of just uniform distributions. It is not at all clear how one could optimally combine unifor-
mity testers to test more general distributions, although our optimization framework in some sense
can be viewed as the prescription for this. We briefly point out that non-uniform distributions
are (of course) more common than uniform distributions, so uniformity testing can be considered
a special case, but whose nice mathematical structure does not always reflect real life. We briefly
mention 3 examples where non-uniform hypotheses might arise. Pearson’s chi-squared test is often
used to compare two empirically accessed distributions, and in many cases, one of these distribu-
tions may be much more expensive to sample than the other; and in this case, one can call the
inexpensive distribution the “known” hypothesis P as it is so cheap to obtain farther samples.
Beyond empirically obtained distributions, there are also many cases in science where prior knowl-
edge leads one to hypothesize an explicit non-uniform distribution. For example, back in 1928, R.A.
Fisher investigated Mendelian genetics and its prediction of non-uniform allele frequencies [FB28].
A much more modern example is the question of how to test whether a quantum computer is ac-
curately sampling from the distribution of outcomes expected by the laws of quantum mechanics,
and distinguishing this from the case that the quantum computer is sampling from an erroneous
distribution [WZXK21].

As further comparison between our paper and results of [GP22], see the figures in Section 1 which
compare the performance of our tester with several analyzed in [GP22]. Because of the asymptotic
setup of [GP22], the parameters of the “Huber tester” they recommend are never specified—since
the specifics do not matter in the limit considered in that paper. But we are thus unable to compare
our algorithm to any specific proposal from [GP22].

At a higher level, the Huber function arises in [GP22] out of the dual requirements that the
function is quadratic near the origin and linear away from it. But the Huber function is just one
choice of many possible functions that fit these criteria equally well. Our paper shows that in fact
the log cosh function is the correct (i.e., optimal) form in general.

Finally, we provide perspective on two of the quirks of our analysis.

1.2.4 Depoissonization

While our main theorem is phrased in terms of a Poisson-distributed number of samples Poi(k)
from a distribution, the more standard setting is to take some fixed number k of samples. As
discussed above, we move to the “Poissonized” setting because here, the number of times that
each domain element j is sampled becomes completely independent of the other domain elements,
which is crucial for both the upper and lower bound analysis. However, the natural conclusion
of a “Poissonized” analysis is “depoissonization”—showing how to move these results back to the
original framework, with exactly k samples. Handling this in full would substantially extend the
length of this paper, so we instead just outline the method here.

We could simply take the tester c produced by our optimization and use it with exactly k
samples, and its error probability would increase by at most a factor inversely proportional to the
probability that Poi(k) equals k. However, this would not be expected to match any corresponding
lower bounds of the flavor of Theorem 4.

Instead, we adapt Equation 1 while preserving as much of its meaning as possible. Each of the
two components of the outer max of Equation 1—representing type 1 and type 2 error— represents
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a Chernoff bound on the failure probability, and thus the exponential of either of these can be
considered as an expectation over the process of taking Poi(k) samples from a distribution that is
either P or Q. We consider “tilting” this expectation by multiplying the terms of the objective
function by some exponential αi so that the maximum contribution to either of the two terms
comes from cases where exactly k samples are taken, instead of some other value in the support
of Poi(k). In this sense, we essentially add another constraint to the optimization, that we are
looking for a solution “where Poi(k) mimics the deterministic value k”. After some simplification,
it turns out that this new constraint can be equivalently reexpressed as a new constraint on the
inner max, stipulating that the “worst case Q” that we construct (described via histogram variable

h
Q|yj
x ) must have the same total probability mass (namely, 1) as P . For technical reasons, such a

constraint must be left out of the original Equation 1 in order for Theorem 4 to hold, but to produce
the best tester for the deterministic k-sample regime, we add this extremely natural constraint to
Equation 1. We point out that adding a constraint to this maximization can only decrease the
overall objective value; thus we expect the ci,j customized to the deterministic case to outperform
the Poissonized ci,j , even when the Poissonized tester is evaluated on Poi(k) samples. While we do
not include the details, we expect all parts of Theorem 4 to extend to this “depoissonized” tester,
including that, for fixed j, the coefficients ci,j will have the same log cosh functional form as before.
The main difference will be that the additional constraint will induce a new dual variable—which
we may call β. Thus when we express the overall optimization problem as a 2-level optimization,
as in Equation 7, there will be a third variable β in the outermost optimization, joining α and u.

In short, the technical machinery of this paper extends naturally to “depoissonizing” the esti-
mator of Theorem 4, with very little change or computational overhead.

1.2.5 “Chernoff bounds are tight”

The approach of this paper is predicated on the intuition that finding the algorithm with optimal
Chernoff bound for the failure probability in our setting should be viewed as morally the same
task as finding the optimal algorithm; this, combined with the versatility of manipulating Chernoff
bounds enables the approach of our paper.

In statistics, the intuition that “Chernoff bounds are tight” is called the “large deviations
principle”. We briefly comment on 3 old and extremely respected results establishing this intuition.

The first is Cramér’s theorem [Cra38], which considers the common case for Chernoff bounds
where we wish to derive a tail bound on the mean of a large number of i.i.d. copies of a real-valued
distribution X. Namely, for some threshold γ, we wish to derive a bound on Prx1,...,xn←X [ 1n

∑
i xi ≥

γ]. The standard Chernoff bound on this (provided γ ≥ µ(X) ) is mint≥0 Ex←X [et(x−γ)]n. Taking
logarithms and normalizing by 1

n , we have that the best Chernoff bound does not change with n.
In the limit as n → ∞, how good is this Chernoff bound? Cramér’s theorem actually says that the
limit of 1

n times the log of the tail probability exactly equals the corresponding expression from the
Chernoff (upper) bound. This theorem is extremely general, requiring almost no assumptions on
the distribution X except that the relevant quantities in the equality claim are well defined. The
cost of this generality is that the convergence rate is hard to control.

While Cramér’s theorem shows convergence in the exponent of the tail probability, a much more
precise result is the Bahadur-Rao theorem [BR60], which actually shows multiplicative convergence
in the probability itself, and not just in the exponent. The full formulation is complicated, but
it essentially says that the true tail bound is not only better than the optimal Chernoff bound,
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but in fact quasilinear in the optimal Chernoff bound. Intuitively, suppose we are trying to decide
between two probabilistic processes A,B, and we have Chernoff bounds on their failure probabilities
(in some sense) denoted respectively a, b; then even in regimes where the Chernoff bounds a, b are
not accurate enough, since both a, b are quasilinear in their true failure probabilities, we can
correctly choose between A,B by choosing the better of a, b, trusting on quasilinearity to preserve
the ordering of the failure probabilities, even when “distorted” by Chernoff bounds. In short,
“because Chernoff bounds are quasilinear in the true tail bounds, optimizing over Chernoff bounds
is as good as optimizing over the true tail probabilities”.

Finally, there is a long history of generalizing Cramér’s theorem to settings well beyond means
of i.i.d. variables. One of the most natural and general variants is the Gärtner-Ellis theorem—see
Section 5. While Cramér’s theorem talks about the convergence of tail bounds on a random variable
Zn equal to the mean of n i.i.d. copies of a distribution, Gärtner-Ellis by contrast says that, for
almost any sequence of random variables Zn, we can “pretend, in the style of Cramér’s theorem,
that Zn is the mean of n i.i.d. copies of a distribution”, and so long as the moment generating
function of Zn converges to something differentiable as n → ∞, we can conclude convergence
analogously to Cramér’s theorem.

In short, we leverage a long history of tools and intuition that “Chernoff bounds are tight”, and
we hope this paper exposes the benefits of these intuitions to a wider audience.

1.3 Related work

We direct the reader to several notable surveys about distribution testing [Can20] and property
testing [Ron08, Gol17], along with the paper [BFF+01] that initialized much of the work in this
area.

A historically and practically important special case of our problem of hypothesis testing on
distributions is the problem of uniformity testing, where the hypothesis is a uniform distribution.
There is a long line of work on this topic, including relatively recent papers [Pan08, DGPP18,
GP22]. We highlight this last paper which gets 1 + o(1)-tight bounds on the sample complexity
of uniformity testing in various natural asymptotic regimes. This paper suggests modifying the
chi-squared statistic into the Huber statistic, which is a function combining quadratic and linear
regions. This paper demonstrates the value of looking at a richer class of functional forms for
testers, and emphasizes the importance of 1 + o(1)-tight analysis when proposing new statistical
testers.

The paper [VV17] focuses on a very similar setting to the one of the current paper, of hypothesis
testing on distributions.. Its main feature is “instance-optimal” results, that, up to some constant
factor, perform as well as is possible for the particular hypothesis distribution P . This work revealed
that the difficulty of testing P depends on ||P || 2

3
, the 2

3 norm of the distribution, an interesting

structural insight. The instance-optimal analysis, however, is at the expense of some loss of constant
factors, and it is unclear how well these algorithms would perform in practice.

Some classic results in the area, including parts of [VV17], were extended to the “tolerant
testing” regime in [ADK15]. A tolerant tester is not only required to accept distributions that satisfy
the given property, but also tolerate some corruption/error without rejecting. The paper [ADK15]
showed several tolerant testing constructions based around a tester that rejects distributions with ℓ1
distance ≥ ε, while accepting distributions with chi-squared distance ≤ ε′. This result shows how,
in some cases, tolerant testing can be achieved without paying a high cost in the other parameters
of the problem.
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[Gol20] shows a general relation between hypothesis testing on distribution and the simpler
uniformity testing problem, with a general constant-factor tight reduction.

The paper [DGK+21] encompases several previously studied regimes of these problems, examin-
ing how the sample complexity of testing the independence and closeness of distributions depends
on the desired failure probability δ. Many previous works took δ to be a constant—implicitly
dealing with other δ with the black-box amplification process of taking a majority vote over inde-
pendent repetitions of the tester on fresh data; by contrast, this paper examines when it is possible
to combine the data in more subtle ways to get better performance as a function of δ.

Many variants of these problems exist. In the “closeness testing” problem we are given sample
access to two distributions, P,Q (instead of being given P explicitly) and the aim is to distinguish
when P = Q from when ||P −Q||1 ≥ ε [BFR+00, ADJ+11, BFR+13, CDVV14].

Generalizing in a different direction, the Generalized Uniformity Testing model seeks to test
uniformity without knowing the support of the distribution in advance [BC17, DKS18].

There are also several works [CFGM16, CRS15, ACK18] on distribution testing on conditional
samples. In this model, the testing algorithm has a kind of “query access” to the distribution, in
that the tester can name a subset as an input, and then receives samples conditioned on lying in the
named subset. By choosing the subset properly, they can obtain much stronger results, achieving
constant sample complexity rather than O(

√
n).

There are also many works [DKN15, DDS+, CDSS14] focusing on the identity testing problem
for structured distributions, where the distribution is guaranteed to have certain global structural
properties, like being monotonic, or k-modal. In many cases, this structure can be leveraged to
yield dramatically (and sometimes exponentially) better performance.

Recent attention on quantum computing has led to several papers posing variants of the property
testing problem under the quantum setting [OW15, BOW19, BCL20]. The goal is to seek an
algorithms that can distinguish whether the mixed state has some given property or is ϵ-far away
from any mixed state possessing the property, with some constant confidence. Analogously to the
classical case, the optimality of the algorithm is measured by “copy complexity”, asking how many
copies of the same mixed state are required to conduct the test. This problem is closely related
to identity testing or property testing problem in the classical setting, as every mixed state can
be seen as a probability distribution on the support of pure states, and by taking a measurement
on one mixed state, we can get a sample from that distribution; this builds a direct relationship
between the copy complexity and the classical sample complexity.

2 Preliminaries

2.1 Notation

Globally, we use P to denote our hypothesis distribution, and we use j to index the unique prob-
abilities of P—so that we can collectively deal with all identical domain elements at once; let yj
denote the probability of each of the domain elements indexed by j, and let hPyj denote the number
of such domain elements. While each element of P that has probability yj is symmetric, and should
be treated symmetrically by our tester, different j should be treated differently. Thus when we
consider an alternative probability distribution Q, we separately represent a histogram for each

equivalence class j of our hypothesis distribution P . Namely, let h
Q|yj
x be the histogram of Q on

the domain elements that have probability exactly yj on P . When describing a Chernoff bound,
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we often use the notation “
Ch
≤” to emphasize that the inequality comes from a Chernoff bound.

2.2 The optimization problem

In this section we describe and derive the overall optimization problem of finding the semilinear
testing coefficients c that have the best possible Chernoff bounds on their performance.

Consider taking Poi(k) samples from some distribution Q, and then, finding the best Chernoff
bound on the probability that the test will mistakenly say “yes”. We let Fi,j denote the number of
different domain elements within the equivalence class j that have been seen exactly i times in the
sample (F for “fingerprint”, as in [BFR+00]). Thus the semilinear tester will compute the quantity∑

i,j ci,jFi,j and return “yes” if this is < 0. Thus by standard Chernoff bounds we have

Pr
F←QPoi(k)

[
∑
i,j

ci,jFi,j < 0]
Ch
≤ inf

t≤0

∏
j,x

(∑
i

etci,jpoi(kx, i)

)h
Q|yj
x

= inf
t≤0

exp

∑
j,x

h
Q|yj
x log

∑
i

etci,jpoi(kx, i)

 ,

and conversely, when we draw samples from the hypothesis distribution P , we compute the best
Chernoff bound on the probability that the tester mistakenly computes a statistic ≥ 0 and thus
outputs “no”:

Pr
F←PPoi(k)

[
∑
i,j

ci,jFi,j ≥ 0]
Ch
≤ inf

t′≥0

∏
j

(∑
i

et
′ci,jpoi(kyj , i)

)hP
yj

= inf
t′≥0

exp

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)

 .

Therefore, the following is an upper bound of the log of the error probability δ obtained by
semilinear testers:

min
c

max
Q:|Q−P |1≥ε

log err(Q, c)
Ch
≤ min

c
max

Q:|Q−P |1≥ε
max

inf
t≤0

∑
j,x

h
Q|yj
x log

∑
i

etci,jpoi(kx, i), inf
t′≥0

∑
j

hPyj log
∑
i

etci,jpoi(kyj , i)


The constraint that Q is a distribution such that |Q − P |1 ≥ ε is informally stated, and

must be rephrased in terms of the explicit optimization variables h
Q|yj
x . We have 3 constraints

on the histogram h
Q|yj
x : the ≥ ε distance constraint, the fact that for each j, the total number

of domain elements described by h
Q|yj
x for that j equals the corresponding quantity hPyj , and the

constraint that h
Q|yj
x ≥ 0; for the sake of efficient optimization, we must relax the problem by

omitting any integrality constraint. Namely, even though h
Q|yj
x represents the number of domain
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elements satisfying certain conditions, we do not enforce the restriction that it must have an integer
value. (The question of whether this relaxation is “safe” is resolved, eventually, by the matching
upper bound of Theorem 4.) We thus have our main expression upper-bounding the overall failure
probability of our testing problem:

min
c

max


max

hq|yj :
∑

j

∑
x h

Q|yj
x |x−yj |≥ε

∀j,
∑

x h
Q|yj
x =hP

yj

∀j,∀x, h
Q|yj
x ≥0

min
t≤0

∑
x,j

h
Q|yj
x log

∑
i

etci,jpoi(kx, i) , min
t′≥0

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)


(1)

3 Upper bound

As a reminder, Equation 1 describes the best error bound of any semilinear tester, and we have
denoted this quantity as ∆(P, k, ε). In this section, we analyze the structure of the coefficients ci,j
corresponding to this best error bound, as well as showing other desirable properties of the optimal

variable values of Equation 1. Later, in Section 4, we show how to use the optimum value of h
Q|yj
x

to construct a distribution-over-distributions that will form the basis of the lower bound analysis,
thus yielding the main theorem.

For the sake of applying Sion’s minimax theorem soon, we first lower bound Equation 1, by
restricting the domain of the inner max to “= ε” instead of “≥ ε”. Later on, with Lemma 9, we
actually show that this lower bound is tight, so we incur no loss here.

min
c

max


max

hq|yj :
∑

j

∑
x h

Q|yj
x |x−yj |=ε

∀j,
∑

x h
Q|yj
x =hP

yj

∀j,∀x, h
Q|yj
x ≥0

min
t≤0

∑
x,j

h
Q|yj
x log

∑
i

etci,jpoi(kx, i) , min
t′≥0

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)


(2)

We aim to simplify this optimization problem by reducing the number of nested layers of min
and max; and towards this end, we aim to swap the order of the max and the min of the first term.
We will utilize Sion’s minimax theorem to achieve this. We first state the theorem for clarity.

Lemma 5 (Sion’s minimax theorem; [Sio58]). Let X and Y be convex spaces, one of which is
compact. Let f : X × Y → R be a function such that for all x ∈ X, y ∈ Y ,

• f(x, ·) is upper semi-continuous and quasi-concave on Y ,

• f(·, y) is lower semi-continuous and quasi-convex on X,

12



then
sup
y

inf
x
f(x, y) = inf

x
sup
y

f(x, y).

The function being optimized is a convex function of t because etci,jpoi(kx, i) is log-convex, and
sums of log-convex functions are log-convex, and thus its logarithm is convex. The function being

optimized is linear in the maximization variable h
Q|yj
x . The domains of optimization are all convex

as they are defined by linear constraints. We use limits to argue that the continuous domain of x
can be discretized (in the limit) without changing the optimum. In the following lemma, we will

show the compactness of the space of h
Q|yj
x .

Lemma 6. Focusing on some particular j, and considering histogram locations x that are multiples
of some fixed spacing α, we claim that the set of histograms satisfying the relaxed constraints∑

x hx|x− yj | ≤ ε, and
∑

x hx = hPyj and ∀x, hx ≥ 0 is compact when considered as a subset of the
set of sequences, in the ℓ1 norm.

Proof. We reparameterize hx to index by nonnegative integers i, so that hi denotes what we pre-
viously referred to as hαi.

The constraints on h, reexpressed, now read:
∑∞

i=0 hi|αi − yj | ≤ ε, and
∑∞

i=0 hi = hPyj and
∀i ≥ 0, hi ≥ 0. We show that this is a compact set by equivalently showing that this set is closed,
bounded, and equismall at infinity[Tre16]. The set is clearly closed; it is bounded since we explicitly
have that the sum of the entries of h equals the fixed parameter hPyj . Equismall at infinity means
that for every β > 0, there exists an in integer iβ such that

∑∞
i=iβ

|hi| ≤ β for all h. Explicitly, we

take iβ such that αiβ − yj ≥ ε
β . Thus for all i ≥ iβ, we have that |αi− yj | ≥ ε

β . Thus suppose, for

the sake of contradiction, that
∑∞

i=iβ
|hi| > β; multiplying these last two inequalities (and using

hi ≥ 0) yields that
∑∞

i=iβ
hi|αi − yj | > β ε

β = ε, contradicting the first constraint. Thus these
constraints describe a compact set in the ℓ1 topology.

Thus, we can apply Lemma 6 to each j separately, and conclude that the constraints on the
histogram in Equation 2 describe a set that lies in the direct product (across the finite set of
j) of compact sets, and thus is itself compact. Therefore, we can apply Sion’s minimax theo-
rem(Lemma 5).

Thus Equation 2 equals

min
c

max


min
t≤0

max
hq|yj :

∑
j

∑
x h

Q|yj
x |x−yj |=ε

∀j,
∑

x h
Q|yj
x =hP

yj

∀j,∀x, h
Q|yj
x ≥0

∑
x,j

h
Q|yj
x log

∑
i

etci,jpoi(kx, i) , min
t′≥0

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)


(3)

We can pull both min’s outside of the brackets, and also outside of the max, and hence merge
them with the outer min to yield:
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min
c,t≤0,t′≥0

max


max

hq|yj :
∑

j

∑
x h

Q|yj
x |x−yj |=ε

∀j,
∑

x h
Q|yj
x =hP

yj

∀j,∀x, h
Q|yj
x ≥0

∑
x,j

h
Q|yj
x log

∑
i

etci,jpoi(kx, i) ,
∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)


(4)

The inner max is now a linear program over hq|yj , so we take its dual. Let α be the (scalar)
dual variable for the first constraint; let γ be the dual variable for the second constraint, a vector
with an entry for each j.

min
c,t≤0,t′≥0

max

 min
α,γ:

∀j,∀x≥0, α|x−yj |+γj≥log
∑

i e
tci,jpoi(kx,i)

εα+
∑
j

γjh
P
yj ,

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)


(5)

We pull the min outside of the brackets, outside of the max, and merge it with the outer min:

min
c,t≤0,t′≥0,α,γ:

∀j,∀x≥0, α|x−yj |+γj≥log
∑

i e
tci,jpoi(kx,i)

max

εα+
∑
j

γjh
P
yj ,

∑
j

hPyj log
∑
i

et
′ci,jpoi(kyj , i)

 (6)

Summarizing the above, we have:

Lemma 7. Equation 2 equals Equation 6.

Next, to understand how Equation 2 relates to Equation 1, we need to understand the role of
the dual and the dual variable α.

Lemma 8. The optimum of Equation 6 is ≤ 0. If the optimum is 0, then there is an optimal
solution with α = 0; and if the optimum of Equation 6 is < 0 then α < 0.

Proof. If the value of Equation 6 equals 0, then, consider setting α = γj = t = t′ = 0, in which case
all the exponentials will equal 1, and, since

∑
i poi(kx, i) = 1 for any x, both logarithm expression

equal 0, and the constraints are satisfied and the overall expression has value 0. Thus we have
constructed an optimal solution satisfying the first claims of the lemma. Further, the optimal value
can never be > 0 because the solution above gives an objective value of 0, no matter what the the
inputs ε, hPyj , y are.

For the last part of the lemma, suppose for the sake of contradiction α ≥ 0. Consider setting x
from the constraints below the min to equal yj .

Then, the first term in the max is at least∑
j

γjh
P
yj ≥

∑
j

hPyj log
∑
i

etci,jpoi(kyj , i)
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The right hand side is convex as a function of t (since etci,j is log-linear and thus log-convex,
and the sum of log-convex functions is log-convex; hence its logarithm is convex, and the entire
expression is a sum of convex functions and hence convex). Further, its value at t = 0 is 0. Thus,
by convexity, its values at t ≤ 0 and t′ ≥ 0 cannot both be negative. Therefore the maximum of
these is ≥ 0, contradicting our assumption that the objective is negative.

Lemma 9. Equation 1 equals Equation 2.

Proof. Recall that α in Equation 6 is the dual variable corresponding to the constraint of Equation 3
that the ℓ1 distance from the hypothesis equals ε. Thus the fact that Equation 6 has an optimal
solution with α ≤ 0, from Lemma 8, means that the optimum of Equation 3 would be unchanged if
we changed this = ε constraint to ≥ ε. Equation 2 with a ≥ ε constraint is at most Equation 3 with
a ≥ ε constraint (trivially, from the “weak” direction of minimax), which from the above equals
Equations 2 and 3 as written. Conversely, Equation 2 with a ≥ ε bound is at least Equation 2 as
written, since enlarging the domain of a maximum can only increase its value. Thus Equation 2
must equal Equation 2 with a ≥ ε bound, namely Equation 1.

Combining Lemmas 7 and 9 yields that Equation 1 equals Equation 6.
Looking closely at the inner max in Equation 6, we note that the first term is the dual of the

type II error probability i.e, the probability of the tester accepting a sample from Q, while the
second term is the type I error probability, i.e. the probability of the tester rejecting a sample from
P . Intuitively, we expect both error probabilities to be equal in the optimum. We formalize this
intuition with the following lemma.

Lemma 10. There exists an optimum for Equation 6 such that the two terms in the max are equal.

Proof. Letting α = γj = t = t′ = 0 yields a feasible point for Equation 6 with both terms in the
max equal to 0.

The only remaining case is when the value of the optimum is < 0. Observe that in this scenario,
t′ > 0 (otherwise, t = 0 and thus the second term of the max is equal to 0, and hence the overall
value of the objective function is at least 0). Consider an optimal solution c,γ. We separately
consider the cases where the first term of the max is bigger, or smaller.

Suppose the first term is bigger. Then since t′ > 0, find a nonzero hypothesis value hPyj , and
increase the corresponding ci,j until the second term of the max equals the first. The variable ci,j
only occurs in one other place, namely the constraint of the min. Because t ≤ 0, increasing ci,j
will decrease the right-hand side of the inequality constraint, and thus will not violate it. Hence
we have constructed a feasible solution with the same objective value but which now satisfies the
claim of the lemma.

For the other case, suppose the first term is smaller. We increase γ until the first term equals the
second term. The only other places γ appears are on the left-hand side of the inequality constraints
below the min; increasing α can only increase this left-hand side. Hence we have constructed a
feasible solution with the same objective value but which now satisfies the claim of the lemma.

We next split Equation 6 into a component for each j, expressing the overall optimization as a
“nested” optimization, choosing α, t, t′ on the outside, and coefficients κi,j inside. Here we use κi,j
in place of ci,j and u to replace t and t′. The following lemma will show that this change does not
have any effect on the results of our optimization problem. And then the further lemmas will rely
on this nested optimization to derive clean structural properties of the optimum.
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Lemma 11. Equation 6 equals

min
α≤0

u∈[0,1]

εα(1− u) +
∑
j

min
κi,j

(
uhPyj

(
log
∑
i

e(1−u)κi,jpoi(kyj , i)

)
+ (1− u)hPyj max

x≥0

(
−α|x− yj |+ log

∑
i

e−uκi,jpoi(kx, i)

))
(7)

Proof. Given any optimal point of Equation 6, specified by ci,j , t ≤ 0, t′ ≥ 0, α, γj , we consider it in
the context of Equation 7 (noting, by Lemma 8 that α ≤ 0 at optimum), and setting κi,j = (t′−t)ci,j
and u = − t

t′−t (with u set arbitrarily if t = t′ = 0). Substituting in the relation tci,j = −uκi,j into
the constraint in Equation 6, we have

γj ≥ max
x≥0

(
−α|x− yj |+ log

∑
i

e−uκi,jpoi(kx, i)

)
(8)

And thus, since (1 − u)κi,j = t′ci,j , the convex combination of the two terms in the max of
the objective of Equation 6, with weights 1− u, u, after substituting Equation 8 for each γj in the
first term, is greater than or equal to the objective function of Equation 7. Thus by the triangle
inequality, this max in Equation 6—which is its objective function value at optimum—is at least the
feasible value we have found for Equation 7. Thus Equation 7 is less than or equal to Equation 6.

Conversely, given any feasible point of Equation 7, we construct the corresponding feasible point
of Equation 6, by setting t = −u, t′ = 1 − u (so that t′ − t = 1), ci,j = κi,j + s for a shift s to be
determined later, and setting

γj = max
x≥0

(
−α|x− yj |+ log

∑
i

etci,jpoi(kx, i)

)

We note that γj depends linearly on s with slope t, and thus the first term of the max in the
objective of Equation 6 depends linearly on s with slope t (since

∑
j h

P
yj = 1). Similarly, the second

term in the max in the objective of Equation 6 depends linearly on s with slope t′. Thus we pick
s which makes these two terms equal.

Thus the objective value of Equation 6 here equals both of the two terms of its max (because
we just chose s to make these terms equal); and in particular equals the convex combination of
them with weights 1−u = t′, u = −t, which is thus exactly the objective value of Equation 7, since
the contributions of s (whatever they are) exactly cancel with the weights. Thus Equation 6 is less
than or equal to Equation 7.

Combining both parts yields the desired equality.

We now show the uniqueness of the optimal solutions for κi,j in Equation 7, up to an irrelevant
j-dependent additive shift.

Lemma 12. The inner minimization in Equation 7, if u ∈ (0, 1), has a unique solution for κ·,j,
for each j, up to an additive shift.

Proof. Consider two different optima, κi,j and κ′i,j . Since Equation 7 is convex in κ, and in partic-
ular, is the sum of convex terms, we have that each term must in particular be linear at any convex
combination of κi,j and κ′i,j . In particular, log

∑
i e

(1−u)κi,jpoi(kyj , i) must be linear, meaning that
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∑
i e

(1−u)κi,jpoi(kyj , i) must be exponential as we interpolate between κi,j and κ′i,j . But the only
way for the sum of several exponentials to equal an exponential is if all the exponentials have the
same base; thus κi,j = κ′i,j + s for some additive shift, as claimed.

This shift-invariant structure of κi,j ’s allows us an extra degree of freedom, as we can choose
the shifting factor to further simplify the equation. In the following lemma, we reexpress the inner
minimization in Equation 7 by taking its dual and then simplifying while utilizing the shift-invariant
property; this also allows us to find the crucial and insightful closed form for κ·,j .

Lemma 13. The inner minimization in Equation 7, if u ∈ (0, 1), can be expressed for any j as

max
ax≥0

hPyj log

∑
i (
∑

x axpoi(kx, i))
1−u poi(kyj , i)

u(∑
x axe

α|x−yj |
)1−u (9)

where the optimal variable values of Equation 7 can be expressed in terms of the optimal variables
of Equation 9 as

κi,j = log
∑
x

ax
poi(kx, i)

poi(kyj , i)
(10)

Proof. We first point out that because Equation 7 is invariant to shifts in κi,j for each j, there
is some shift of the optimal κi,j that makes the inner max equal to 0. Thus the optimum is
unchanged if we restrict the inner maximum to have value ≤ 0 and remove this term from the
objective. Exponentiating both the objective and the new constraints—and for now omitting the
scaling factor uhPyj from the objective function, since it merely scales the optimum—yields

min
κ·,j

(∑
i

e(1−u)κi,jpoi(kyj , i)

)

such that ∀x, 1 ≥ e−α|x−yj |

(∑
i

e−uκi,jpoi(kx, i)

)
(11)

The dual of this convex optimization is then:

max
λx≥0

min
κi,j

(∑
i

e(1−u)κi,jpoi(kyj , i)

)
+
∑
x

λx

(
−1 + e−α|x−yj |

(∑
i

e−uκi,jpoi(kx, i)

))
(12)

To solve the inner minimization, we compute the derivative with respect to a single κi,j :

(1− u)e(1−u)κi,jpoi(kyj , i) +
∑
x

λxe
−α|x−yj |(−u)e−uκi,jpoi(kx, i)

=e(1−u)κi,j (1− u)poi(kyj , i) + e−uκi,j
∑
x

λxe
−α|x−yj |(−u)poi(kx, i)

Setting this to 0 yields κi,j = log u
1−u

∑
x λxe

−α|x−yj | poi(kx,i)
poi(kyj ,i)

Plugging this into Equation 12 (to evaluate the dual problem), the objective function is:
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∑
i

(
u

1− u

∑
x

λxe
−α|x−yj | poi(kx, i)

poi(kyj , i)

)1−u

poi(kyj , i)


+
∑
x

λx

(
−1 + e−α|x−yj |

(∑
i

(
u

1− u

∑
x

λxe
−α|x−yj | poi(kx, i)

poi(kyj , i)

)−u
poi(kx, i)

))

which simplifies to

∑
i

1

u

(
u

1− u

∑
x

λxe
−α|x−yj |poi(kx, i)

)1−u

poi(kyj , i)
u −

∑
x

λx

Since this expression must be maximized in terms of λx, it must in particular be maximized
with respect to scalings of λx. Replacing λx with ezλx for some parameter z, we calculate that the
maximum over z of this expression equals(∑

i

(∑
x λxe

−α|x−yj |poi(kx, i)
)1−u

poi(kyj , i)
u

(
∑

x λx)
1−u

) 1
u

For convenience, we reexpress λx as axe
α|x−yj |, where for each x, we have ax is nonzero if and

only if λx is nonzero. Taking the logarithm of this, and multiplying back by the factor uhPyj that

we dropped earlier yields that the inner minimization of the jth term in Equation 7 equals the
maximization

max
ax≥0

hPyj log

∑
i (
∑

x axpoi(kx, i))
1−u poi(kyj , i)

u(∑
x axe

α|x−yj |
)1−u

as claimed. Finally, we point out that, defining κi,j in terms of ax yields κi,j = log u
1−u

∑
x ax

poi(kx,i)
poi(kyj ,i)

;

since κi,j in Equation 7 is shift-invariant, and ax is scale-invariant (since we have rescaled by the
optimal scaling factor ez), we can drop the u

1−u factor without affecting anything, yielding Equa-
tion 10.

The above expression for the optimal values κi,j can be viewed as representing κi,j , for any fixed
j, as the sum of exponentials in i:

κi,j = log
∑
x

ax
poi(kx, i)

poi(kyj , i)
= log

∑
x

axe
k(yj−x)(x/yj)

i (13)

We will now show a crucial property of the hardest distribution Q with respect to κi,j : each
distinct probability mass yj in P is replaced by exactly two probability masses, which we denote as
x1,j and x2,j . This property is known to be the worst case for ε-far uniformity testing for both the
TV and collision tester [DGPP18]. In the context of Equation 10, for any fixed j, we would expect
that exactly two ax’s are non-zero, which is formally shown below in Lemma 16. En route to this
lemma, we will show an additional property of κ as well as a technical lemma to aid with the final
analysis of the two-point structure.
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Lemma 14. The optimal value of κi,j given by Equation 10 is convex as a function of i (where
Equation 10 applies, by Lemma 13, if u ∈ (0, 1) ).

Proof. We reexpress Equation 10 as Equation 13, and point out that exponential functions are
log-convex, and sums of log-convex functions are log-convex, yielding that κi,j is a convex function
of i.

Lemma 15. Suppose g : Z+ → R is log-concave. Then
∑∞

k=0 g(k)poi(λ, k) is a log-concave function
of λ for λ ≥ 0; and if g is strictly log-concave somewhere, then this function is strictly log-concave
for all λ > 0.

Proof. We instead work with the function f(λ) = eλ
∑∞

k=0 g(k)poi(λ, k) =
∑∞

k=0 g(k)λ
k 1
k! , which

differs from the desired function only in the eλ factor, and thus is log-concave exactly when the
original function is.

We have f ′(λ) =
∑∞

k=0 g(k + 1)λk 1
k! and f ′′(λ) =

∑∞
k=0 g(k + 2)λk 1

k! . We note that we can
extend the sum down to, say, k = −1 under the convention that (−1)! = ∞.

The condition for log-concavity is: f ′(λ)2 − f ′′(λ)f(λ) ≥ 0. Writing this out as a double sum:

f ′(λ)2 − f ′′(λ)f(λ) =
∞∑

j,k=0

(g(j + 1)g(k + 1)− g(j + 2)g(k))λj+k 1

j!k!

Replacing j by j − 1 yields the identical sum

∞∑
j=1

∞∑
k=0

(g(j)g(k + 1)− g(j + 1)g(k))λj+k−1 1

(j − 1)!k!

Adding this sum to the corresponding sum with j, k swapped (where we symmetrize the domain
of the sum to the set of integers j, k ≥ 0 where j + k ≥ 1, which does not change the summation):∑

j,k≥0
j+k≥1

λj+k−1(g(j)g(k + 1)− g(j + 1)g(k))

(
1

(j − 1)!k!
− 1

(k − 1)!j!

)

We now point out that this sum is nonnegative term-by-term: the expression g(j)g(k + 1) −
g(j + 1)g(k) is nonnegative for log-concave g when j ≥ k, and symmetrically, nonpositive when

j ≤ k; the term
(

1
(j−1)!k! −

1
(k−1)!j!

)
is also nonnegative when j ≥ k and nonpositive when j ≤ k;

hence their product is always nonnegative, meaning the overall log-concavity condition is the sum
of nonnegative terms, and is thus nonnegative, as desired.

To show strict log-concavity, we point out that the term
(

1
(j−1)!k! −

1
(k−1)!j!

)
is strictly positive

whenever j > k; and thus if there is a location ℓ ≥ 1 (namely in the interior of Z+) such that
g(ℓ + 1)2 > g(ℓ)g(ℓ + 2) then, letting j = ℓ and k = ℓ − 1 yields g(j)g(k + 1) − g(j + 1)g(k) > 0
and hence the overall log-concavity expression is strictly positive, multiplied by some power of
λ > 0.

We are now ready to prove the two-point structure of q.
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Lemma 16. For any fixed α < 0, u ∈ (0, 1), and fixed j, the inner minimization of Equation 7 will
have have a solution κi,j that, when expressed via Equation 10, has exactly two x such that ax ̸= 0,
which we denote as x1,j < x2,j, and which satisfy x1,j < yj < x2,j. We normalize so that we express
ax1,j = qj and ax2,j = 1− qj, for some qj ∈ (0, 1)—taking advantage of the fact that Equation 7 is
invariant to shifting κ·,j, and thus we can scale ax arbitrarily.

Proof. If κi,j is exactly linear as a function of i (for our fixed j), namely κi,j = a + bi, then,
expressing κi,j in the form of Equation 13, there must be a single nonzero ax.

Otherwise, since by Lemma 14, κi,j is a convex function of i, then κi,j must be strictly convex
(since we already covered the case where it is linear). Thus by Lemma 15, we have that the
expression log

∑
i e
−uκi,jpoi(kx, i) in the inner max of Equation 7 is a strictly concave function of

x; and thus must intersect with each branch of the absolute value function at most once, namely
at most twice in total.

Thus, considering the dual form of Equation 7 analyzed in the proof of Lemma 13, by comple-
mentary slackness the dual variable λx must be nonzero in at most 2 locations. And by definition
of ax, it is nonzero if and only if the corresponding λx is.

Thus in all cases, the maximization maxx−α|x − yj | + log
∑

i e
−uκi,jpoi(kx, i) is tight for at

most 2 points, with at most one intersection point per branch of α|x − yj |. Thus we call x1,j the
(possible) intersection point below yj and call x2,j the (possible) intersection point above yj .

If there are no intersections, than ax = 0 everywhere, and κi,j = −∞ and the expression
log
∑

i e
−uκi,jpoi(kx, i) is infinite (since t < 0) and thus the optimization of Equation 11 is infeasible,

so this cannot happen. If there is one intersection, then, there is at most one nonzero ax (by
complementary slackness), and thus κi,j is linear in i by Equation 13. If κi,j is linear in i then∑

i e
−uκi,jpoi(kx, i) is linear in x. Now, if a linear function is bounded by the constraint α|x−yj |+β

and intersects it once, the intersection point must be at x = 0. Thus the only nonzero ax can be a0.
This leads to κi,j = log a0e

k(yj−0)(0/yj)
i, which when i ≥ 1 is log 0 = −∞. As above, the expression

log
∑

i e
−uκi,jpoi(kx, i) is thus infinite (since u > 0) and thus the constraint of Equation 11 is

infeasible, so this cannot happen.
Thus it must be that we have two intersection points, x1,j and x2,j . Namely, α|x − yj | + γj =∑

i e
−uκi,jpoi(kx, i) at both x = x1,j and x = x2,j . Neither x1,j nor x2,j can equal yj since∑

i e
−uκi,jpoi(kx, i) is smooth, and thus the maximum of this smooth function plus the “v-shaped”

function −α|x− yj | cannot occur at the corner of the “v” (since α < 0).

We next show, via a relatively straightforward calculation, that we can explicitly find a negative
objective function value for our optimization problem, hence implying that the global optimum
value is < 0. We will then use this to rule out certain pathological behavior that could occur when
certain variables equal 0.

Lemma 17. The optimum value of Equation 7 is < 0, attained in the limit as α → 0 from

the negative side, and setting u = 1
2 , τ =

(
−α

y2j
uk2

) 1
3

, x1,j = yj − τ , x = yj + τ , and κi,j =

log
poi(kx1,j ,i)+poi(kx2,j ,i)

2poi(kyj ,i)
.

The final result of this section, and of the upper-bound portion of our analysis, puts together the
pieces we have shown so far to summarize the properties of the optimum of Equation 7—and hence
also Equation 1. We use the structural properties of the upper bound to reexpress our optimal
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objective function value, via Equation 14, in a form that will show up crucially in our lower bound,
in Lemma 30.

Lemma 18. When Equation 7 is optimized for α, u, κi,j, then α < 0, u ∈ (0, 1), and (the optimal)

κi,j can be expressed via Lemma 16 as κi,j = log
qjpoi(kx1,j ,i)+(1−qj)x2,j

poi(kyj ,i)
, and its value equals

εα(1− u) +
∑
j

hPyj log

∑
i(qjpoi(kx1,j , i) + (1− qj)poi(kx2,j , i))

1−upoi(kyj , i)
u

(qjeα|x1,j−yj | + (1− qj)eα|x2,j−yj |)1−u
(14)

which by Lemmas 7, 9, and 11 equals Equation 1. Further, for these α, u, qj , x1,j , x2,j, the derivative
of Equation 14 with respect to α or u or any qj is 0.

Proof. We first show that we can apply Lemma 16. From Lemma 17, the objective function at
optimum must be negative. We now point out that, since Equation 7 equals Equation 6 (by
Lemma 11), then Lemma 8 yields that α < 0. Next, we point out that u ̸= 1 because if u = 1
then all the terms in Equation 7 vanish, leaving an objective of 0; but the objective is actually
negative. Finally, we point out that u ̸= 0, since otherwise, if u = 0, the inner minimization of
Equation 7 contains the term maxx≥0−α|x−yj | which is infinite since α < 0, and hence contradicts
the fact that the optimum is negative. Thus the conditions of Lemma 16 apply, namely α < 0 and
u ∈ (0, 1).

We can thus apply Lemma 13 for each j, where κi,j is reexpressed using the 2-point form of
Lemma 16, and we use the other part of Lemma 13 to say that the inner minimization of Equation 7
equals the inner maximization below, to conclude that Equation 7 equals

min
α<0,u∈(0,1)

εα(1− u) +
∑
j

max
qj ,x1,j ,x2,j

hPyj log

∑
i(qjpoi(kx1,j , i) + (1− qj)poi(kx2,j , i))

1−upoi(kyj , i)
u

(qjeα|x1,j−yj | + (1− qj)eα|x2,j−yj |)1−u


(15)

By Lemmas 7, 9, and 11 we have that Equation 7 equals Equation 1, so thus Equation 14 equals
Equation 1, as desired.

Since the function being optimized in Equation 15 is smooth, and the inner maximization has
a unique solution (by Lemma 12), and the optimum is attained for α, u, qj in the interior of their
domains (for qj this is from Lemma 16), thus the derivatives of Equation 14 with respect to any of
α, u, qj are all 0, as desired.

4 Lower bound

Given a hypothesis distribution specified by P , and a number of samples k, we derive a particular
distribution “Q” that is far from the hypothesis P , yet hard to distinguish from it, and we derive
our lower bounds from this. If Q is ε-far from P and no k-sample tester can distinguish P from
Q with success probability ≥ 1− δ, then, a fortiori, no k-sample tester can distinguish P from the
entire set of distributions ≥ ε distance from P , with success probability ≥ 1− δ.

Instead of providing a single distribution Q, we instead provide a distribution over distributions
Q[ε,ε′], each of whose members is itself ≥ ε-far from P , and such that no Poi(k)-sample tester can
distinguish P from a random distribution from Q[ε,ε′] with expected success probability ≥ 1− δ.
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Explicitly, for each domain element, we will flip a (weighted) coin between 2 probabilities; we
call this a “coin flip distribution”; we then condition on the ℓ1 distance of this distribution from
our hypothesis P being in the interval [ε, ε′], and call Q[ε,ε′] a “conditional coin flip distribution”.
We choose ε′ later so that it converges to ε.

In this section we will find it convenient to regard j as representing a single domain element,
instead of as an equivalence class of identical domain elements; thus yj refers to the probability of
domain element j in the hypothesis; and we avoid referring to hPyj .

Definition 19. Let Q be the distribution-over-distributions defined according to the following
process. (We note that, because we are in the Poissonized setting, the total probability mass of
a distribution output by Q need not be exactly 1.) From Lemma 18, we take optimal coefficients
qj , x1,j , x2,j for each j. For each domain element, with associated j, we flip a weighted coin, and
with probability qj set this domain element to have probability x1,j and otherwise, have probability
x2,j .

We further define Q[ε,ε′] to be a conditional distribution, where we sample a distribution q from
Q but proceed to return q conditioned on whether its ℓ1 distance from P is ∈ [ε, ε′].

For a histogram h, recording for each domain element, the number of times it was sampled,
we let Q(h),Q[ε,ε′](h) denote the probability of h appearing as this histogram from Poi(k) samples
from q drawn respectively from Q or Q[ε,ε′]. We will also sometimes consider a realization r of

the coin flip process in Q, where rj denotes whether the jth coin is heads or tails. Let Q(h, r)
denote the joint probability that the coin flips realized outcome r, and then that the histogram
sampled from this was h. For the sake of convenience, we define the joint probability of observing a
histogram h and where the coin flip realization has ℓ1 distance ε from the hypothesis: Q(h, [ε, ε′]) =∑

r:
∑

j |xrj ,j
−yj |∈[ε,ε′]Q(h, r); and we define the probability that the coin flip realization has ℓ1

distance ∈ [ε, ε′] from the hypothesis, regardless of the histogram sampling process: Q([ε, ε′]) =∑
hQ(h, [ε, ε′]). Using this notation, we can express the law of conditional probability: Q[ε,ε′](h) =

Q(h,[ε,ε′])
Q([ε,ε′]) .

For the sake of completeness, we state and prove the standard Neyman-Pearson Lemma, showing
that, to distinguish 2 hypotheses, the optimal tester (over all possible testers!) is a log-likelihood
threshold tester.

Lemma 20 (Neyman-Pearson). The tester for distinguishing P from Q[ε,ε′] such that the max of
type-1 and type-2 error is minimized, is defined by a log-likelihood threshold γ, and a tie-breaking

probability λ, where the tester says “no” if log
Q[ε,ε′](h)

P (h) > γ, “yes” if the log-likelihood is < γ,
and flips a λ-biased coin if the log-likelihood equals γ. Equivalently, the tester says “no” according

to a λ-weighted coin flip between the output of whether log
Q[ε,ε′](h)

P (h) ≥ γ and the strict version

log
Q[ε,ε′](h)

P (h) > γ.

Proof. First, we will define the log-likelihood threshold tester as follows:

Γ(h) =


1 if log

Q[ε,ε′](h)

P (h) > γ

1 with probability pγ if log
Q[ε,ε′]](h)

P (h) = γ

0 otherwise

(16)
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We will then consider the best log-likelihood threshold tester

argmin
Γ

max

{
Pr

h←P
[Γ(h) = 1] , Pr

h←Q[ε,ε′]
[Γ(h) = 0]

}

We claim that this minimum is achieved when Prh←P [Γ(h) = 1] = Prh←Q[ε,ε′] [Γ(h) = 0]. Sup-

pose for the sake of contradiction that when it takes its minimum, we have Prh←P [Γ(h) = 1] <
Prh←Q[ε,ε′] [Γ(h) = 0]. As we can choose pγ and γ as we wish, so we can increase Prh←P [Γ(h) = 1]

by increasing pγ and γ, and by changing this, Prh←Q[ε,ε′] [Γ(h) = 0] will not increase. Thus, we can

get a better tester unless Prh←P [Γ(h) = 1] = Prh←Q[ε,ε′] [Γ(h) = 0], which contradicts the hypoth-

esis that this is the best tester. A corresponding proof applies for the case Prh←P [Γ(h) = 1] >
Prh←Q[ε,ε′] [Γ(h) = 0]. Thus, the optimal log-likelihood threshold tester Γ(·), where the max of
type-1 error and type-2 error is minimized, has these two terms are equal to each other.

We set the tester Γ(h) as the tester above and γ as the threshold in the tester above, we will
show that this is the optimal tester that will minimize the max of type-1 error and type-2 error
among all testers Γ∗(h). In order to do that, notice the following:

E
h←Q[ε,ε′]

[Γ(h)]− E
h←Q[ε,ε′]

[Γ∗(h)]− eγ
(

E
h←P

[Γ(h)]− E
h←P

[Γ∗(h)]

)
=
∑
h

(Γ(h)− Γ∗(h))
(
Q[ε,ε′](h)− eγP (h)

)
=
∑
h∈L

(Γ(h)− Γ∗(h))
(
Q[ε,ε′](h)− eγP (h)

)
+
∑
h∈M

(Γ(h)− Γ∗(h))
(
Q[ε,ε′](h)− eγP (h)

)
=
∑
h∈L

(1− Γ∗(h))
(
Q[ε,ε′](h)− eγP (h)

)
+
∑
h∈M

(−Γ∗(h))
(
Q[ε,ε′](h)− eγP (h)

)
Here L = {h : Q[ε,ε′](h) > eγP (h)}, M = {h : Q[ε,ε′](h) < eγP (h)}. So we have Γ(h) = 1, when
h ∈ L and Γ(h) = 0, when h ∈ M . And notice that Γ∗(h) ∈ [0, 1], so both components of the
equation above are non-negative, which means the equation above is non-negative. And we notice
that:

E
h←Q[ε,ε′]

[Γ(h)]− E
h←Q[ε,ε′]

[Γ∗(h)]− eγ
(

E
h←P

[Γ(h)]− E
h←P

[Γ∗(h)]

)
= Pr

h←Q[ε,ε′]
[Γ(h) = 1]− Pr

h←Q[ε,ε′]
[Γ∗(h) = 1]− eγ

(
Pr

h←P
[Γ(h) = 1]− Pr

h←P
[Γ∗(h) = 1]

)
= Pr

h←Q[ε,ε′]
[Γ∗(h) = 0]− Pr

h←Q[ε,ε′]
[Γ(h) = 0]− eγ

(
Pr

h←P
[Γ(h) = 1]− Pr

h←P
[Γ∗(h) = 1]

)
And by the definition of Γ(h), we know that Prh←P [Γ(h) = 1] = Prh←Q[ε,ε′] [Γ(h) = 0]. Then

suppose Γ∗ is a better tester, which means Prh←Q[ε,ε′] [Γ
∗(h) = 0] < Prh←Q[ε,ε′] [Γ(h) = 0] and

Prh←P [Γ∗(h) = 1] < Prh←P [Γ(h) = 1]. However, this will make the equation above negative,
which contradicts the fact that the equation is non-negative for any possible tester Γ∗. So there is
no such a tester Γ∗(h) with a better max of type-1 and type-2 error than Γ(h). That finishes the
proof.
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Given that the optimal tester for distinguishing 2 hypotheses is a log-likelihood threshold tester,
we now look to understand Chernoff bounds on the performance of such testers.

Lemma 21. For any two distributions P,Q, we have that the log-likelihood tester with threshold γ
has failure probability bounded by the Chernoff bound

Pr
x←P

[
log

Q(x)

P (x)
≥ γ

]
Ch
≤ min

u≤1

∑
x

P (x)uQ(x)1−ue−γ(1−u)

Proof. We simply take the Chernoff bound of the distribution that takes value log Q(x)
P (x) with prob-

ability P (x); for Chernoff parameter t, quick simplification gives u = 1− t; hence t ≥ 0 translates
to the bound u ≤ 1.

Plugging in P,Q[ε,ε′] to Lemma 21 with some threshold γ, and also, symmetrically, plugging in
Q[ε,ε′], P with the corresponding threshold −γ yields

Corollary 22.

min
γ

max

{
Pr

h←P

[
log

Q[ε,ε′](h)

P (h)
≥ γ

]
, Pr
h←Q[ε,ε′]

[
log

Q[ε,ε′](h)

P (h)
≤ γ

]}
Ch
≤ min

u∈[0,1]

∑
h

P (h)uQ[ε,ε′](h)
1−u

Proof. Explicitly plugging into Lemma 21 (where for the second invocation, the expression inside
the probability is easily seen to be the negative of what is in Lemma 21, and hence equivalent) the
left hand side is bounded by

min
γ

max

{
min
u≤1

∑
h

P (h)uQ[ε,ε′](h)
1−ue−γ(1−u) , min

u≥0

∑
h

P (h)uQ[ε,ε′](h)
1−ueγu

}
(17)

If γ = 0, then both components of the max are equal; and the min is attained at u ∈ [0, 1] since∑
h P (h)uQ[ε,ε′](h)

1−u equals 1 at u = 0 and u = 1 and is convex; and thus the overall expression
equals minu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u as claimed.
Otherwise, without loss of generality, we consider the case γ > 0.
If 0 is not an optimal u for minu≥0

∑
h P (h)uQ[ε,ε′](h)

1−ueγu then the eγu term is strictly greater
than 1, and thus the min is greater than minu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u, implying that γ is not
actually the optimal choice of γ, a contradiction.

Otherwise, 0 is an optimal u, meaning that our expression is
∑

hQ[ε,ε′](h) = 1. And if 1 is the
optimal value, then since this value is attained at both u = 0 and u = 1 and the expression aub1−u

is convex in u for any a, b ≥ 0, we have that the Equation 17 attains its minimum of 1, for γ = 0,
equaling minu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u as desired.

We point out that the Chernoff bounds for a ≤ tail are the same as those for a < tail.
In light of Lemma 20, Corollary 22 is bounding the performance of the best distinguisher for P

versus Q[ε,ε′].
And the best distinguisher of P from all distributions ≥ ε far from P must in particular

distinguish P from Q[ε,ε′] .
From Lemma 20, the error of the optimal tester is at least

min
γ

max

{
Pr

h←P

[
log

Q[ε,ε′](h)

P (h)
> γ

]
, Pr
h←Q[ε,ε′]

[
log

Q[ε,ε′](h)

P (h)
< γ

]}
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If the optimal γ is ≥ 0 then the max of these two expressions is at least the first one, which is at

least Prh←P

[
log

Q[ε,ε′](h)

P (h) > 0
]
; and the best Chernoff bound on this is minu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u.

On the other hand, if the optimal γ is ≤ 0, then the error of the optimal tester is at least the

second term Prh←Q[ε,ε′]

[
log

Q[ε,ε′](h)

P (h) < γ
]
, which is at least Prh←Q[ε,ε′]

[
log

Q[ε,ε′](h)

P (h) < 0
]
; and the

best Chernoff bound on this is the expression from above minu∈[0,1]
∑

h P (h)uQ[ε,ε′](h)
1−u.

Definition 23. We thus define ch1 to be the smaller of the ratio between Prh←P

[
log

Q[ε,ε′](h)

P (h) > 0
]

or Prh←Q[ε,ε′]

[
log

Q[ε,ε′](h)

P (h) < 0
]
and the common Chernoff bound minu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u.

Namely, the failure probability of the best tester is at least

ch1 · min
u∈[0,1]

∑
h

P (h)uQ[ε,ε′](h)
1−u

Towards understanding this bound and reexpressing it via a second layer of Chernoff bounds,
we define the following “coin flip” random variables.

Definition 24. Let q2,j = 1 − q1,j = qj for convenience. Let hj be the number of times domain
element j is sampled. Define, for each j ∈ {1, . . . , n} the independent random coin-flip variable Xj

so that for each rj ∈ {1, 2}—denoting the outcome of the jth coin flip—the variable Xj takes value
|xrj ,j − yj | with probability πrj ,j defined to be

πrj ,j =
∑
hj

poi(k yj , hj)
u

(q1poi(k x1,j , hj) + q2poi(k x2,j , hj))u
qrj ,j poi(k xrj ,j , hj)

where we emphasize that Xj is an unnormalized distribution, in that its probabilities may not sum
to 1.

Lemma 25. For u ∈ [0, 1], and using the probabilities π from Definition 24, we have

∑
h

P (h)uQ[ε,ε′](h)
1−u ≥ 1

Q([ε, ε′])

∑
r:
∑

j |xrj ,j
−yj |∈[ε,ε′]

∏
j

πrj ,j =
1

Q([ε, ε′])
Pr

x1←X1,...,xn←Xn

∑
j

xj ∈ [ε, ε′]


(18)

The best Chernoff bound for the right hand side is

1

Q([ε, ε′])
min
s≥0

e−sε
∏
j

(
es|x1,j−yj |π1,j + es|x2,j−yj |π2,j

)
(19)

Proof. We have, since the joint probability Q(h, [ε, ε′]) is at most the probability of the marginal

25



Q(h), that∑
h

P (h)uQ[ε,ε′](h)
1−u =

1

Q([ε, ε′])1−u

∑
h

P (h)uQ(h, [ε, ε′])1−u

≥ 1

Q([ε, ε′])1−u

∑
h

P (h)uQ(h, [ε, ε′])

Q(h)u

=
1

Q([ε, ε′])1−u

∑
h

P (h)u

Q(h)u

∑
r:
∑

j |xrj ,j
−yj |∈[ε,ε′]

Q(h, r)

 (20)

Then we can easily compute Q(r, h) =
∏

j qrj ,j poi(kxrj ,j , hj); P (h) =
∏

j poi(kyj , hj); Q(h) =∏
j(q1,jpoi(kx1,j , hj) + q2,jpoi(kx2,j , hj)). Thus the right hand side of Equation 20 becomes, after

pulling the r sum to the outside, and pulling the product over j before the sum over h:

1

Q([ε, ε′])1−u

∑
r:
∑

j |xrj ,j
−yj |∈[ε,ε′]

∏
j

∑
hj

poi(kyj , hj)
u

(q1poi(kx1,j , hj) + q2poi(kx2,j , hj))u
qrj ,j poi(kxrj ,j , hj)

where the sum expression is seen to be exactly πrj ,j from Definition 24 as claimed.
This expression (ignoring the common 1

Q([ε,ε′])1−u factor out front) is seen to exactly compute

the probability that the sum of the independent random coin-flips X1, . . . , Xn is in the interval
[ε, ε′]. We can then apply standard Chernoff bounds, as desired.

Definition 26. Let ch2 be the ratio between the right hand side of Equation 18 and its Chernoff
bound, Equation 19, for the u defined as argminu∈[0,1]

∑
h P (h)uQ[ε,ε′](h)

1−u

Combining the above results:

Lemma 27. The failure probability of any algorithm for distinguishing Poi(k) samples from P
versus Q[ε,ε′] is at least ch1 · ch2 · 1

Q([ε,ε′])1−u mins≥0 e
−sε∏

j

(
es|x1,j−yj |π1,j + es|x2,j−yj |π2,j

)
for u =

argminu∈[0,1]
∑

h P (h)uQ[ε,ε′](h)
1−u.

We bound Q([ε, ε′]) ≤ Q(≤ ε′) and bound this with a standard Chernoff bound, as

Q(≤ ε′) ≤ e−ε
′α
∏
j

(
qje

α|x1,j−yj | + (1− qj)e
α|x2,j−yj |

)
where we will use Chernoff parameter α, with α from the optimization in Lemma 18. Since Chernoff
bounds are upper bounds, and Q([ε, ε′]) appears in the denominator of the expression of Lemma 27,
we thus have a lower bound for the failure probability.

The expression from Lemma 27 is lower-bounded by its minimum over all u. Thus, from
Lemma 27, expanding out the expressions for π from Definition 24 and substituting in the above
Chernoff bound for Q([ε, ε′]) we have:

Corollary 28. The failure probability of any algorithm for distinguishing Poi(k) samples from P
versus Q[ε,ε′] is at least
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ch1 · ch2 · eα(ε
′−ε) · min

u∈[0,1],s≥0
eε(−s+(1−u)α)

∏
j

∑
i

poi(k yj , i)
u
(
qj poi(k x1,j , i)e

s|x1,j−yj | + (1− qj) poi(k x2,j , i)e
s|x2,j−yj |

)
(q1poi(k x1,j , i) + q2poi(k x2,j , i))u

(
qjeα|x1,j−yj | + (1− qj)eα|x2,j−yj |

)1−u
(21)

Finally, we claim that, except for the Chernoff factors ch1, ch2 and the factor eα(ε
′−ε), Equa-

tion 21 is exactly equal to our upper bound, as expressed in either Lemma 18 or Equation 1. We
will use the fact that Equation 29 below was optimized in Lemma 18 to show how to optimize this
related equation with respect to s (deferring for the moment the optimization over u).

Lemma 29. We claim that if u ∈ (0, 1) and the derivative of this expression

log eε(1−u)α
∏
j

(∑
i poi(yj , i)

u(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))
1−u

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)1−u

)
(22)

with respect to any qj is 0, and the derivative with respect to α is also 0, then the below expression
when minimized over s achieves its global minimum at s = 0:

log e−sε
∏
j

(∑
i

(
poi(yj , i)

(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))

)u

(qje
s|x1,j−yj |poi(x1,j , i) + (1− qj)e

s|x2,j−yj |poi(x2,j , i))

)
(23)

Proof. Equation 23 is clearly convex in s, since log-convexity is preserved under sums and products;
we thus show its s derivative is 0 at s = 0 to finish the proof of global optimality. The proof is
ultimately straightforward, where we find expressions for the derivatives of Equation 22, and find
the right linear combination of them to imply that the s derivative of Equation 23 is 0 at s = 0.

The qj derivative of Equation 22, which equals 0, is

(1− u)

∑i

(
poi(yj ,i)

qj(poi(x1,j ,i)+(1−qj)poi(x2,j ,i)

)u
(poi(x1,j , i)− poi(x2,j , i))∑

i (qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))
1−u (poi(yj , i))

u − (e|x1,j−yj |α − e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)


which implies, since u ∈ (0, 1), that∑

i

(
poi(yj ,i)

qj(poi(x1,j ,i)+(1−qj)poi(x2,j ,i)

)u
(poi(x1,j , i)− poi(x2,j , i))∑

i (qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))
1−u (poi(yj , i))

u =
(e|x1,j−yj |α − e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)
(24)

On the other hand, the α derivative of Equation 23, which is equals to 0, is

ϵ(1− u)− (1− u)

∑
j

(qj |x1,j − yj |e|x1,j−yj |α + (1− qj)|x2,j − yj |e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)


Therefore, since u ∈ (0, 1), we have∑

j

(qj |x1,j − yj |e|x1,j−yj |α + (1− qj)|x2,j − yj |e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)
= ϵ (25)
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Going back to Equation 23, the s derivative of the log of the jth term of Equation 23, evaluated
at s = 0 is∑

i

(
poi(yj ,i)

qj(poi(x1,j ,i)+(1−qj)poi(x2,j ,i)

)u
(qj |x1,j − yj |poi(x1,j , i) + (1− qj)|x2,j − yj |poi(x2,j , i))∑

i poi(yj , i)
u(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))1−u

Notice that the last term in the numerator can be decomposed as

(qj |x1,j−yj |poi(x1,j , i)+(1−qj)|x2,j−yj |poi(x2,j , i)) = A(poi(x1,j , i)−poi(x2,j , i))+B(qjpoi(x1,j , i)+(1−qj)poi(x2,j , i))

for A = qj(1− qj)(|x1,j − yj | − |x2,j − yj |) and B = qj |x1,j − yj |+ (1− qj)|x2,j − yj |.
Substituting back to the s derivative of the log of the jth term of Equation 23, evaluated at

s = 0, we have

∑
i

(
poi(yj ,i)

qj(poi(x1,j ,i)+(1−qj)poi(x2,j ,i)

)u
A(poi(x1,j , i)− poi(x2,j , i))∑

i poi(yj , i)
u(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))1−u

+

∑
i

(
poi(yj ,i)

qj(poi(x1,j ,i)+(1−qj)poi(x2,j ,i)

)u
B(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))∑

i poi(yj , i)
u(qjpoi(x1,j , i) + (1− qj)poi(x2,j , i))1−u

= A
(e|x1,j−yj |α − e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)
+B (24)

=
((A+Bqj)e

|x1,j−yj |α + ((1− qj)B −A)e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)

=
(qj |x1,j − yj |e|x1,j−yj |α + (1− qj)|x2,j − yj |e|x2,j−yj |α)

(qje|x1,j−yj |α + (1− qj)e|x2,j−yj |α)

which is exactly the j-th term of the left hand side of Equation 25. Hence, summing up the
previous expression for all j gives us ϵ. This shows that the derivative of s at s = 0 of Equation 23
is −ϵ+ ϵ = 0, concluding the proof.

The next lemma concludes this section, summarizing that, except for the slack in the Chernoff
bounds, and our choice of ε′ > ε, our upper and lower bounds match.

Lemma 30. Under the conditions of Lemma 18—namely, when the testing upper bound of Equa-
tion 7 is optimized—then we have a lower bound for any testing algorithm that equals our upper
bound times ch1 · ch2 · eα(ε

′−ε).

Proof. Corollary 28 provides our testing lower bound, since Lemma 18 guarantees its conditions
are satisfied. We now show that the minimization expression in Equation 21 (namely, without the
initial ch1 · ch2 · eα(ε

′−ε) terms) exactly equals our testing upper bound—as analyzed in Lemma 18.
From Corollary 28, the minimization expression in Equation 21 without the initial e(1−u)α term

and without the second term in the denominator, is minimized over s when s = 0; thus the min
over u and s is just the min over u of the corresponding expression when s = 0 is substituted,
namely

min
u∈[0,1]

eε(1−u)α
∏
j

∑
i

poi(k yj , i)
u (qj poi(k x1,j , i) + (1− qj) poi(k x2,j , i))

1−u(
qjeα|x1,j−yj | + (1− qj)eα|x2,j−yj |

)1−u
28



The logarithm of the expression being minimized is exactly Equation 14, which Lemma 18
guarantees has u derivative equal to 0; further, the expression being minimized is log-convex in
u since log-convexity is preserved under both sums and products. Thus its global minimum is
attained for the u from the upper bound optimization, and its global minimum equals our upper
bound, as expressed in Equation 14 or Equation 1.

5 Gärtner-Ellis Theorem

We introduce a special version of Gärtner-Ellis Theorem, to analyze the convergence of Chernoff
bounds when the number of domain elements n goes to infinity.

The Gärtner-Ellis theorem is a generalization of Cramér’s theorem, where Cramér’s theorem
essentially says that “in the limit as n → ∞, Chernoff bounds on the mean of i.i.d. variables are
tight, to 1 + o(1) factors in the exponent. If Zn denotes the mean of n independent copies of some
real-valued random variable, and letting

Λn(λ) = logE[eλZn ]

denote its corresponding moment generating function, then the log tail probabilities Pr[Zn ≥ x]
are bounded by Chernoff bounds as minλ≥0 Λn(λ)− λx = minλ≥0 Λn(nλ)− nλx. Since we assume
that Zn is the mean of i.i.d. random variables, then 1

nΛn(nλ) is identical for all n, and we may
instead represent this as Λ(λ), leading to a log Chernoff bound of nminλ≥0 Λ(λ)− λx = −nΛ∗(x),
where we define

Λ∗(x) = sup
λ∈R

λx− Λ(λ)

to be the Legendre-Fenchel transform of Λ(λ). Cramér’s theorem says that this bound is tight in
the limit as n → ∞, where we scale the log probability by 1

n so that the right hand side does not
go to infinity with n. Namely, while log Pr[Zn ≥ x] ≤ −nΛ∗(x) for any n, by Chernoff bounds,
Cramér’s theorem says that the limit is tight, in the sense that limn→∞

1
n log Pr[Zn ≥ x] = −Λ∗(x).

The Gärtner-Ellis theorem generalizes this to non-independent random variables. Namely, Zn

is no longer restricted to be the mean of n i.i.d. random variables but can now be any distribution,
depending on n in an almost arbitrary way—provided that the log moment generating function has
a limit as n → ∞, and avoids a few other pathologies as specified in Theorem 32.

Assumption 31. For each λ ∈ R, the logarithmic moment generating function has a limit

Λ(λ) = lim
n→∞

1

n
Λn(nλ) (26)

which is finite and differentiable.

Then we can introduce the Gärtner-Ellis Theorem as follows:

Theorem 32 (special case of Gärtner-Ellis Theorem). If Assumption 31 holds for Zn, and if x is
not a “discrete point”, in the sense that Λ∗ is continuous at x then we have:

lim
n→∞

1

n
log Pr[Zn > x] = lim

n→∞

1

n
log Pr[Zn ≥ x] = −Λ∗(x) (27)

if Λ∗ is non-increasing at x, and otherwise

lim
n→∞

1

n
log Pr[Zn < x] = lim

n→∞

1

n
log Pr[Zn ≤ x] = −Λ∗(x) (28)
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5.1 Identity testing in the limit n → ∞

While we show upper and lower bounds for identity testing, we ultimately would like to compare
these bounds to say that our tester is near-optimal. The Gärtner Ellis theorem provides a tool for
doing this, in the limit as n → ∞. Unfortunately, the Gärtner Ellis theorem does not give much
insight into the rate of convergence, and a more targeted investigation of when “Chernoff bounds
are tight” seems warranted. Nonetheless, we view the Gärtner Ellis theorem as saying, essentially,
that we should expect our Chernoff bounds to be tight for finite sample cases, since asymptotically
they are tight.

We specifically consider a limit where we send n → ∞ and k → ∞ proportionally to n, and
where the upper bounds of Section 3 on the log failure probability are exactly proportional to n.
Explicitly, for any hypothesis distribution P , we consider “subdividing it by factor s” to mean
the process where each domain element of P is split into s new domain elements each of 1

s the

probability; this new distribution, which we denote P sub(s) will have n ·s domain elements; to make
up for the reduced mass of each domain elements, we will sample Poi(k · s) times instead of Poi(k)
times.

The basic claim is that the optimization of Section 3 does not depend on s, except for trivial
scaling. Explicitly, consider Equation 1 as we modify s. The hypothesis histogram entries hPyj will
scale proportionally to s, and we will thus choose to scale the histogram entries of the optimization

variables h
Q|yj
x to scale with s; the probability masses, as measured by yj , x, scale inversely with s,

and thus the Poisson parameters kyj or kx are invariant to s; the optimization variables c, t, t′ will
be invariant to s; the constraints will thus be invariant to s; thus the overall objective function,
since it has a factor of h in both the first and second term, will scale proportionally to s. Since
this optimization computes an upper bound on the log failure probability of our tester, this means
that the tester coefficients (ci,j) are independent of s, and the failure probability gets raised to the
s power (thus decaying exponentially with s).

Thus 1
s times the log failure probability is independent of s; and our overall claim is that this

exactly matches our lower bounds, in the limit s → ∞ (meaning that n, k → ∞).
Recall that we constructed a lower bound parameterized by ε′. We first show, by the Gärtner-

Ellis theorem that, for each fixed ε′ > ε, the two Chernoff factors ch1, ch2 vanish in the limit; then
we take the limit ε′ → ε so that the final remaining factor eα(ε

′−ε) vanishes, leading, by Lemma 30,
to the desired conclusion.

Lemma 33. Fixing a hypothesis distribution P , and a number of samples k, and considering the
limit as s → ∞ of P sub(s), while we take Poi(ks) samples, then, for any fixed ε′ > ε, we have
lims→∞

1
s log ch1(P

sub(s), ks, ε, ε′) = 0 and lims→∞
1
s log ch2(P

sub(s), ks, ε, ε′) = 0

Thus by Lemma 30 we have that for any sequence of testers, on input P sub(s) as s → ∞, their
log failure probability, times 1

s , must have lim inf greater than or equal to our upper bound plus
α(ε′ − ε), where α is negative, and is evaluated from our upper bound at s = 1.

Thus sending ε′ → ε yields that any sequence of testers must have log failure probability times
1
s that has lim inf (as s → ∞) greater than or equal to our upper bound. Since our upper bound
is explicitly an upper bound on testing performance, then there is a sequence of testers—namely,
with coefficients ci,j , independent of s, such that 1

s times the log of its failure probability has the
limit exactly as specified by our upper bound, and no testers can do any better in this limit. This
yields the final part of our main result, Theorem 4.
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