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Abstract

We introduce the notion of a Canonical Tester for a class of properties on distribu-
tions, that is, a tester strong and general enough that “a distribution property in the
class is testable if and only if the Canonical Tester tests it”. We construct a Canon-
ical Tester for the class of properties of one or two distributions that are symmetric
and satisfy a certain weak continuity condition. Analyzing the performance of the
Canonical Tester on specific properties resolves several open problems, establishing
lower bounds that match known upper bounds: we show that distinguishing between
entropy < α or > β on distributions over [n] requires nα/β−o(1) samples, and distin-
guishing whether a pair of distributions has statistical distance < α or > β requires
n1−o(1) samples. Our techniques also resolve a conjecture about a property that our
Canonical Tester does not apply to: distinguishing identical distributions from those
with statistical distance > β requires Ω(n2/3) samples.

Thesis Supervisor: Silvio Micali
Title: Professor of Computer Science
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Chapter 1

Introduction

Computer hardware and software has advanced to the point where for almost any

feasible test of speed or memory in which computers can reasonably compete, they

may be set up to outperform people – and thus with respect to the touchstones of

time and space complexity, computers can be said to have beaten the benchmark of

human-level performance. One area, however, in which our abilities vastly exceed

anything currently attainable algorithmically is that of data complexity : how much

data does one need to classify a phenomenon? Human ability to make accurate

decisions on apparently little data is prodigious and sometimes manifests itself as

“one-shot learning”.

It is with this goal of data efficiency that the developing field of property testing

is concerned. Explicitly, property testing asks what is the minimum amount of data

needed about an object to probably return a correct decision on whether it possesses

a certain property. Property testing has been extensively investigated in a variety of

settings, in particular, graph testing (e.g. [12]), testing of algebraic properties (e.g.

[9, 20]), and the related area of program checking (e.g. [8, 9]). In particular, we

draw the reader’s attention to the recent emergence of general structural theorems,

most notably the characterization by Alon et al. of those graph properties testable

in constant time [2], making use of the canonical tester of [13].

By contrast, the emerging and significant subfield of distribution testing is a col-

lection of beautiful but specific results, without a common framework. In this thesis
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we aim to remedy this.

1.0.1 Distribution Testing and Symmetric Properties

The quintessential question in distribution testing can be so expressed:

Given black-box access to samples from one or more distributions and a property

of interest for such distributions, how many samples must one draw to become

confident whether the property holds?

Such questions have been posed for a wide variety of distribution properties, including

monotonicity, independence, identity, and uniformity [1, 7, 5], as well as “decision

versions” of support size, entropy, and statistical and L2 distance[4, 6, 11, 14, 10, 16,

18, 17].

The properties of the latter group, and the uniformity property of the former

one, are symmetric. Symmetric properties are those preserved under renaming the

elements of the distribution domain, and in a sense capture the “intrinsic” aspects

of a distribution. For example, entropy testing asks one to distinguish whether a

distribution has entropy less than α or greater than β, and is thus independent of

the names of the elements. As a second example, statistical distance testing asks

whether a pair of distributions are close or far apart in the L1 sense (half the sum

over each element of the absolute value of the differences between the probability of

this element under the two distributions). Again, it is clear that this property does

not depend on the specific naming scheme for the elements.

1.0.2 Prior Work

Answering a distribution testing question requires two components, an upper-bound

(typically in the form of an algorithm) and a lower-bound, each a functions of n,

the number of elements in the distribution domain. Ideally, such upper- and lower-

bounds would differ by a factor of no(1), so as to yield tight answers. This is rarely the

case in the current literature, however. We highlight three such gaps that we resolve
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in this thesis —see Theorems 1.1.1, 1.1.2, and 1.1.3 respectively, and Chapter 2 for

definitions. The prior state of the art for the three problems we consider is:

Closeness Testing Distinguishing two identical distributions from two distributions

with statistical distance > 1
2

can be done in Õ(n2/3) by [6] and cannot be done

in o(
√
n) samples [6].

Distance Approximation For constants 0 < α < β < 1, distinguishing distribu-

tion pairs with statistical distance less than α from those with distance greater

than β can be done in Õ(n) samples by [3], and cannot be done in o(
√
n) samples

(as above).

Entropy Testing For (large enough) constants α < β, distinguishing distributions

with entropy less than α from those with entropy greater than β can be done in

nα/βno(1) samples by [4], and cannot be done in (roughly) n
2
3
α/β samples [18].

1.1 Our Results

We develop a unified framework for optimally answering distribution testing questions

for a large class of properties:

1.1.1 The Canonical Tester

We focus our attention on the class of symmetric properties satisfying the following

continuity condition: informally, there exists (ε, δ) such that changing the distribution

by δ induces a change of at most ε in the property.1 For symmetric properties satis-

fying this condition, we essentially prove that there is no difference between proving

an upper bound and proving a lower bound. We formalize this with the notion of a

Canonical Tester.

1Technically this is uniform continuity and not continuity ; however, since the space of probability

distributions over [n] is compact, by the Heine-Cantor theorem every continuous function here is

thus also uniformly continuous.
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The Canonical Tester is a specific algorithm that, on input (the description of) of

a property π and f(n) samples from the to-be-tested distribution, answers YES or NO

—possibly incorrectly. If f(n) is large enough so that the Canonical Tester accurately

tests the property, then a fortiori the property is testable with f(n) samples; if the

Canonical Tester does not test the property, then (as we show) the property is not

testable with f(n)/no(1) samples. Thus to determine the number of samples needed

to test π, one need only “use the Canonical Tester to search for the value f”.2

1.1.2 Applications

We prove the following three informally stated results, the first and third resolving

open problems from [6, 4, 18]. Our techniques can also be easily adapted to reproduce

the main results of [18]; we sketch this construction at the end of Section 3.3.3

Theorem 1.1.1. Distinguishing two identical distributions from two distributions

with statistical distance at least 1
2

requires Ω(n2/3) samples.

Theorem 1.1.2. For any constants 0 < α < β < 1, distinguishing between distribu-

tion pairs with statistical distance less than α from those with distance greater than

β requires n1−o(1) samples.

Theorem 1.1.3. For real numbers α < β, distinguishing between distributions with

entropy less than α from those with entropy greater than β requires nα/β−o(1) samples.

Theorems 1.1.2 and 1.1.3 result directly from the Canonical Tester; along the path

to deriving the properties of the Canonical Tester, we prove a structural theorem that

2The notion of “Canonical Tester” here is very much related to that used in [13], but ours is in a

sense stronger because we have exactly one —explicitly given— canonical tester for each property,

while [13] defines a class of canonical testers and shows that at least one of them must work for each

property.
3We note that in all the new results of this thesis the Canonical Tester improves a lower bound

to match the performance of a known algorithm. It might be interesting if there were an illustrative

example where we could invoke the Canonical Testing Theorem to derive a better algorithm for

a well-studied problem; however, previous algorithmic work has been so successful that all that

remains is for us to provide matching lower bounds.
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may be of independent interest, the Wishful Thinking Theorem (Theorem 4.5.6), and

it is from this result that we derive Theorem 1.1.1.

1.2 Our Techniques

The properties of the Canonical Tester, as described above, are encapsulated in the

Canonical Testing Theorem (Theorem 3.1.2). This theorem is essentially equivalent

to a result that at first glance looks to be very different: the Low-Frequency Blindness

Theorem (Theorem 3.1.3) states that testers for symmetric weakly-continuous prop-

erties are by necessity “blind” to the low-weight portion of the distribution. That

is, if we wish to test a property by taking k samples from a distribution, then the

tester will be essentially blind to any element occurring with probability much less

than 1
k
, even despite the possibility that the low-frequency elements may collectively

constitute most of the probability mass of the distribution. This result immediately

leads to applications such as: any symmetric weakly-continuous property which is

true for the uniform distribution on n elements and false for the uniform distribution

on n
2

elements needs roughly n samples to test, for otherwise all the elements from

both distributions would fall in the tester’s “blind spot”.

We emphasize that the Low-Frequency Blindness Theorem is not saying that

distinguishing the uniform distribution on n elements from the uniform distribution

on n
2

elements takes n samples; rather, the theorem rests delicately on its assumptions

that we are testing a symmetric weakly-continuous property. To illustrate this, we

note first that the problem of distinguishing the uniform distribution on n elements

from the uniform distribution on the first half of these elements takes O(1) samples:

answer according to whether or not any samples appear from the second half of the

elements. However, if we add the condition of symmetry (but not yet continuity!) then

we know that a property which is true on the uniform distribution over n elements and

false on the uniform distribution over the first n
2

elements must also be false on uniform

distributions over any n
2

elements, and thus to test this property we must be able to

distinguish the uniform distribution on n elements from the uniform distribution on

13



an arbitrary n
2
-sized subset of these elements. Birthday paradox arguments show that

one can do this with θ(
√
n) samples, by counting how many elements are sampled

twice; standard arguments show this is tight.

To summarize: if all we know about a property is that it is true for a uniform

distribution on n elements and false for a uniform distribution on n
2

elements, then

all one can show is Ω(1) sample complexity; if in addition, however, we know that the

property is symmetric, then we have Ω(
√
n) sample complexity; the main contribution

of this thesis is techniques to see that if we additionally know that the property is

weakly-continuous then we have n1−o(1) sample complexity.

1.2.1 Wishful Thinking

The first step in the derivation of the main results of this thesis is a general and

precise characterization of the role of symmetry in testing properties of low-frequency

distributions – that is, before we can add the crucial ingredient of continuity, we must

first shore up our understanding of symmetric properties.

This result, which we call the Wishful Thinking Theorem (Theorem 4.5.6) for-

malizes and proves an intuition which has appeared implicitly in [6] and (in slightly

different form) in [5]. The theorem states essentially, that when testing symmetric

properties of the low-frequency portion of distributions, the only relevant information

about the distribution consists of its moments, informally, “moments describe all”.

We can thus use this theorem to prove lowerbounds for testing a symmetric prop-

erty given any construction of a positive and a negative example of the property whose

moments almost match. Indeed, we take such a construction from [6] to immediately

prove our Theorem 1.1.1.

1.2.2 Matching Moments

The final piece needed for low-frequency blindness, complementing the “moments

describe all” result for symmetric properties, is a “moments describe nothing” result

for weakly-continuous properties, roughly, that moments fail to determine whether

14



a weakly-continuous property is true or false (see Theorem 5.2.5). Combined, we

see that if moments describe all the useful information that a tester can extract from

low-frequency elements, but that moments fail to determine the property, then testers

are low-frequency blind.

The technical portion of this theorem concerns an analysis of the solution of linear

equations with a Vandermonde matrix for coefficients. This idea comes from [18].
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Chapter 2

Definitions

For positive integers n we let [n] denote the integers {1, . . . , n}. All logarithms are

base 2. We denote elements of vectors with functional notation —as v(i) for the ith

element of v. Subscripts are used almost exclusively to index one of the two elements

of a pair, as in p1, p2, for those contexts where we analyze properties of pairs of

distribution.

Definition 2.0.1. A distribution on [n] is a function p : [n] → [0, 1] such that∑
i p(i) = 1. We use Dn to denote the set of all distributions on [n], and D2

n to

denote the set of all pairs of distributions.

Throughout this thesis we use n to denote the size of the domain of a distribution.

Definition 2.0.2. A property of a (single) distribution is a function π : Dn → R. A

property of a pair of distributions is a function π : D2
n → R. A binary property of

a distribution (respectively, distribution pair) is a function β : Dn → {“yes”,“no”, ∅}

(respectively, β : D2
n → {“yes”,“no”, ∅}).

Any property π and pair of real numbers a < b induces a binary property πba

defined as: if π(p) > b then πba(p) =“yes”; if π(p) < a then πba(p) =“no”; otherwise

πba(p) = ∅.

Definition 2.0.3. Given a binary property πba on distributions and a function k :

Z+ → Z+, an algorithm T is a “πba-tester with sample complexity k(·)” if for any

17



distribution p, the algorithm T on input k(n) random samples from p will accept with

probability greater than 2
3

if πba(p) =“yes”, and accept with probability less than 1
3

if

πba(p) =“no”. The behavior is unspecified when πba(p) = ∅.

Definition 2.0.4. Given a binary property πba on distribution pairs and functions

k1, k2 : Z+ → Z+, an algorithm T is a “πba-tester with sample complexity (k1(·), k2(·))”

if, for any distribution pair p1, p2, algorithm T on input k1(n) random samples from

p1 and k2(n) random samples from p2 will accept with probability greater than 2
3

if

πba(p1, p2) =“yes”, and accept with probability less than 1
3

if πba(p1, p2) =“no”. The

behavior is unspecified when πba(p1, p2) = ∅.

If we refer to a distribution pair tester as having “sample complexity k(·)” we

intend this as shorthand for having “sample complexity (k(·), k(·))”.

The metric we use to compare vectors is the L1 norm, |v| ,
∑

i |v(i)|. For the

special case of probability distributions we define the statistical distance between

p+, p− as 1
2
|p+ − p−|. (In some references the normalization constant 1

2
is omitted.)

We may now define our notion of continuity:

Definition 2.0.5. A property π is (ε, δ)-weakly-continuous if for all distributions

p+, p− satisfying |p+−p−| ≤ δ we have |π(p+)−π(p−)| ≤ ε. A property of distribution

pairs π is (ε, δ)-weakly-continuous if for all distributions p+
1 , p

+
2 , p

−
1 , p

−
2 satisfying |p+

1 −

p−1 |+ |p+
2 − p−2 | ≤ δ we have |π(p+

1 , p
+
2 )− π(p−1 , p

−
2 )| ≤ ε.

Finally, we define symmetric properties:

Definition 2.0.6. A property π is symmetric if for all distributions p and all per-

mutations σ ∈ Sn, the symmetric group on [n], we have π(p) = π(p ◦ σ). A property

of distribution pairs π is symmetric if for all distributions p1, p2 and all permutations

σ ∈ Sn we have π(p1, p2) = π(p1 ◦ σ, p2 ◦ σ).

We note that this definition of symmetry for properties of distribution pairs is more

permissive than a natural variant which would insist that the property be invariant

for all pairs of permutations σ1, σ2, that is, π(p1, p2) = π(p1 ◦ σ1, p2 ◦ σ2). This

stronger notion of symmetry would disallow any notion of correlating between the two

18



distributions, and specifically does not include the property that measures statistical

distance |p1−p2|. All results in this thesis are for the more general notion of symmetry,

as stated in Definition 2.0.6, so that we may work with statistical distance and related

properties.
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Chapter 3

The Canonical Tester and

Applications

3.1 The Single Distribution Case

To motivate the rest of this thesis we introduce the Canonical Tester here. Given a

binary property πba : Dn → {“yes”, “no”, ∅}, k samples from [n] represented as the

histogram s : [n]→ Z+ counting the number of times each element has been sampled,

and a threshold θ ∈ Z+, then the k-sample Cθ tester for πba returns an answer “yes”

or “no” according to the following steps.

Definition 3.1.1 (Canonical Tester Cθ for πba).

1. For each i such that s(i) > θ insert the constraint p(i) = s(i)
k

, otherwise insert

the constraint p(i) ∈ [0, θ
k
].

2. Insert the constraint
∑

i p(i) = 1.

3. Let P be the set of solutions to these constraints.

4. If the set πba(P ) (the image of elements of P under πba) contains “yes” but not

“no” then return “yes”; if πba(P ) contains “no” but not “yes” then return “no”;

otherwise answer arbitrarily.
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We note that the Canonical Tester is defined as a function not an algorithm,

bypassing issues of computational complexity. The tradeoffs between computational

and sample complexity are a potential locus for much fruitful work, but are beyond

the scope of this thesis.

As a brief illustration of the procedure of the Canonical Tester, consider the op-

eration of the Canonical Tester with threshold θ = 2 on input 10 samples drawn

from the set [5]: (1, 2, 2, 1, 1, 1, 4, 5, 5, 5). The histogram of these samples is the func-

tion s mapping 1 → 4 (since “1” occurs four times), 2 → 2, 3 → 0, 4 → 1, and

5→ 3. Since both “1” and “5” occur more than θ = 2 times, Step 1 adds the equality

constraints p(1) = 4
10

and p(5) = 3
10

, and inequality constraints for the remaining

elements p(2), p(3), p(4) ∈ [0, 2
10

]. The Canonical Tester then finds all probability

distributions p that satisfy these constraints, and in Step 4 determines whether these

constraints induce a unique value for the property πba.

Our main result is that (for appropriately chosen θ) the Canonical Tester is opti-

mal: “if the Canonical Tester cannot test it, nothing can.” The specifics of this claim

depend on the continuity property of π. Explicitly:

Theorem 3.1.2 (Canonical Testing Theorem). Given a symmetric (ε, δ)-weakly-

continuous property π : Dn → R and two thresholds a < b, such that the k-sample

Canonical Tester Cθ for θ = 600 logn
δ2

on πba fails to distinguish between π > b + ε

and π < a − ε, then no tester can distinguish between π > b − ε and π < a + ε in

δ
1000·24

√
lognk samples.

Essentially, the Canonical Tester is optimal up to small additive constants in a

and b, and a small —no(1)— factor in the number of samples k.

3.1.1 Discussion

While it will take us the rest of the work to prove the Canonical Testing Theorem, we

note one case where it is reasonably clear that the Canonical Tester does the “right

thing”. Given a distribution on [n], consider an element whose expected number

of occurrences in k samples is somewhat greater than θ. For large enough θ we can
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appeal to the Law of Large Numbers to see that the observed frequency of this element

will be (greater than θ
k

so that the Canonical Tester will invoke an equality constraint,

and) a very good estimate of its actual frequency. Since π is a (weakly) continuous

function, evaluating π on a good estimate of the input distribution will yield a good

estimate of the property, which is exactly what the Canonical Tester does. Thus the

Canonical Tester does the “right thing” with high-frequency elements, and if all the

elements are high-frequency it will return the correct answer with high probability.

The low-frequency case, however, does not have such a simple intuition. Suppose

all the frequencies of the distribution to be tested are at most 1
k
. Then with high

probability none of the elements will be observed with high frequency. In this case

the Canonical Tester constructs the set P̂ defined by the constraints ∀i, p(i) ∈ [0, θ
k
],∑n

i=1 p(i) = 1 effectively discarding all its input data! Thus for every “low-frequency

distribution” the Canonical Tester induces the same set P̂ , from which Step 4 will

generate the same output. How can such a tester possibly be optimal?

By necessity, it must be the case that “no tester can extract useful information

from low-frequency elements”. This is the Low-Frequency Blindness Theorem, which

constitutes our main lower bound. The Canonical Testing Theorem shows that these

lower bounds are tight, and in fact match the upper bounds induced by the operation

of the Canonical Tester.

Theorem 3.1.3 (Low Frequency Blindness). Given a symmetric property π on dis-

tributions on [n] that is (ε, δ)-weakly-continuous and two distributions, p+, p− that are

identical for any index occurring with probability at least 1
k

in either distribution but

where π(p+) > b and π(p−) < a, then no tester can distinguish between π > b− ε and

π < a+ ε in δ
1000·24

√
lognk samples.

To prove this theorem we (1) derive a general criterion for when two distributions

are indistinguishable from k samples, and (2) exhibit a procedure for generating a

pair of distributions p̂+, p̂− that satisfy this indistinguishability condition and where

π(p̂+) is large yet π(p̂−) is small (greater than b− ε and less than a+ ε respectively).

We call the indistinguishability criterion the Wishful Thinking Theorem (Theorem
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4.5.6), in part because the criterion involves a particularly intuitive comparison of the

moments of the two distributions; the second component is the Matching Moments

Theorem (Theorem 5.2.5), which shows how we may slightly modify p+, p− into a

pair p̂+, p̂− whose moments match each other so that we may then apply the Wishful

Thinking Theorem.

3.2 The Two Distribution Case

Given a binary property on two distributions πba : D2
n → {“yes”, “no”, ∅}, two sets

of samples from [n] of sizes k1, k2 respectively represented as a pair of histograms

s1, s2 : [n] → Z+ counting the number of times each element has been sampled in

each of the two distributions, and a threshold θ ∈ Z+, then the (k1, k2)-sample Cθ

tester for πba returns an answer “yes” or “no” according to the following steps.

Definition 3.2.1 (2-Distribution Canonical Tester Cθ for πba).

1. For each i such that s1(i) > θ or s2(i) > θ insert the pair of constraints p1(i) =

s1(i)
k1

and1 p2(i) = s2(i)
k2

, otherwise insert the pair of constraints p1(i) ∈ [0, θ
k1

]

and p2(i) ∈ [0, θ
k2

].

2. Insert the constraints
∑

i p1(i) = 1 and
∑

i p2(i) = 1.

3. Let P be the set of solutions to these constraints.

4. If the set πba(P ) (the image of elements of P under πba) contains “yes” but not

“no” then return “yes”; if πba(P ) contains “no” but not “yes” then return “no”;

otherwise answer arbitrarily.

The corresponding theorem is almost exactly the one of the single distribution

case, with the constants slightly modified.

Theorem 3.2.2 (2-Distribution Canonical Testing Theorem). Given a symmetric

(ε, δ)-weakly-continuous property on distribution pairs π : D2
n → R and two thresholds

1The “and” here is in crucial contrast to the “or” of the previous line —see the discussion below.
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a < b, such that the (k1, k2)− sample Canonical Tester Cθ for θ = 600 logn
δ2

on πba fails

to distinguish between π > b+ ε and π < a− ε, then no tester can distinguish between

π > b− ε and π < a+ ε in δ
640000·27

√
logn (k1, k2) samples.

3.2.1 Discussion

As noted above, the one surprise in the generalization of the Canonical Tester is the

“and” in Step (1) of Definition 3.2.1 where it might perhaps be more intuitive to

expect an “or”. Explicitly, if we observe many samples of a certain index i from the

first distribution and few samples from the other distribution, then, while it might

be a more natural generalization of Definition 3.1.1 if we were to insert a equality

constraint for the first distribution only, this intuition is misleading and we must in

fact use equality constraints for both distributions. We defer a rigorous explanation

to the final chapter, but mention a few partial justifications here. First, we do not

aim to test two separate properties of two distribution, but rather a joint property

of two distributions, so it is natural for our tester to process the samples in joint

fashion, with samples from one distribution affecting the analysis of samples from

the other. Second, we put forward the notion that those indices i which do not

receive a statistically significant number of samples may be said to be “invisible” to

a property tester; conversely, if an index i receives a large number of samples from

either distribution, it suddenly becomes “visible”, and we must pay special attention

to this index, each time it is sampled from either distribution. Finally, we note that

this choice to use a stronger constraint leads to a smaller set P of feasible distribution

pairs, and thus can only shrink the set πba(P ), which will only make Step (4) of the

algorithm more likely to return a definite answer.

As in the single distribution case, a fundamental ingredient of the proof of the

2-distribution Canonical Testing Theorem is a “low-frequency blindness” result:

Theorem 3.2.3 (2-Distribution Low Frequency Blindness). Given a symmetric prop-

erty π on distributions pairs on [n] that is (ε, δ)-weakly-continuous, numbers k1, k2 ∈

R+, and two distribution pairs, p+
1 , p

+
2 , p

−
1 , p

−
2 that are identical for any index occur-
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ring with probability at least 1
k1

in p+
1 or p−1 or with probability at least 1

k2
in p+

2 or p−2 ,

but where π(p+
1 , p

+
2 ) > b and π(p−1 , p

−
2 ) < a, then no tester can distinguish between

π > b− ε and π < a+ ε in δ
640000·27

√
logn (k1, k2) samples.

3.3 Applications

We prove Theorems 1.1.2 and 1.1.3 here, and further, outline how to reproduce the

results of [18] on estimating the distribution support size. (Theorem 1.1.1 is shown

at the end of Chapter 4.) As noted above, these results yield lower-bounds matching

previously known upper bounds; thus we do not need the full power of the Canonical

Testing Theorem to generate optimal algorithms, but may simply apply our lower

bound, the Low-Frequency Blindness Theorem.

We note one thing that the reader may find very strange about the following

proofs: to apply the Low Frequency Blindness Theorem we construct distributions

p+, p− that have very different values of the property π and then invoke the theorem

to conclude that the property cannot be approximated; however, this does not mean

that p+ and p− are themselves hard to distinguish —in the examples below they are

often in fact quite easy to distinguish. We remind the reader of the discussion in the

second and third paragraphs of Section 1.2.

In practice, it may be quite hard to come up with indistinguishable distributions

satisfying certain other properties, and for this reason we have set up the machinery

of this thesis to save the property testing community from this step: internal to the

proof of the Low Frequency Blindness Theorem (specifically the Matching Moments

Theorem) is a procedure that constructs a pair of distributions, p̂+, p̂− with property

values almost exactly those of p+, p− respectively, but which are indistinguishable.

In this manner we can now prove property testing lower-bounds without having to

worry about indistinguishability.
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3.3.1 The Entropy Approximation Bound

As a technical but straightforward preliminary we show that entropy is weakly con-

tinuous:

Lemma 3.3.1. The entropy function of distributions in Dn is (1, 1
2 logn

)-weakly-continuous.

Proof. Let p+ and p− be distributions at most 1
2 logn

far apart. Then the difference

in their entropies is bounded as∣∣∣∣∣∑
i

p+(i) log p+(i)− p−(i) log p−(i)

∣∣∣∣∣ ≤∑
i

|p+(i) log p+(i)− p−(i) log p−(i)|

≤
∑
i

−|p+(i)− p−(i)| log |p+(i)− p−(i)|

≤ −|p+ − p−| log

[
1

n
|p+ − p−|

]
≤ 1,

where the first inequality is the triangle inequality, the second inequality holds term-

by-term as can be easily checked, the third inequality is Jensen’s inequality applied to

the convex function x log x; the last inequality can be seen by letting x = 1
n
|p+−p−| ≤

1
2n logn

, from which we can easily see that −nx log x ≤ 1, as desired.

We now prove our bound on entropy approximation —a more precise form of

Theorem 1.1.3.

Lemma 3.3.2. For any real number γ > 1, the entropy of a distribution on [n] cannot

be approximated within γ factor using O(nθ) samples for any θ < 1
γ2 , even restricting

ourselves to distributions with entropy at least logn
γ2 − 2.

Proof. Given a real number γ > 1, let p− be the uniform distribution on 1
4
n1/γ2

elements, and let p+ be the uniform distribution on all n elements. We note that p−

has entropy logn
γ2 − 2 and p+ has entropy log n. Further, all of the frequencies in p+

and p− are less than 1
k

where k = 1
4
n1/γ2

. We apply the Low Frequency Blindness

Theorem with ε = 1 to conclude that, since entropy is (1, 1
2 logn

)-weakly-continuous,

distinguishing distributions with entropy at least (log n)− 1 from those with entropy

at most logn
γ2 − 1 requires n1/γ2−o(1) queries, which implies the desired result.
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We compare this to the best previous result of [18], which applies for θ less than

2
3γ2 , a factor of 2

3
off in the exponent.

We also note the significance of the bound logn
γ2 − 2 in that if we were guaranteed

that the distribution has entropy at least logn
γ2 then a γ approximation is obtained by

the constant guess of logn
γ

. Our result shows surprisingly that if we enlarge this range

by only 2, then we get (essentially) linear time inapproximability.

3.3.2 The Statistical Distance Bound

Proof of Theorem 1.1.2. We note that statistical distance is a symmetric property,

and by the triangle inequality is (ε, ε)-weakly-continuous for any ε > 0. We invoke

the Low Frequency Blindness Theorem as follows: Let p−1 = p−2 be the uniform

distribution on [n], let p+
1 be uniform on [n

2
], and let p+

2 be uniform on {n
2

+ 1, . . . , n}.

We note that the statistical distance of p−1 from p−2 is 0, since they are identical, while

p+
1 and p+

2 have distance 1. Further, each of the frequencies in these distributions is at

most 2
n
. We apply the Low Frequency Blindness Theorem with ε = δ = min{α, 1−β}

and k = n
2

to yield the desired result.

3.3.3 The Distribution Support Size Bound

We sketch how to reproduce from our techniques a n1−o(1) lowerbound on testing

Distribution Support Size, which is the main result of [18]. Distribution Support

Size, as defined in [18] is the problem of estimating the support size of a distribution

on [n] given that no element occurs with probability in (0, 1
n
) —that is, each element

with nonzero probability must have probability at least 1
n
. We note that for any δ > 0

the support size function is (nδ, δ)-weakly-continuous, and further, for any constants

a < b < 1, uniform distributions with support size na or nb are “low frequency”

for any number of samples k = o(n). Thus, letting δ < b−a
2

the Low Frequency

Blindness Theorem implies that distinguishing support size > nb from < na requires

n1−o(1) samples. . . modulo one small detail: as noted above, distribution support size

is only defined on certain distributions, and one must check that our proof techniques
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maintain this constraint. Essentially, there is only one point in the proof of the Low

Frequency Blindness Theorem where we modify the input distributions p+, p−, and

that is in the construction of Definition 5.2.4; in this construction, the distributions

are modified three times, none of which will introduce weights in the interval (0, 1
n
): in

Step 1, some probabilities are made 0; in Step 4 some probabilities much larger than

1
k
> 1

n
are introduced; and in Step 5 some probabilities are modified to be uniformly

at least 1
n

as noted by the footnote in the proof of Theorem 5.2.5.

3.4 Further Directions

It is not immediately clear why symmetric and weakly-continuous are related to the

Canonical Tester, since syntactically the tester could conceivably be applied to a

much wider class of properties.2 Indeed we suspect that this tester —or something

very similar— may be shown optimal for more general properties. However, neither

the symmetry nor the continuity condition can be relaxed entirely:

• Consider the problem of determining whether a (single) distribution has more

than 2
3

of its weight on its first half or its second half. Specifically, on distribu-

tions of support [n] let π(p) = |p({1, . . . , bn
2
c})|, where we want to distinguish

π < 1
3

from π > 2
3
. We note that π is continuous but not symmetric. The

optimal tester for this property draws a single sample, answering according to

whether this sample falls in the first half or second half of the distribution. Fur-

ther, this tester will likely return the correct answer even when each frequency

in p is in [0, 2
n
]. However, the Canonical Tester will discard all such samples

unless θ
k
< 2

n
, that is, if the number of samples —k— is almost n. Thus there is

a gap of roughly n between the performance of the Canonical Tester and that

of the best tester for this property.

• The problem of Theorem 1.1.1, determining whether a pair of distributions are

2We note that if a property is drastically discontinuous then essentially anything is a “Canonical

Tester” for it, since such a property is not testable at all. So the tester we present is canonical for

weakly-continuous and “very discontinuous” properties. The situation in between remains open.
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identical or far apart, can be transformed into an approximation problem by

defining π(p1, p2) to be −1 if p1 = p2 and |p1− p2| otherwise, and asking to test

π
1/2
−1/2. We note that π is clearly symmetric, but not continuous. It is easy to

see that the Canonical Tester for π
1/2
−1/2 requires Θ̃(n) samples, which is ∼ n1/3

worse than the bound of Õ(n2/3) provided by [6] (and proven optimal by our

Theorem 1.1.1).
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Chapter 4

The Wishful Thinking Theorem

4.1 Histograms and Fingerprints

It is intuitively obvious that the order in which samples are drawn from a distribution

can be of no use to a property tester, and we have already implicitly used this fact

by noting that a property tester may be given, instead of a vector of samples, just

the histogram of the samples —the number of times each element appears. This is an

important simplification because it eliminates extraneous information from the input

representation, thus making the behavior of the property tester on such inputs easier

to analyze. For the class of symmetric properties, however, a further simplification

is possible: instead of representing the input by its histogram, we represent it by the

histogram of its histogram, an object that appears in the literature under the name

“fingerprint” [3].

To give an explicit example, consider the sample sequence (3, 1, 2, 2, 5, 1, 2); the

histogram of this is the sequence (2, 3, 1, 0, 1), expressing that 1 occurs two times, 2

occurs three times, 3 occurs once, etc.; the histogram of this histogram is the sequence

(2, 1, 1) indicating that two elements occur once (3,5), one element occurs twice (1)

and one element occurs three times (2) —the zeroth entry, expressing those elements

not occurring, is ignored. This is the fingerprint: a vector whose ith entry denotes

the number of elements that experience i-way collisions.

To motivate this, we note that for a symmetric property —that is, a property

31



invariant under relabelings of the elements— a distribution which takes value 1 half

of the time, 2 a quarter of the time and 3 a quarter of the time has the same property

as a distribution that takes value 1 a quarter of the time, 2 half of the time, and

3 a quarter of the time. It is not relevant to the tester that “1” occurs more times

than “2” or vice versa; the only useful information is that (for example) one element

appears twice, and two elements appear once, in short, the only useful information

is the “collision statistics”, which is exactly what the histogram of the histogram

captures. (See for example [3, 6].)

4.2 Intuition

Our goal in this chapter is to establish a general condition for when two low-frequency

distributions are indistinguishable by k-sample symmetric property testers, which we

do by establishing a general condition for when the distribution of k-sample finger-

prints of two distributions are statistically close, a result that we call the Wishful

Thinking Theorem. To motivate the main result of this chapter, we present a “wish-

ful thinking” analysis, of the relevant quantity: the statistical distance between the

distributions of the k-sample fingerprints induced by two distributions p+, p− respec-

tively. None of the following derivation is technically correct except for its conclusion,

which we prove via a different (technically correct!) method in the rest of this chapter.

Consider the contribution of the ith element of a distribution p to the

ath entry of the fingerprint: 1 when i is sampled a times out of k sam-

ples, 0 otherwise. Since each sample draws i with probability p(i), the

probability of drawing i at all in k samples is roughly k · p(i), and we

(wishfully) approximate the probability of i being drawn a times as this

quantity to the ath power, ka · p(i)a. Thus the binary random variable

representing the contribution of i to the ath fingerprint entry has mean

and mean-squared equal to (roughly) ka · p(i)a, where, since p is low-

frequency, this is also essentially the variance. Assuming (wishfully) that

the contributions from different i are independent, we sum the mean and
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variance over all i to find that the distribution of the value of the ath

fingerprint entry has mean and variance both equal to ka
∑n

i=1 p(i)
a, a

quantity recognizable as proportional to the ath moment of p; denote this

by ma. Thus to compare the ath fingerprint entries induced by p+ and p−

respectively, we may (wishfully) just compare the mean and variance of

the induced distributions. Intuitively, the induced distributions are close

if the difference between their means is much less than the square root

of the variance of either: we estimate the statistical distance as |m
+
a −m−a |√
m+
a

.

Thus to estimate the statistical distance between the entire fingerprints,

we sum over a:
∑

a
|m+

a −m−a |√
m+
a

. If this expression is much less than 1, then

p+ and p− are not distinguishable by a symmetric tester in k samples.

In this intuitive analysis we made use of “wishful thinking” once trivially to sim-

plify small constants, but more substantially, twice to eliminate high-dimensional de-

pendencies of distributions: we assumed that the contributions of different elements

i to the ath fingerprint entry were independent; and we assumed that the distribu-

tions of different fingerprint entries were independent. As noted above, despite how

convenient these claims are, neither of them is true. (Intuitively one may think of

the first independence assumption as being related to the question of whether one

application of the histogram function preserves entry-independence —in general it

does not— and the second independence assumption as being related to issues aris-

ing from the second application of the histogram function.) To address the first kind

of dependency, we appeal to the standard technique of Poissonization (see [4]). The

second dependency issue will be analyzed by appeal to a recent multivariate analysis

bound.

4.3 Poissonization

Definition 4.3.1. A Poisson process with parameter λ ≥ 0 is a distribution over the

nonnegative integers where the probability of choosing c is defined as poi(c;λ) , e−λλc

c!
.

We denote the corresponding random variable as Poi(λ). For a vector ~λ ≥ 0 of length
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t we let Poi(~λ) denote the t-dimensional random variable whose ith component is

drawn from the univariate Poi(~λ(i)) for each i.

Definition 4.3.2. A k-Poissonized tester T (for properties of a single distribution)

is a function that correctly classifies a property on a distribution p with probability 7
12

on input samples generated in the following way:

• Draw k′ ← Poi(k).

• Return k′ samples from p.

We have the following standard lemma:

Lemma 4.3.3. If there exists a k-sample tester T for a binary property π, then there

exists a k-Poissonized tester T ′ for π.

Proof. With probability at least 1
2
, independent of π(p), k′ drawn from Poi(k) will

have value at least k. Let T ′ simulate T when given at least k samples, and return a

random answer otherwise. Thus with probability at least 1
2
T ′ will simulate T , which

returns a correct answer with probability at least 2
3
, and the remainder of the time T ′

will guess with 50% success, yielding a total success rate at least 1
2

2
3

+ 1
2

1
2

= 7
12

.

The reason for applying this Poissonization transform is the following elementary

fact: taking Poi(k) samples from p, the number of times element i is sampled is (1)

independent of the number of times any other element is sampled, and (2) distributed

according to Poi(k · p(i)). In other words, the histogram of these samples may be

computed entry-by-entry: for the ith entry return a number drawn from Poi(k ·p(i)).

We have resolved the first interdependence issue of the wishful-thinking argument.

4.4 Roos’s Theorem and Multinomial Distributions

To resolve the second interdependence issue, pushing the element-wise independence

through the second application of the histogram function, we show how we may

approximate the distribution of the fingerprint of Poi(k) samples by an element-wise

34



independent distribution (which will turn out to be a multivariate Poisson distribution

itself). To express this formally, we note that the fingerprint of Poi(k) samples from

p is an example of what is sometimes called a “generalized multinomial distribution”,

and then invoke a result that describes when generalized multinomial distributions

may be approximated by multivariate Poisson distributions.

Definition 4.4.1. The generalized multinomial distribution parameterized by matrix

ρ, denoted Mρ, is defined by the following random process: for each row ρi of ρ, draw

a column from the distribution ρi; return a row vector recording the total number of

samples falling into each column (the histogram of the samples).

Lemma 4.4.2. For any distributions p with support [n] and positive integer k, the

distribution of fingerprints of Poi(k) samples from p is the generalized multinomial

distribution Mρ where matrix ρ has n rows, columns indexed by fingerprint index

a, and (i, a) entry equal to poi(a; k · p(i)), that is, the ith row of ρ expresses the

distribution Poi(k · p(i)).

Proof. As noted above, the ith element of the histogram of drawing Poi(k) samples

from p is drawn (independently) from the distribution Poi(k · p(i)). The generalized

multinomial distribution Mρ simply draws these samples for each i and returns the

histogram, which is distributed as the histogram of the histogram of the original

Poi(k) samples, as desired.

We introduce here the main result from Roos[19] which states that generalized

multinomial distributions may be well-approximated by multivariate Poisson pro-

cesses.

Roos’s Theorem [19]. Given a matrix ρ, letting ~λ(a) =
∑

i ρ(i, a) be the vector of

column sums, we have

|Mρ − Poi(~λ)| ≤ 8.8
∑
a

∑
i ρ(i, a)2∑
i ρ(i, a)

.

Thus the multivariate Poisson distribution is a good approximation for the finger-

prints, provided ρ satisfies a smallness condition.
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4.5 Assembling the Pieces

We begin by analyzing the approximation error of Roos’s Theorem in the case that

concerns us here: when the multinomial distribution models the distribution of fin-

gerprints of Poissonized samples from a low-frequency distribution.

Lemma 4.5.1. Given a distribution p, an integer k, and a real number 0 < ε ≤ 1
2

such

that ∀i, p(i) ≤ ε
k
, if ρ is the matrix with (i, a) entry poi(a; k ·p(i)) then

∑
a

∑
i ρ(i,a)

2∑
i ρ(i,a)

≤

2ε.

Proof. We note that ρ(i, a) = poi(a; k · p(i)) = e−k·p(i)(k·p(i))a
a!

≤ (k · p(i))a ≤ εa. Thus

∑
a

∑
i ρ(i, a)2∑
i ρ(i, a)

≤
∑
a

max
i
ρ(i, a) ≤

∑
a

εa ≤ 2ε.

Via the Poissonization technique and Roos’s Theorem we have thus reduced the

problem to that of comparing two multivariate Poisson distributions. To provide

such a comparison, we first derive the statistical distance between univariate Poisson

distributions.

Lemma 4.5.2. The statistical distance between two univariate Poisson distributions

with parameters λ, λ′ is bounded as

|Poi(λ)− Poi(λ′)| ≤ 2
|λ− λ′|√

1 + max{λ, λ′}
.

Proof. Without loss of generality, assume λ ≤ λ′. We have two cases.

Case 1: λ′ ≥ 1 We estimate the distance via the relative entropy of Poi(λ) and

Poi(λ′), defined for general distributions p, p′ as

D(p||p′) =
∑
i

p(i) loge
p(i)

p′(i)
.

We compute the relative entropy of the Poisson processes as

D(Poi(λ)||Poi(λ′)) =
∑
c≥0

poi(c;λ) loge
e−λλc

e−λ′λ′c
=
∑
c≥0

poi(c;λ)

[
λ′ − λ+ c loge

λ

λ′

]
= λ′−λ+λ loge

λ

λ′
,
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where the last equality is because the Poisson distribution of parameter λ has total

weight 1 and expected value λ. Further, since loge x ≤ x− 1 for all x we have

λ′ − λ+ λ loge
λ

λ′
≤ λ′ − λ+ λ loge

λ

λ′
− λ(loge

λ

λ′
− λ

λ′
+ 1) =

(λ′ − λ)2

λ′
.

Thus D(Poi(λ)||Poi(λ′)) ≤ (λ′−λ)2

λ′
. We recall that statistical distance is related to

the relative entropy as |p − p′| ≤
√

2D(p||p′) (see [?] p. 300), and thus we have

|Poi(λ) − Poi(λ′)| ≤
√

2|λ−λ′|√
λ′

. Since λ′ ≥ 1
2
(1 + λ′) for λ′ ≥ 1 we conclude |Poi(λ) −

Poi(λ′)| ≤ 2 |λ−λ
′|√

1+λ′
, as desired.

Case 2: λ′ < 1 We note that for i ≥ 1 we have poi(0;λ) − poi(0;λ′) = e−λ − eλ′ ≤

λ′ − λ where the last inequality is because the function ex has derivative at most

1 for x ∈ [λ, λ′], since 0 ≤ λ ≤ λ′. Further, we note that poi(i;λ) − poi(i;λ′) =

1
i!
[e−λλi − eλ′λi] ≤ 0 where the last inequality is because the function f(x) = e−xxi

has derivative e−xxi−1(i − x) which is nonnegative for x ∈ [0, 1] ⊃ [λ, λ′]. Since

both Poisson processes have total weight 1, the negative difference between the i ≥ 1

terms exactly balances the positive difference between the i = 0 terms, and thus the

statistical difference equals this difference, which we bounded as λ′ − λ.

Thus, |Poi(λ) − Poi(λ′)| ≤ λ′ − λ < 2 |λ−λ
′|√

1+λ′
as desired, and we have proven the

lemma for both cases.

The corresponding multivariate bound is as follows:

Lemma 4.5.3. The statistical distance between two multivariate Poisson distributions

with parameters ~λ+, ~λ− is bounded as

|Poi(~λ+)− Poi(~λ−)| ≤ 2
∑
a

|~λ+(a)− ~λ−(a)|√
1 + max{~λ+(a), ~λ−(a)}

.

Proof. We prove this as a direct consequence of Lemma 4.5.2 and the fact that the

statistical distance of multivariate distributions with independent marginals is at most

the sum of the corresponding distances between the marginals, which we prove here.

Suppose we have bivariate distributions p(i, j) = p1(i) · p2(j) and p′(i, j) = p′1(i) ·

37



p′2(j) then

|p− p′| =
∑
i,j

|p1(i)p2(j)− p′1(i)p′2(j)|

≤
∑
i,j

|p1(i)p2(j)− p′1(i)p2(j)|+
∑
i,j

|p′1(i)p2(j)− p′1(i)p′2(j)|

= |p1 − p′1|+ |p2 − p′2|.

Induction yields the subadditivity claim for arbitrary multivariate distributions,

and thus we conclude this lemma from Lemma 4.5.2.

Combining results yields:

Lemma 4.5.4. Given a positive integer k and two distributions p+, p− all of whose

frequencies are at most 1
500k

, then, letting ~λ+(a) =
∑

i poi(a; k · p+(i)) and ~λ−(a) =∑
i poi(a; k · p−(i)) for a > 0, if it is the case that

∑
a>0

|~λ+(a)− ~λ−(a)|√
1 + max{~λ+(a), ~λ−(a)}

<
1

25
. (4.1)

then it is impossible to test any symmetric property that is true for p+ and false for

p− in k samples.

Proof. Combining Lemma 4.5.1 with Roos’s Theorem we have that for each of p+ and

p− the distance of the Poisson approximation from the distribution of fingerprints of

Poi(k) samples is at most 2·8.8
500

< 1
25

. Thus, by the triangle inequality, the distance

between the distribution of fingerprints of Poi(k) samples from p+ versus p− is at

most 2
25

plus the bound from Lemma 4.5.3, which (from Equation 4.1) is also 2
25

,

yielding a total distance of at most 4
25

, which is less than 1
6
. Assume for the sake

of contradiction that there is a k-sample tester that distinguishes between p+ and

p−. By Lemma 4.3.3 there must thus exist a tester on Poi(k) samples. However, the

definition of a Poissonized tester requires that the tester succeed with probability at

least 7
12

on p+ and succeed with probability at most 5
12

on p−, which contradicts the

fact that their input distributions have statistical distance strictly less than 1
6
. Thus

no such tester can exist.
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As it turns out, we can simplify this bound by replacing ~λ(a) here with the ath

moments of the distributions, yielding the final form of the Wishful Thinking Theo-

rem. The proof involves expressing each ~λa as a power series in terms of the moments,

and is somewhat technical.

Definition 4.5.5. For integer k and distribution p, the k-based moments of p are

the values ka
∑

i p(i)
a for a ∈ Z+.

Theorem 4.5.6 (Wishful Thinking). Given an integer k > 0 and two distributions

p+, p− all of whose frequencies are at most 1
500k

, then, letting m+,m− be the k-based

moments of p+, p− respectively, if it is the case that∑
a>1

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

<
1

50
.

then it is impossible to test any symmetric property that is true for p+ and false for

p− in k samples.1

Proof. We derive the theorem as a consequence of Lemma 4.5.4. We start from Equa-

tion 4.1, (recall the definition ~λ+(a) =
∑

i poi(a; k · p+(i)) = ka

a!

∑
i e
−k·p+(i)p+(i)a and

the corresponding one for ~λ−(a) ) and expand both the numerator and denominator

of each fraction via Taylor series expansions.

For the numerator of the a term we have from Taylor expansions and the triangle

inequality that

|λ+(a)− λ−(a)| = ka

a!

∣∣∣∣∣∑
i

[
e−k·p

+(i)p+(i)a − e−k·p−(i)p−(i)a
]∣∣∣∣∣

=
1

a!

∣∣∣∣∣∑
i

∑
γ

(−1)γ

γ!
ka+γ

[
p+(i)a+γ − p−(i)a+γ

]∣∣∣∣∣
=

1

a!

∣∣∣∣∣∑
γ

(−1)γ

γ!
[m+(a+ γ)−m−(a+ γ)]

∣∣∣∣∣
≤ 1

a!

∑
γ

1

γ!

∣∣m+(a+ γ)−m−(a+ γ)
∣∣ .

1We note that we may strengthen the lemma by inserting a term of ba
2 c! in the denominator of

the summand; for simplicity of presentation, and since we never make use of this stronger form, we

prove the simpler version. See Section 4.6 for a version of the lemma with this term.
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We now bound terms in the denominator of Equation 4.1. Since p+(i), p−(i) ≤ 1
500k

by assumption, we have ek·p
+(i), ek·p

−(i) > 0.9, which implies that ~λ+(a) > 0.9
a!
m+(a)

by definition of m+, with corresponding expression holding for ~λ− and m−. Thus we

bound terms in the denominator of Equation 4.1 as√
1 + max{~λ+(a), ~λ−(a)} ≥ 0.9√

a!

√
1 + max{m+(a),m−(a)}.

Combining the bounds for the numerator and denominator, where in the second

line we make use of the fact that (since p+(i), p−(i) ≤ 1
k
) both m+ and m− are

decreasing functions of their index, and where we make the variable substitution

µ = a+ γ in the third line, yields∑
a>0

|~λ+(a)− ~λ−(a)|√
1 + max{~λ+(a), ~λ−(a)}

≤
∑
a>0

∑
γ

|m+(a+ γ)−m−(a+ γ)|
0.9γ!

√
a!
√

1 + max{m+(a),m−(a)}

≤
∑
a>0

∑
γ

|m+(a+ γ)−m−(a+ γ)|
0.9γ!

√
a!
√

1 + max{m+(a+ γ),m−(a+ γ)}

=
∑
µ

∑
γ<µ

|m+(µ)−m−(µ)|
0.9γ!

√
(µ− γ)!

√
1 + max{m+(µ),m−(µ)}

=
∑
µ

|m+(µ)−m−(µ)|√
1 + max{m+(µ),m−(µ)}

1

0.9

∑
γ<µ

1

γ!
√

(µ− γ)!
.

We note that the expression
∑

γ<µ
1

γ!
√

(µ−γ)!
clearly tends to 0 for large µ, as each of

the µ terms is at most 1
bµ/2c! ; evaluating for small µ we see that this expression attains

its maximum value of 1 +
√

2
2

at µ = 2. Thus 1
0.9

∑
γ<µ

1

γ!
√

(µ−γ)!
≤ 2, from which we

conclude that
∑

a>0
|~λ+(a)−~λ−(a)|√

1+max{~λ+(a),~λ−(a)}
< 2

∑
a≥0

|m+(a)−m−(a)|√
1+max{m+(a),m−(a)}

. Finally, we

note that m+(0) =
∑n

i=1 p
+(i)0 = n and m+(1) = k

∑
i p

+(i) = k, regardless of p+,

and thus by symmetry, m+(0) = m−(0) and m+(1) = m−(1). Thus this last sum

equals
∑

a>1
|m+(a)−m−(a)|√

1+max{m+(a),m−(a)}
, which by hypothesis is less than 1

50
, from which we

conclude that
∑

a>0
|~λ+(a)−~λ−(a)|√

1+max{~λ+(a),~λ−(a)}
< 1

25
. We invoke Lemma 4.5.4 to finish.

We will find it convenient to work with a finite subset of the moments in Chapter

5, so we prove as a corollary to the Wishful Thinking Theorem that if we have an

even tighter bound on the frequencies of the elements, then we may essentially ignore

all moments beyond the first
√

log n.
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Corollary 4.5.7. Given an integer k > 0, real number ε ≤ 1
10·2

√
logn and two dis-

tributions p+, p− all of whose frequencies are at most ε
k
, then, letting m+,m− be the

k-based moments of p+, p− respectively, if it is the case that

√
logn∑
a=2

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

<
1

120
.

then it is impossible to test any symmetric property that is true for p+ and false for

p− in k samples.

Proof. We derive this from the bound of the Wishful Thinking Theorem. We note

that for any distributions p+, p−, we have m+(0) = m−(0) = n, and m+(1) =

m−(1) = k, so thus the terms for a < 2 vanish. To bound the terms for a >

max{2,
√

log n} we note that for such a we have m+(a) ≤ kan( ε
k
)a = nεa ≤ .1a

Thus, since |m+(a)−m−(a)|√
1+max{m+(a),m−(a)}

≤ m+(a), we can bound these terms by
∑

a≥2 .1
a+b <

1
50
− 1

120
, yielding the corollary.

4.6 The Two Distribution Case

We follow the same outline as for the single distribution case.

The first step is to define the fingerprint of samples from a pair of distributions.

As above, it is defined as the histogram of the histogram of the samples, but because

we have two distributions instead of one, the form of the fingerprint is a bit more

intricate. Let us introduce this by way of an example. Suppose we draw 7 sam-

ples from each of two distributions, with the sequence (3, 1, 2, 2, 5, 1, 2) being drawn

from the first distribution, and (4, 3, 1, 2, 3, 5, 5) being drawn from the second distri-

bution. A single application of the histogram function returns a sequence of pairs

((2, 1), (3, 1), (1, 2), (0, 1), (1, 2)) indicating that 1 was seen twice from the first distri-

bution and once from the second distribution; 2 was seen three times from the first

distribution and once from the second; 3 was seen once from the first distribution and

twice from the second distribution, etc. The second application of the histogram now

takes as input these five pairs, and thus returns a table counting how many times
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each pair was seen. That is, the fingerprint of these samples is the matrix

0 1 2 3

0 0 1 0 0

1 0 0 2 0

2 0 1 0 0

3 0 1 0 0


which indicates that the pair (0, 1) occurs once in the histogram, the pair (1, 2) occurs

twice, the pair (2, 1) occurs once, and the pair (3, 1) occurs once. Or, stretching the

language slightly, we have one “(0,1)-way collision”, two “(1,2)-way collisions”, one

“(2,1)-way collision”, and one “(3,1)-way collision”.

We give a formal definition and prove the fact that the fingerprint captures all the

useful information about the samples.

Definition 4.6.1. Given two sequences of samples S1, S2 drawn from distributions

with finite support set X, the fingerprint of S1, S2 is a function f : Z+ × Z+ → Z+

such that f(i, j) is the number of elements of X that appear exactly i times in S1 and

j times in S2.

Lemma 4.6.2. For any symmetric property π of distribution pairs and random vari-

ables κ1, κ2, if there exists a tester T taking as input κ1 samples from the first distri-

bution and κ2 samples from the second distribution, then there exists a tester T ′ which

takes as input only the fingerprint of κ1 samples drawn from the first distribution and

κ2 samples drawn from the second distribution.

Proof. Given T and a fingerprint f(·, ·) of κ1, κ2 samples respectively from distribu-

tions p1 and p2 on [n] we let T ′ run as follows:

1. Initialize empty lists s1, s2.

2. For each nonzero pair (i, j), pick f(i, j) arbitrary new values in [n] and append

these i times to the list s1 of “simulated samples for the first distribution”, and

j times to the list s2.
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3. Construct a random permutation π over [n].

4. Return T (π(s1), π(s2), namely, apply π to rename the elements of s1, s2, and

run the original tester T on these simulated samples.

We note that the distribution of the lists we give to T is identical to that produced

by the process of picking a random permutation γ on n elements and drawing κ1, κ2

samples respectively from the distributions p1 ◦ γ and p2 ◦ γ. Furthermore, since T is

a tester for a symmetric property, it has the same performance guarantees for (p1, p2)

as for (p1 ◦ γ, p2 ◦ γ) for any permutation γ. Thus T will also operate correctly when

γ is drawn randomly, which implies that T ′ is a tester for π, as desired.

Following the outline from above, we next consider Poissonized testers of distribu-

tion pairs. Akin to Definition 4.3.2 and Lemma 4.3.3 we have (note the slight change

in constants):

Definition 4.6.3. A (k1, k2)-Poissonized tester T (for properties of two distributions)

is a function that correctly classifies a property on a distribution pair p1, p2 with

probability 13
24

on input samples generated in the following way:

• Draw k′1 ← Poi(k1) and k′2 ← Poi(k2).

• Return k′1 samples from p1 and k′2 samples from p2.

We have the following standard lemma:

Lemma 4.6.4. If there exists a (k1, k2)-sample tester T for a 2-distribution binary

property π, then there exists a (k1, k2)-Poissonized tester T ′ for π.

Proof. With probability at least 1
4
, independent of π(p1, p2), we will have both k′1 ≥ k1

and k′2 ≥ k2. Let T ′ simulate T when given at least k1, k2 samples respectively from

the distributions, and return a random answer otherwise. Thus with probability at

least 1
4
T ′ will simulate T , which returns a correct answer with probability at least 2

3
,

and the remainder of the time T ′ will guess with 50% success, yielding a total success

rate at least 1
4

2
3

+ 3
4

1
2

= 13
24

.
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The next step is to express the distribution of fingerprints of (k1, k2)-Poissonized

samples as a multinomial distribution. As above, we create a matrix ρ with rows

corresponding to elements of distributions’ domain, and columns corresponding to

histogram entries. We note that in this case, however, the histogram is not indexed

by a single index (a) as it was above, but instead by a pair of indices, which we take

to be a, b. Thus ρ is indexed as ρ(i, (a, b)).

Akin to Lemma 4.4.2 we have:

Lemma 4.6.5. For any pair of distributions p1, p2 with support [n] and positive in-

tegers k1, k2, the distribution of fingerprints of Poi(k1) samples from p1 and Poi(k2)

samples from p2 is the generalized multinomial distribution Mρ where matrix ρ has

n rows, columns indexed by fingerprint indices a, b, and (i, (a, b)) entry equal to

poi(a; k1 · p1(i))poi(b; k2 · p2(i)), that is, the ith row of ρ expresses the bivariate dis-

tribution Poi([k1 · p1(i) , k2 · p2(i)]) over the values (a, b).

Proof. From basic properties of the Poisson distribution, the ith element of the

histogram of [drawing a Poi(k1)-distributed number of samples p1 and a Poi(k2)-

distributed number of samples from p2] is a pair with the first element drawn (in-

dependently) from the distribution Poi(k1 · p1(i)) and the second element drawn

(independently) from the distribution Poi(k2 · p2(i)). The generalized multinomial

distribution Mρ, by definition, simply draws these samples for each i and returns

the histogram, which is distributed as the histogram of the histogram of the original

distribution of samples, as desired.

Roos’s Theorem we invoke as is, via a generalization of Lemma 4.5.1

Lemma 4.6.6. Given a pair of distributions p1, p2, integers k1, k2, and a real number

0 < ε ≤ 1
2

such that ∀i, p1(i) ≤ ε
k1

and p2(i) ≤ ε
k2

, if ρ is the matrix with (i, (a, b))

entry poi(a; k1 · p1(i))poi(b; k2 · p2(i)) then
∑

a+b>0

∑
i ρ(i,(a,b))

2∑
i ρ(i,(a,b))

≤ 4ε.

Proof. We note that poi(a; k1 · p1(i)) = e−k1·p1(i)(k1·p1(i))a

a!
≤ (k1 · p(i))a ≤ εa, and

correspondingly poi(b; k2 · p2(i)) ≤ εb, so thus∑
a+b>0

∑
i ρ(i, (a, b))2∑
i ρ(i, (a, b))

≤
∑
a+b>0

max
i
ρ(i, (a, b)) ≤

∑
a+b>0

εa+b ≤ 4ε.
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We thus have the following generalization of Lemma 4.5.4

Lemma 4.6.7. Given positive integers k1, k2 and two distribution pairs p+
1 , p

+
2 , p

−
1 , p

−
2

where p+
1 , p

−
1 have frequencies at most 1

2000k1
and p+

2 , p
−
2 have frequencies at most

1
2000k2

, then, letting ~λ+(a, b) =
∑

i poi(a; k1 · p+
1 (i))poi(b; k2 · p+

2 (i)) and ~λ−(a, b) =∑
i poi(a; k1 · p−1 (i))poi(b; k2 · p−2 (i)) for a+ b > 0, if it is the case that

∑
a+b>0

|~λ+(a, b)− ~λ−(a, b)|√
1 + max{~λ+(a, b), ~λ−(a, b)}

<
1

50
. (4.2)

then it is impossible to test any symmetric property that is true for (p+
1 , p

+
2 ) and false

for (p−1 , p
−
2 ) in (k1, k2) samples.

Proof. Combining Lemma 4.6.6 with Roos’s Theorem we have that for each of (p+
1 , p

+
2 )

and (p−1 , p
−
2 ) the distance of the Poisson approximation from the distribution of fin-

gerprints of (k1, k2)-Poissonized samples is at most 4·8.8
2000

< 1
50

. Thus, by the triangle

inequality, the distance between the distribution of fingerprints of (k1, k2)-Poissonized

samples from each of p+
1 , p

+
2 versus each of p−1 , p

−
2 is at most 2

50
plus the bound from

Lemma 4.5.3, which (from Equation 4.2) is also 2
50

, yielding a total distance of at

most 4
50

, which is less than 1
12

. Assume for the sake of contradiction that there is a

(k1, k2)-sample tester that distinguishes between (p+
1 , p

+
2 ) and (p−1 , p

−
2 ). By Lemma

4.6.4 there must thus exist a corresponding (k1, k2)-Poissonized tester. However, the

definition of a Poissonized tester requires that the tester succeed with probability at

least 13
24

on (p+
1 , p

+
2 ) and succeed with probability at most 11

24
on (p−1 , p

−
2 ), which con-

tradicts the fact that their input distributions have statistical distance strictly less

than 1
12

. Thus no such tester can exist.

We now reexpress this lemma in terms of the “moments of the distribution pairs”

—which we define now. As promised above, we prove a version that is slightly tighter

than the single-distribution version in that the condition of the theorem (Equation

4.6.9) now has factorials in the denominator.
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Definition 4.6.8. For integers (k1, k2) and distribution pair p1, p2, the (k1, k2)-based

moments of (p1, p2) are the values ka1k
b
2

∑
i p1(i)

ap2(i)
b for a, b ∈ Z+.

Theorem 4.6.9 (Wishful Thinking for Two Distributions). Given integers k1, k2 > 0

and two distribution pairs (p+
1 , p

+
2 ), (p−1 , p

−
2 ) where p+

1 , p
−
1 have frequencies at most

1
2000k1

and p+
2 , p

−
2 have frequencies at most 1

2000k2
, then, letting m+,m− be the (k1, k2)-

based moments of (p+
1 , p

+
2 ), (p−1 , p

−
2 ) respectively, if it is the case that∑

a>1

|m+(a)−m−(a)|
bµ

2
c!bν

2
c!
√

1 + max{m+(a),m−(a)}
<

1

500
.

then it is impossible to test any symmetric property that is true for (p+
1 , p

+
2 ) and false

for (p−1 , p
−
2 ) in (k1, k2) samples.

Proof. As in the proof of the original Wishful Thinking Theorem, we derive the

theorem as a consequence of Lemma 4.6.7. We start from Equation 4.2, and expand

both the numerator and denominator of each fraction via Taylor series expansions.

For the numerator of the (a, b) term we have from Taylor expansions and the

triangle inequality that

|λ+(a, b)− λ−(a, b)| = ka1k
b
2

a!b!

∣∣∣∣∣∑
i

[
e−k1p

+
1 (i)−k2p+2 (i)p+

1 (i)ap+
2 (i)b − e−k1p

−
1 (i)−k2p−2 (i)p−1 (i)ap−2 (i)b

]∣∣∣∣∣
=

1

a!b!

∣∣∣∣∣∑
i

∑
γ,δ

(−1)γ+δ

γ!δ!
ka+γ1 kb+δ2

[
p+

1 (i)a+γp+
2 (i)b+δ − p−1 (i)a+γp−2 (i)b+δ

]∣∣∣∣∣
=

1

a!b!

∣∣∣∣∣∑
γ,δ

(−1)γ+δ

γ!δ!
[m+(a+ γ, b+ δ)−m−(a+ γ, b+ δ)]

∣∣∣∣∣
≤ 1

a!b!

∑
γ,δ

1

γ!δ!

∣∣m+(a+ γ, b+ δ)−m−(a+ γ, b+ δ)
∣∣ .

We now bound terms in the denominator of Equation 4.2. Since p+
1 (i), p+

2 (i) ≤
1

2000k1
by assumption, we have ek1·p

+
1 (i), ek1·p

+
2 (i) > 0.9 and correspondingly, ek2·p

−
1 (i), ek2·p

−
2 (i) >

0.9, which imply that ~λ+(a, b) > 0.92

a!b!
m+(a, b) by definition of m+, with correspond-

ing expression holding for ~λ− and m−. Thus we bound terms in the denominator of

Equation 4.1 as√
1 + max{~λ+(a, b), ~λ−(a, b)} ≥ 0.9√

a!b!

√
1 + max{m+(a, b),m−(a, b)}.
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Combining the bounds for the numerator and denominator, where in the second

line we make use of the fact that (since k1 · p+
1 (i), k1 · p−1 (i), k2 · p+

2 (i), k2 · p−2 (i) < 1)

both m+ and m− are decreasing functions of their index, and where we make the

variable substitutions µ = a+ γ, and ν = b+ δ in the third line, yields∑
a+b>0

|~λ+(a, b)− ~λ−(a, b)|√
1 + max{~λ+(a, b), ~λ−(a, b)}

≤
∑
a,b

∑
γ,δ

|m+(a+ γ, b+ δ)−m−(a+ γ, b+ δ)|
0.9γ!δ!

√
a!b!
√

1 + max{m+(a, b),m−(a, b)}

≤
∑
a,b

∑
γ,δ

|m+(a+ γ, b+ δ)−m−(a+ γ, b+ δ)|
0.9γ!δ!

√
a!b!
√

1 + max{m+(a+ γ, b+ δ),m−(a+ γ, b+ δ)}

=
∑
µ,ν

∑
γ≤µ
δ≤ν

|m+(µ, ν)−m−(µ, ν)|
0.9γ!δ!

√
(µ− γ)!(ν − δ)!

√
1 + max{m+(µ, ν),m−(µ, ν)}

=
∑
µ,ν

|m+(µ, ν)−m−(µ, ν)|√
1 + max{m+(µ, ν),m−(µ, ν)}

1

0.9

∑
γ≤µ

1

γ!
√

(µ− γ)!

∑
δ≤ν

1

δ!
√

(ν − δ)!
.

We bound the expression
∑

γ≤µ
1

γ!
√

(µ−γ)!
as follows: note that the sum of the squares

of the terms is bounded as
∑

γ≤µ
1

γ!2(µ−γ)! ≤
µ!
µ!

∑
γ≤µ

2
2γγ!(µ−γ)! = 21.5µ

µ!
by the binomial

theorem. Having bounded the sum of the squares of the terms, Cauchy-Schwarz

bounds the original sum of these µ + 1 terms as
√

2(µ+ 1)1.5µ

µ!
. We note that µ!

bµ
2
c!2

grows asymptotically as 2µ by Sterling’s formula and thus
√

2(µ+ 1)1.5µ

µ!
≤ 1
bµ

2
c! for

large enough µ; evaluating for small µ we see that in fact
√

2(µ+ 1)1.5µ

µ!
≤ 3
bµ

2
c! for

all µ, which is our bound on the γ sum; consequently the “δ ≤ ν” sum is bounded by

3
b ν

2
c! , and since 1

.9
3 · 3 = 10, the theorem follows from Lemma 4.6.7.

Corollary 4.6.10. Given integers k1, k2 > 0, real number ε ≤ 1
64·2

√
logn and two dis-

tribution pairs (p+
1 , p

+
2 ), (p−1 , p

−
2 ) where p+

1 , p
−
1 have frequencies at most ε

k1
and p+

2 , p
−
2

have frequencies at most ε
k2

, then, letting m+,m− be the (k1, k2)-based moments of

p+, p− respectively, if it is the case that∑
a,b≤

√
logn

|m+(a, b)−m−(a, b)|√
1 + max{m+(a, b),m−(a, b)}

<
1

1000
.

then it is impossible to test any symmetric property that is true for (p+
1 , p

+
2 ) and false

for (p−1 , p
−
2 ) in (k1, k2) samples.
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Proof. We derive this from the bound of the 2-distribution Wishful Thinking Theo-

rem. We note that for any distribution pairs (p+
1 , p

+
2 ), (p−1 , p

−
2 ), we have m+(0, 0) =

m−(0, 0) = n, and m+(1, 0) = m−(1, 0) = k1, m
+(0, 1) = m−(0, 1) = k2, so thus the

terms for a + b < 2 vanish. To bound the terms for a + b > max{2,
√

log n} we note

that for such a, b we have m+(a, b) ≤ ka1k
b
2n( ε

k1
)a( ε

k2
)b = nεa+b ≤ 1

64a+b
Thus, since

|m+(a,b)−m−(a,b)|√
1+max{m+(a,b),m−(a,b)}

≤ m+(a, b), we can bound these terms by
∑

a+b≥2
1

64a+b
< 1

1000
,

yielding the corollary as a consequence of Theorem 4.6.9.

4.6.1 The Closeness Testing Lower Bound

We are now in a position to prove Theorem 1.1.1, the bound on testing whether two

distributions are identical or far apart. The proof is a realization of an outline that

appeared in [6], but making essential use of the Wishful Thinking Theorem.

Proof of Theorem 1.1.1. Let x, y be distributions on [n] defined as follows: for 1 ≤ i ≤

n2/3 let x(i) = y(i) = 1
2n2/3 . For n/2 < i ≤ 3/4n let x(i) = 2

n
; and for 3n/4 < i ≤ n

let y(i) = 2
n
. The remaining elements of x and y are zero.

Let p+
1 = p+

2 = p−1 = x, and p−2 = y and let k = n2/3

1800
. We note that each frequency

defined is at most 1
3600k

. Let m+
a,b and m−a,b be the (k, k)-based moments of (p+

1 , p
+
2 )

and (p−1 , p
−
2 ) respectively. We note that since x and y are permutations of each other,

whenever one of a = 0 or b = 0 we have m+
a,b = m−a,b, so the corresponding terms

from the Wishful Thinking Theorem vanish. For the remaining terms, a, b ≥ 1 and

we explicitly compute m−a,b = n2/3

3600a+b
and m+

a,b = n2/3

3600a+b
+ n

4(900n1/3)a+b
, so thus

∑
a,b

|m+
a,b −m

−
a,b|√

1 + max{m+
a,b,m

−
a,b}
≤
∑

a, b
|m+

a,b −m
−
a,b|√

m−a, b

≤
∑
a,b≥1

n
4(900n1/3)a+b√

n2/3

3600a+b

=
∑
a,b≥1

n2/3

4(15n1/3)a+b

=
1

900

∑
a,b≥0

1

(15n1/3)a+b

≤ 1

900

∑
a,b

1

15a+b
<

1

500
.

Invoking the Wishful Thinking Theorem (two-distribution version) yields the desired

result.
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Chapter 5

The Matching Moments Theorem

5.1 Intuition

In the previous chapter we showed essentially that moments are all that matter in

the low-frequency setting. In this chapter we consider the new ingredient of (ε, δ)-

weak continuity and show that with this ingredient, even moments become useless

for distinguishing properties; in short, no useful information can be extracted from

the low-frequency portion of a distribution, a claim that will be made explicitly in

the final chapter.

To see how the Wishful Thinking Theorem relates to an (ε, δ)-weakly-continuous

property π, we note that if πba is testable, then for any distribution p+ with large

value of π (say, at least b+ ε) and distribution p− with small value of π (say, at most

a − ε), we must not only be able to distinguish samples of p+ from samples of p−,

but further, we must be able to distinguish samples of any distribution in a ball of

radius δ about p+ from samples of any distribution in a ball of radius δ about p−. By

the Wishful Thinking Theorem this means that we can test the property only if the

images of these balls under the moments function lie far apart. The main result of

this chapter is (essentially) that the images of these balls under the moments function

always overlap.

We carry out this analysis under the constraint that we desire an intersection

point that is itself a somewhat-low frequency distribution (we relax the constraint
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to frequency at most kδ
no(1)

), so that we can conclude the argument as follows: there

exists p̂+ near p+ and there exists p̂− near p− such that the moments of p̂+ and p̂− are

close to each other and such that both p̂+ and p̂− have frequencies below kδ
no(1)

; thus

by the Wishful Thinking Theorem, large values of π are indistinguishable from small

values of π in kδ
no(1)

samples. More specifically, there is a fixed vector m̂ in moments

space that lies in or close to the image of each of these spheres under the moments

map.

In other words, the plan for this chapter is to show how we can modify low-

frequency distributions (1) slightly, (2) into somewhat-low-frequency distributions so

that (3) their moments almost match m̂. We address the single-distribution case first.

5.2 The Single Distribution Case

Recall from Chapter 4 that the zeroth and first moments already match (being always

n and k respectively), so we need only work to match the second and higher moments.

Further, the second and higher moments all depend on quadratic or higher powers

of the frequencies, so the original moments of the low-frequency distribution will

be swamped by the moments of the small “almost-low-frequency” modifications we

make.

To give a flavor of how to find these modifications to match the second and higher

moments, suppose for the moment that we ignore the constraints that the distribution

p has n entries summing to 1, and consider, for arbitrary κ, c, γ, what happens to the

κ-based moments if we add c new entries of value γ
κ
. By trivial application of the

definition, the κ-based moments of the distribution will simply increase by the vector

c · (1, γ, γ2, . . .). The crucial fact here is that these moments are a linear function of

c. In order to be able to fix the first µ =
√

log n moments we need µ linear equations

with µ unknowns: instead of using one value of c and γ we let γ range over [µ] and

let cγ denote the number of new entries of value γ
κ

we insert. Given the desired value

for m̂ we solve for the vector c by matrix division: if V is the transform matrix such

that the new moments equal m+ V · c then, equating this to our moments target m̂,
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we solve for c as c = inv(V )(m̂−m).

There are a few evident concerns with this approach: (1) how do we ensure each

cγ is integral? (2) how do we ensure that each cγ is positive? (3) how do we ensure

each cγ is small enough that the distribution is not changed much? and (4) how do

we reinstate the constraints that the distribution has n entries summing to 1?

The short answers to these questions are: (1) Round to the nearest integer. (2) If

we are worried about c being negative, say as low as the negation of c̄ = maxm inv(V )·

m we simply set m̂ = V · c̄ since we are free to choose m̂ as we wish. Now c =

inv(V )(m̂−m) = c̄− inv(V )m ≥ 0 by definition of c̄, so c is always positive. (3) To

bound the size of c we note that the matrix V is in fact an example of a Vandermonde

matrix, a class which is both well studied and well-behaved; we use standard bounds

on the inverse of Vandermonde matrices. And (4) see Definition 5.2.4 for the details

of the fairly straightforward construction.

(We note that [18] previously used Vandermonde matrices to control moments in a

similar context. One principle distinction is that they did not have a “wishful thinking

theorem” to motivate the general approach we take here; instead, they essentially

seek one special case of the Matching Moments Theorem, and apply it to bound the

complexity of the particular problem of testing distribution support size.)

5.2.1 Properties of Vandermonde Matrices

We define the particular Vandermonde matrices we use:

Definition 5.2.1. For positive integer µ define the µ× µ matrix V µ to have entries

V µ(i, j) = ji.

As noted above, we need a bound on the size of elements of inv(V µ). To compute

this we make use of the following standard (if slightly unwieldy) formula:

Lemma 5.2.2 (From [15]). For any vector z of length µ the inverse of the µ × µ
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Vandermonde matrix with entries z(j)i has (i, j)th entry

(−1)i+1
∑

1≤s1<s2<...<sµ−i≤µ
∀q,sq 6=j

µ−i∏
q=1

zsq

∏
q∈{1,...,µ}−{j}

(zq − zj)
. (5.1)

We apply this lemma to bound the inverse of V µ.

Lemma 5.2.3. Each element of inv(V µ) has magnitude at most 6µ.

Proof. We bound the magnitudes of the numerator and denominator of Equation

5.1 when z = {1, . . . , µ}. Note that the magnitude of the denominator equals (j −

1)!(µ − j)!. We bound this using Stirling’s approximation to the factorial function,

n! ≥ S(n) ,
√

2πnn
n

en
, which we note has convex logarithm. Thus

(j − 1)!(µ− j)! ≥ 1

µ
j!(µ− j)! ≥ 1

µ
S(j)S(µ− j) ≥ 1

µ
S(
µ

2
)2 = π

µµ

(2e)µ
≥ µµ

(2e)µ
,

where the third inequality is Jensen’s inequality, applied to the logarithm of S.

The sum in the numerator has at most
(
µ
µ−i

)
=
(
µ
i

)
≤ µi terms, where the sum-

mand is a product bounded by µµ−i, so the numerator has magnitude at most µµ.

Comparing our bounds on the numerator and denominator yields the lemma.

5.2.2 Construction and Proof

We now present the construction for “matching moments”.

Definition 5.2.4. Define the function M mapping distributions p on [n], positive

integer k ≤ n, and real number 0 < δ ≤ 1 to distribution p̂←Mk
δ (p) via the following

sequence of modifications to p:

1. Let δ′ = δ
2
; let I be the largest set of indices i such that

∑
i∈I p(i) ≤ δ′. Set p̂

equal to p on [n]− I, and 0 on I.

2. Let µ = b
√

log nc, and let κ = k · δ′

4µ36µ
; for integers 2 ≤ a ≤ µ let m(a) be the

κ-based moments of this modified distribution, with m(1) = 0 defined separately.

Let ĉ = inv(V µ) ·m.
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3. Let m(a) be an upper-bound on m which has value 0 for a = 1 and value κ2

k

otherwise. Let V
µI

be a µ× µ matrix with entries 6µ, and let c = V
µI ·m.

4. For each γ < µ choose c(γ) = bc(γ)− ĉ(γ)c indices i ∈ I with p̂(i) = 0 and set

p̂(i) = γ
κ

for these indices.

5. Make
∑
p̂(i) = 1 by filling in n δ

′

2
of the unassigned entries from I uniformly.

Let m̂k
δ be the moments produced by applying this procedure to the uniform distribution.

For these m̂,M we prove:

Theorem 5.2.5 (Matching Moments Theorem). For integers k, n and real number δ,

the vector m̂k
δ and the function M of Definition 5.2.4 are such that for any distribution

p for which ∀i, p(i) ≤ 1
k
, letting p̂←Mk

δ (p) and k̂ = kδ
100·23

√
logn we have

• For all i ∈ [n], p̂(i) ≤ 1/k̂;

• |p− p̂| ≤ δ

• The k̂-based ath moment of p̂, for a ≤
√

log n equals m̂ to within 1
10000 logn

.

Proof. We first show that the definition of M is valid.

We note that m is indeed an upper-bound on m: we have m(1) = m(1) = 0;

otherwise, since p(i) ≤ 1
k

for each i, the κ-based moments are bounded as m(a) ≤∑
i p̂(i)(

1
k
)a−1 · κa ≤ κ2

k

∑
i p̂(i) ≤

κ2

k
, as desired. The fact that V

µI
bounds the

magnitudes of the elements of inv(V µ) is Lemma 5.2.3. Since V
µI

and m respectively

bound the magnitudes of inv(V µ) and m, their product c̄ bounds the magnitudes of

ĉ. Thus each of the expressions bc̄(γ)− ĉ(γ)c is nonnegative and Step 4 can be carried

out.

We now show that Step 5 can be carried out. Note that the total frequency

contribution of the elements added in Step 4 is just 1
κ

times the κ-based first moment

computed as V µ
1 ·c, where V µ

1 denotes the first row of V µ. We note that V µ
1 has entries

1 through µ, with sum µ(µ+1)
2

. Since c̄ bounds the magnitude of ĉ and c = bc̄ − ĉc,

we have that entries of c are bounded by corresponding entries of 2c̄. Further, each

of these entries we may compute explicitly from the definition as 2 (µ−1)κ26µ

k
. Thus
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the total new weight from Step 4 is at most µ3κ6µ

k
= δ′

4
. By construction, the weight

before Step 4 is at least 1 − δ′, and cannot exceed this by more than the highest

frequency in p, which is at most 1
k
≤ δ

100
. Thus the total weight of p̂ is at most 1− δ′

2

by the end of Step 4.1 Further, because each element we added to the distribution

has frequency (much) greater than 1
k
, and each element we removed from p in Step

1 had frequency less than 1
k
, the number of nonzero elements in p̄ by Step 4 is no

greater than n(1 − δ′

2
), so the elements “fit”, and we have proven consistency of the

construction.

The first property of the theorem follows trivially from the construction.

The second property of the theorem follows from the fact that in Step 1 we removed

at most δ′ weight from the distribution, and in the remaining steps we only added

weight. Thus the distribution has changed by at most 2δ′ = δ.

We now examine the moments of the resulting distribution. We note that the first

µ moments would be exactly the vector V µ · c̄ save for two caveats: the rounding in

Step 4 and the new elements added in Step 5.

We note that rounding affects the ath κ-based moment by at most (one times)

the sum of the absolute values of the entries of the ath row of V µ, which we represent

as |V µ
a | and analyze later.

We analyze Step 5 by noting that the total weight added in Step 5, namely the gap

between 1 and the weight at the end of Step 4, is controlled by the linear equations,

up to rounding errors. Thus the difference between the maximum and minimum

weight possibly added is at most the total weight of (one copy each of) the elements

1
κ
, 2
κ
, . . . , µ

κ
, which equals µ(µ+1)

2κ
≤ µ2

κ
. Since the total weight to be added is at most

δ′ and the number of entries this weight is divided among is n δ
′

2
, we bound the

gap between the maximum and minimum values of the ath κ-based moment using

the inequality xa − (x(1 − y))a ≤ yaxa−1 by κa µ
2

κ
a
(

2
n

)a−1 ≤ µ3 2κ
n

. Since n ≥ k,

(otherwise we could not have ∀i, p(i) ≤ 1
k
) by definition of κ (Definition 5.2.4) this

expression is at most by 1.

1And thus each of the new weights added in Step 5 is at least 1
n , which is what we needed in

Section 3.3.3.
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Thus, for any fixed a between 2 and µ the difference between the maximum and

minimum κ-based moments reached by M , from any starting distribution p, is at most

1 + |V µ
a |. Since the elements of the ath row of V µ are the values γa for 1 ≤ γ ≤ µ,

the sum |V µ
a | consists of µ integer elements, all at most µa and some strictly less, so

1 + |V µ
a | ≤ µa+1.

To convert this bound on the κ-based moments to a bound on the k̂-based moments

we multiply by ( k̂
κ
)a where k̂

κ
= 8µ36µ

100·23
√

logn ≤ 1
100µ2 , where the last equality holds for

large n asymptotically, and for n > 3 by inspection for small integer values of µ.

Thus the bound on the variation of the k̂-based moments is µa+1( 1
100µ2 )a ≤ 1

10000µ2 for

a ≥ 2, and 0 for a < 2, as desired.

5.3 The Two Distribution Case

5.3.1 Preliminaries

The 2-distribution case is analogous to the single distribution case, but the number

of indices needed to describe each of the various objects constructed in the argument

increases somewhat. As above, we start simply, by considering how the (κ1, κ2)-based

moments (for arbitrary κ1, κ2) of a distribution pair p1, p2 change when, for arbitrary

c, t, u we add c new entries to the distribution pair with value pairs ( t
κ1
, u
κ2

), again,

ignoring as above the constraint that p1 and p2 each sum to 1. By trivial application

of the definition, we see that the (a, b) moment increases simply by ctaub. We note

that, as above, these moments depend linearly on c, so that if we wish to fix the (a, b)

moments for all a, b < µ ≡
√

log n we need set up and solve µ2 linear equations. The

equations will specify µ2 parameters ct,u where t, u ∈ [µ] and ct,u counts the number

of different i for which the pair ( t
κ1
, u
κ2

) occurs in the distribution pair as (p1(i), p2(i)).

We note that the constants taub no longer constitute a Vandermonde matrix;

however, we can treat them as the tensor product of two Vandermonde matrices. For

completeness’ sake we define:

Definition 5.3.1. Given a matrix X with rows and columns indexed respectively by
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a and u, and a matrix Y indexed by b and t, the tensor product X ⊗ Y is defined to

be the matrix with rows indexed by pairs (a, b), columns indexed by pairs (t, u), and

((a, b), (t, u)) entry defined by the product of the original entries from X and Y as

X(a, t) · Y (b, u).

Thus if we consider the constants taub as forming a matrix with rows indexed by

pairs (a, b) and columns indexed by pairs (t, u) then this matrix is exactly the tensor

product of Vandermonde matrices V µ⊗V µ. We invoke the standard fact that matrix

inversion distributes over the tensor product to see the generalization of Lemma 5.2.3:

Lemma 5.3.2. Each element of inv(V µ ⊗ V µ) has magnitude at most 36µ.

Proof. We have inv(V µ ⊗ V µ) = inv(V µ)⊗ inv(V µ). From Lemma 5.2.3 each entry

of inv(V µ) has magnitude at most 6µ; thus the tensor product of this matrix with

itself has entries bounded by the square of this, namely 36µ.

5.3.2 Construction

Definition 5.3.3. Define the function M mapping distribution pairs p1, p2 on [n],

positive integers k1 ≤ k2 ≤ n, and real number 0 < δ ≤ 1 to distribution pairs

p̂1, p̂2 ←Mk1,k2
δ (p1, p2) via the following sequence of modifications to p1, p2:

1. Let δ′ = δ
6
; let I be the set of bδ′nc indices i such that p1(i)+p2(i) is smallest. Set

p̂1, p̂2 to the those distributions nearest to p1, p2 respectively such that ∀i ∈ I,

p̂1(i) = p̂2(i) = 0, ∀i /∈ I, p̂1(i) ∈ [0, 1
k1

] and p̂2(i) ∈ [0, 1
k2

], and
∑

i p̂1(i) =∑
i p̂2(i) = 1− δ′.

2. Let µ = b
√

log nc, and let (κ1, κ2) = δ′

12µ536µ
(k1, k2); for integers 2 ≤ a, b ≤ µ

let m(a, b) be the (κ1, κ2)-based moments of the modified distribution pair, with

m(0, 0) = m(1, 0) = m(0, 1) = 0 defined separately. Let ĉ = inv(V µ ⊗ V µ) ·m.

3. Let m(a, b) be an upper-bound on m which has value 0 for (a, b) equal to (0, 0),

(0, 1) or (1, 0), value
κ2
2

k2
when a = 0, b ≥ 2 and value

κ2
1

k1
otherwise. Let V

µI
be

a µ2 × µ2 matrix with entries 36µ, and let c = V
µI ·m.
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4. For each t, u < µ choose c(t, u) = bc(t, u) − ĉ(t, u)c indices i ∈ I with p̂1(i) =

p̂2(i) = 0 and set p̂1(i) = t
κ1
, p̂2(i) = u

κ2
for these indices.

5. Make
∑
p̂1(i) =

∑
p̂2(i) = 1 by choosing n δ

′

2
of the unassigned indices from I

and filling in those entries from p̂1 and p̂2 uniformly.

Let m̂k1,k2
δ be the moments produced by applying this procedure to the uniform distri-

bution.

For these m̂,M we have the following theorem. The proof is omitted as it contains

no essentially new ideas not found in the proof of its single distribution form.

Theorem 5.3.4 (Matching Moments Theorem for Two Distributions). For integers

k1, k2, n and real number δ, the vector m̂k1,k2
δ and the function M of Definition 5.2.4

are such that for any distribution pair p1, p2 for which ∀i, p1(i) ≤ 1
k1

and p2(i) ≤ 1
k2

,

letting p̂1, p̂2 ←Mk1,k2
δ (p1, p2) and (k̂1, k̂2) = δ

10000·26
√

logn (k1, k2) we have

• For all i ∈ [n], p̂1(i) ≤ 1/k̂1 and p̂2(i) ≤ 1/k̂2;

• |p1 − p̂1|+ |p2 − p̂2| ≤ δ

• The (k̂1, k̂2)-based (a, b)th moment of the pair (p̂1, p̂2), for a, b <
√

log n equals

m̂ to within 1
10000 logn

.
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Chapter 6

The Canonical Testing Theorem

In this chapter we prove the main results of this thesis, the Low Frequency Blindness

and Canonical Testing theorems (Theorems 3.1.2 and 3.1.3 for single distributions and

3.2.2 and 3.2.3 for distribution pairs). First we show how to combine the results of the

previous two chapters to show a general class of lower-bounds for testing symmetric

weakly-continuous properties. Then we show that these lower-bounds apply in almost

exactly those cases where the Canonical Tester fails, providing a tight characterization

of the sample complexity for any symmetric weakly-continuous property.

6.1 The Single Distribution Case

The lower-bound we present completes the argument we have been making in the

last few chapters that testers cannot make use of the low-frequency portion of dis-

tributions. Explicitly, if we have two distributions p+, p− that are identical on their

high-frequency indices then the tester may as well return the same answer for both

pairs. Thus if a property takes very different values on p+ and p− then it is not

testable. We first show this result for the case where neither distribution has high-

frequency elements —this lemma is a simple consequence of the combination of the

Wishful Thinking and Matching Moments theorems.

Lemma 6.1.1. Given a symmetric property π on distributions on [n] that is (ε, δ)-

weakly-continuous and two distributions, p+, p− all of whose frequencies are less than
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1
k

but where π(p+) > b and π(p−) < a, then no tester can distinguish between π > b−ε

and π < a+ ε in k · δ
1000·24

√
logn samples.

Proof. Consider the distributions obtained by applying the Matching Moments The-

orem (Theorem 5.2.5) to p+, p−: let p̂+ = Mk
δ (p+) and p̂− = Mk

δ (p−). From the

Matching Moments Theorem’s three conclusions we have that (1) the modified distri-

butions have frequencies at most k̂ = kδ
100·23

√
logn ; (2) the statistical distance between

each modified distribution and the corresponding original distribution is at most δ,

which, since π is (ε, δ)-weakly-continuous implies that π(p̂+) > b−ε and π(p̂−) < a+ε;

and (3) the k̂-based moments of p̂+ and p̂− up to degree
√

log n are equal to within

2
10000 logn

.

We then apply the corollary to the Wishful Thinking Theorem (Corollary 4.5.7)

for k = k̂ 1
10·2

√
logn . (The k we use for the Wishful Thinking Theorem is different from

the k used in the previous paragraph for the Matching Moments Theorem; however,

we retain k̂ from the previous paragraph.) We note that the ath k-based moment

is proportional to ka, so since the k̂-based moments of p̂+ and p̂− match to within

2
10000 logn

and since k < k̂, the k-based moments also match to within this bound. We

may thus evaluate the condition of Corollary 4.5.7 as

√
logn∑
a=2

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

≤

√
logn∑
a=2

|m+(a)−m−(a)|

≤ 2
√

log n

10000 log n
<

1

120
,

and thus Corollary 4.5.7 yields the desired conclusion.

We now easily derive the full Low Frequency Blindness Theorem (Theorem 3.1.3).

Proof of the Low Frequency Blindness Theorem. The intuition behind the proof is

that the high-frequency samples give no useful information to distinguish between

p+, p−, and the low frequency samples are covered by Lemma 6.1.1.

Let H be the set of indices of either distribution occurring with frequency at least

1
k

and let pH = p−|H(= p+|H), namely the high-frequency portion of p− and p+.
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let L = [n] −H, and let ` = |p+(L)|, namely the probability that p+ or p− draws a

low-frequency index.

Formally, we construct a property π′ that is only a function of distributions on

L, but can “simulate” the operation of π on both p+ and p−. We show how a tester

for π would imply a tester for π′, and conclude by invoking Lemma 6.1.1 to see that

neither tester can exist.

Consider the following property π′ on arbitrary distributions pL with support L:

define the function f mapping pL to the distribution p on [n] such that p|H = pH ,

p|L = pL, and the probability of being in L, |p(L)|, equals `. Let π′(pL) = π(f(pL)).

Assume for the sake of contradiction that there exists a k̄-sample tester T for

πb−εa+ε (for some k̄). We construct a k̄-sample tester T ′ for π′b−εa+ε as follows: let kL be

the result of counting the number of heads in k̄ flips of a coin that lands heads with

probability `; return the result of running T on input the concatenation of the first

kL samples input to T ′, and k̄ − kL samples drawn at random pH (defined above).

Clearly for any distribution pL on L, running the above algorithm on k̄ samples

from pL will invoke T being run on (a simulation of) k̄ samples drawn from f(p); thus

since, by assumption, T distinguishes π > b − ε from π < a + ε we conclude that T ′

distinguishes π′ > b− ε from π′ < a+ ε.

To finish the argument we show that this cannot be the case. Note that since

f is a linear function with coefficients ` ≤ 1, the (ε, δ)-weak-continuity of π implies

the (ε, δ)-weak-continuity of π′. Further, we have that p+|L and p−|L consist of

frequencies at most 1
`·k , where by definition, π′(p+|L) > b and π′(p−|L) < a. We

thus invoke Lemma 6.1.1 on π′, p+|L, p−|L, and ` · k to conclude that no tester can

distinguish π′ > b− ε from π′ < a + ε in `kδ
1000·24

√
logn samples, which implies from the

previous paragraph that no tester can distinguish π > b − ε from π < a + ε in the

same number of samples.

To eliminate the ` from this bound requires a slightly tighter analysis, which we

carry out for the 2-distribution case in Section 6.2.

We conclude with a proof of the Canonical Testing Theorem (Theorem 3.1.2),

making use of the following lemma:
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Lemma 6.1.2. Given a distribution p and parameter θ, if we draw k random samples

from p then with probability at least 1− 4
n

the set P constructed by the Canonical Tester

will include a distribution p̂ such that |p− p̂| ≤ 24
√

logn
θ

.

The proof is elementary: use Chernoff bounds on each index i and then apply the

union bound to combine the bounds.

Proof of the Canonical Testing Theorem. Without loss of generality assume that the

Canonical Tester fails by saying “no” at least a third of the time on input samples from

some distribution p when in fact πba(p) > b+ ε. From the definition of the Canonical

Tester this occurs when, with probability at least 1
3
, the set P constructed contains a

distribution p− such that π(p−) < a. From Lemma 6.1.2, P contains some p+ within

statistical distance δ from p with probability at least 1− 4
n

. Thus by the union bound

there exists a single P with both of these properties, meaning there exist such p−, p+

lying in the same P , and thus having the same high-frequency elements. Since π is

(ε, δ)-weakly-continuous, π(p+) > b. Applying the Low Frequency Blindness Theorem

to p+, p− yields the desired result.

6.2 The Two Distribution Case

We first generalize Lemma 6.1.1 to the case of low-frequency distribution pairs.

Lemma 6.2.1. Given a symmetric property π on distribution pairs on [n] that is

(ε, δ)-weakly-continuous and two distribution pairs, (p+
1 , p

+
2 ), (p−1 , p

−
2 ) where p+

1 , p
−
1

have frequencies at most 1
k1

and p+
2 , p

−
2 have frequencies at most 1

k2
but where π(p+

1 , p
+
2 ) >

b and π(p−1 , p
−
2 ) < a, then no tester can distinguish between π > b− ε and π < a + ε

in δ
640000·27

√
logn (k1, k2) samples.

Proof. Consider the distributions obtained by applying the 2-distribution Match-

ing Moments Theorem to (p+
1 , p

+
2 ) and p−1 , p

−
2 : let p̂+

1 , p̂
+
2 = Mk1,k2

δ (p+
1 , p

+
2 ) and

p̂−1 , p̂
−
2 = Mk1,k2

δ (p−1 , p
−
2 ). From the Matching Moments Theorem’s three conclu-

sions we have that (1) the modified distributions have frequencies at most (k̂1, k̂2) =
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δ
10000·27

√
logn (k1, k2) respectively; (2) the statistical distance between each modified dis-

tribution and the corresponding original distribution is at most δ, which, since π is

(ε, δ)-weakly-continuous implies that π(p̂+
1 , p̂

+
2 ) > b− ε and π(p̂−1 , p̂

−
2 ) < a+ ε; and (3)

the (k̂1, k̂2)-based moments of (p̂+
1 , p̂

+
2 ) and (p̂−1 , p̂

−
2 ) up to degree

√
log n are equal to

within 2
10000 logn

.

We then apply the corollary to the 2-distribution Wishful Thinking Theorem

(Corollary 4.6.10) for (k1, k2) = 1
64·2

√
logn (k̂1, k̂2). (The k1, k2 we use for the Wishful

Thinking Theorem is different from the k1, k2 used in the previous paragraph for the

Matching Moments Theorem; however, we retain k̂1, k̂2 from the previous paragraph.)

We note that the (a, b)th (k1, k2)-based moment is proportional to ka1k
b
2, so since the

(k̂1, k̂2)-based moments of (p̂+
1 , p̂

+
2 ) and (p̂−1 , p̂

−
2 ) match to within 2

10000 logn
and since

k1 < k̂1,and k2 ≤ k̂2, the (k1, k2)-based moments also match to within this bound.

We may thus evaluate the condition of Corollary 4.6.10 as
√

logn∑
a=2

|m+(a, b)−m−(a, b)|√
1 + max{m+(a, b),m−(a, b)}

≤
∑

a+b≤
√

logn

|m+(a, b)−m−(a, b)|

≤ 2
√

log n

10000 log n
<

1

1000
,

and thus Corollary 4.6.10 yields the desired conclusion.

We now derive the full 2-distribution Low Frequency Blindness Theorem (Theorem

3.2.3).

Proof of the Two Distribution Low Frequency Blindness Theorem. We follow the out-

line of the proof of the single distribution version of this theorem, as found in the

previous section.

Let H be the set of indices occurring either with frequency at least 1
k1

in p+
1 or

p−1 or with frequency at least 1
k2

in p+
1 or p−1 . Let p1H = p−1 |H(= p+

1 |H), namely

the high-frequency portion of p−1 and p+
1 , and correspondingly let p2H = p−2 |H. Let

L = [n] − H, and let `1 = |p+
1 (L)|, namely the probability that p+

1 (or p−1 ) draws a

low-frequency index, with `2 = |p+
2 (L)| = |p−2 (L)| defined correspondingly.

Formally, we construct a property π′ that is only a function of distributions on L,

but can “simulate” the operation of π on both (p+
1 , p

+
2 ) and (p−1 , p

−
2 ). We show how
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a tester for π would imply a tester for π′, and conclude by invoking Lemma 6.2.1 to

see that neither tester can exist.

Consider the following property π′ on arbitrary distribution pairs (p1L, p2L) with

support L: define the function f mapping (p1L, p2L) to the distribution pair (p1, p2)

on [n] such that p1|H = p1H , p1|L = p1L, and the probability of p1 being in L, namely

|p1(L)|, equals `1, with the corresponding properties holding for the second element of

the pair, p2|H = p2H , p2|L = p2L, and |p2(L)| = `2. Let π′(p1L, p2L) = π(f(p1L, p2L)).

Assume for the sake of contradiction that there exists a (k̄1, k̄2)-sample tester T for

πb−εa+ε (for some k̄1, k̄2). By Lemma 4.6.4 we may construct the corresponding (k̄1, k̄2)-

Poissonized tester T p. We construct a (`1k̄1, `2k̄2)-Poissonized tester T ′ for π′b−εa+ε that

processes samples from p1L, p2L as follows:

1. Draw integers tH1 ← Poi(k1(1 − `1)), tH2 ← Poi(k2(1 − `2)), and then simulate

drawing tH1 samples from p1H , and tH2 samples from p2H .

2. Run the (Poissonized) tester T p on all the simulated samples, plus all the au-

thentic samples from p1L and p2L.

By construction, the distribution of samples input to T p is exactly that of draw-

ing respectively Poi(k̄1) and Poi(k̄2)-distributed samples from the distribution pair

f(p1L, p2L). Thus running T ′ exactly simulates running the tester T p on the pair

f(p1L, p2L), and thus since T distinguishes π > b− ε from π < a+ ε we conclude that

T ′ distinguishes π′ > b− ε from π′ < a+ ε.

To finish the argument we show that this cannot be the case. Note that since

f is a linear function with coefficients `1, `2 ≤ 1, the (ε, δ)-weak-continuity of π

implies the (ε, δ)-weak-continuity of π′. Further, we have that the two distributions

p+
1 |L, p−1 |L all have frequencies below 1

`1k1
and the two distributions p+

2 |L, p−2 |L all

have frequencies below 1
`2k2

, where by definition, π′(p+|L) > b and π′(p−|L) < a.

We thus invoke Lemma 6.2.1 on π′, p+|L, p−|L, and (`1k1, `2k2) to conclude that no

Poissonized tester can distinguish π′ > b− ε from π′ < a+ ε in δ
640000·27

√
logn (`1k1, `2k2)

samples (from the proof of Lemma 4.6.7 we see that the lower bounds of Section 4.6

apply to Poissonized testers exactly as they do to regular testers). Since we showed
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in the previous paragraph that a (k̄1, k̄2)-sample tester for π implies an (`1k̄1, `2k̄2)-

Poissonized tester for π′, we conclude that no tester can distinguish π > b − ε from

π < a+ ε in δ
640000·27

√
logn (k1, k2) samples, as desired.

We conclude with a proof of the 2-distribution Canonical Testing Theorem (The-

orem 3.2.2), making use of the following lemma which generalizes Lemma 6.1.2:

Lemma 6.2.2. Given a distribution pair (p1, p2) and parameter θ, if we draw k1

random samples p1 and k2 random samples from k2 then with probability at least

1 − 4
n

the set P constructed by the Canonical Tester will include a distribution pair

(p̂1, p̂2) such that |p1 − p̂1|+ |p2 − p̂2| ≤ 24
√

logn
θ

.

Proof of the Two Distribution Canonical Testing Theorem. Without loss of general-

ity assume that the Canonical Tester fails by saying “no” at least a third of the time

on input samples from some distribution pair (p1, p2) when in fact πba(p1, p2) > b+ ε.

From the definition of the Canonical Tester this occurs when, with probability at least

1
3
, the set P constructed contains a distribution pair (p−1 , p

−
2 ) such that π(p−1 , p

−
2 ) < a.

From Lemma 6.2.2, P contains some pair (p+
1 , p

+
2 ) within statistical distance δ from

(p1, p2) with probability at least 1− 4
n

. Thus by the union bound there exists a single

P with both of these properties, meaning there exist such (p−1 , p
−
2 ), (p+

1 , p
+
2 ) lying in

the same P , and thus having the same high-frequency elements. Since π is (ε, δ)-

weakly-continuous, π(p+
1 , p

+
2 ) > b. Applying the Low Frequency Blindness Theorem

to (p+
1 , p

+
2 ) and (p−1 , p

−
2 ) yields the desired result.
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