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ABSTRACT
We introduce the notion of a Canonical Tester for a class
of properties on distributions, that is, a tester strong and
general enough that “a distribution property in the class is
testable if and only if the Canonical Tester tests it”. We con-
struct a Canonical Tester for the class of symmetric proper-
ties of one or two distributions, satisfying a certain weak con-
tinuity condition. Analyzing the performance of the Canon-
ical Tester on specific properties resolves several open prob-
lems, establishing lower bounds that match known upper
bounds: we show that distinguishing between entropy < α
or > β on distributions over [n] requires nα/β−o(1) samples,
and distinguishing whether a pair of distributions has sta-
tistical distance < α or > β requires n1−o(1) samples. Our
techniques also resolve a conjecture about a property that
our Canonical Tester does not apply to: distinguishing iden-
tical distributions from those with statistical distance > β
requires Ω(n2/3) samples.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.3 [Mathematics of Comput-
ing]: Probability and Statistics

General Terms
Algorithms, Theory

Keywords
Distribution Testing, Property Testing, Multivariate Statis-
tics, Continuity, Vandermonde Matrices

1. INTRODUCTION
Property testing has been extensively investigated in a

variety of settings, in particular, program checking (e.g. [8,
9]), testing of algebraic properties (e.g. [9, 20]), and graph
testing (e.g. [12]). This advanced state of knowledge is
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evidenced by the emergence of general structural theorems,
most notably the characterization by Alon et al. of those
graph properties testable in constant time [2], making use
of the canonical tester of [13].

By contrast, the emerging and significant subfield of dis-
tribution testing is currently a collection of beautiful but
specific results, without a common framework.

Distribution Testing and Symmetric Properties.
The quintessential question in distribution testing can be

so expressed:

Given black-box access to samples from one or more
distributions and a property of interest for such distri-
butions, how many samples must one draw to become
confident whether the property holds?

Such questions have been posed for a wide variety of dis-
tribution properties, including monotonicity, independence,
identity, and uniformity [1, 7, 5], as well as “decision ver-
sions” of support size, entropy, and statistical and L2 dis-
tance[4, 6, 11, 14, 10, 16, 18, 17].

The properties of the latter group, and the uniformity
property of the former one, are symmetric. Symmetric prop-
erties are those preserved under renaming the elements of
the distribution domain, and in a sense capture the “intrin-
sic” aspects of a distribution. For example, entropy testing
asks one to distinguish whether a distribution has entropy
less than α or greater than β, and is thus independent of
the names of the elements. As a second example, statisti-
cal distance testing asks whether a pair of distributions are
close or far apart in the L1 sense (half the sum of the ab-
solute values of the differences between the probabilities of
each element under the two distributions). Again, it is clear
that this property does not depend on the specific naming
scheme for the domain elements.

Prior Work.
Answering a distribution testing question requires two

components, an upper-bound (typically in the form of an
algorithm) and a lower-bound, each a functions of n, the
number of elements in the distribution domain. Ideally, such
upper- and lower-bounds would differ by a factor of no(1),
so as to yield tight answers. This is rarely the case in the
current literature, however. We highlight three such gaps
that we resolve in this paper —see Theorems 1, 2, and 3
respectively, and Section 2 for definitions. The prior state
of the art is:

Closeness Testing Distinguishing two identical distribu-



tions from two distributions with statistical distance > 1
2

can be done in Õ(n2/3) by [6] and cannot be done in o(
√
n)

samples [6].

Distance Approximation For constants 0 < α < β < 1,
distinguishing distribution pairs with statistical distance
less than α from those with distance greater than β can

be done in Õ(n) samples by [3], and cannot be done in
o(
√
n) samples (as above).

Entropy Testing For (large enough) constants α < β, dis-
tinguishing distributions with entropy less than α from
those with entropy greater than β can be done in nα/βno(1)

samples by [4], and cannot be done in (roughly) n
2
3α/β

samples [18].

1.1 Our Results
We develop a unified framework for optimally answering

distribution testing questions for a large class of properties:

The Canonical Tester.
We focus our attention on the class of symmetric prop-

erties satisfying the following continuity condition: infor-
mally, there exists (ε, δ) such that changing the distribution
by δ induces a change of at most ε in the property.1 For
such symmetric properties, we essentially prove that there
is no difference between proving an upper bound and proving
a lower bound. To formalize this notion we make use of a
Canonical Tester.

The Canonical Tester is a specific algorithm that, on input
(the description of) of a property π and f(n) samples from
the to-be-tested distribution, answers YES or NO —possibly
incorrectly. If f(n) is large enough so that the Canonical
Tester accurately tests the property, then clearly the prop-
erty is testable with f(n) samples; if the Canonical Tester
does not test the property, then the property is not testable
with f(n)/no(1) samples. Thus to determine the number of
samples needed to test π, one need only “use the Canonical
Tester to search for the value f”.2

Applications.
We prove the following three informally stated results,

the first and third resolving open problems from [6, 4, 18].
Our techniques can also be easily adapted to reproduce (and
slightly extend) the main results of [18]; we sketch this con-
struction at the end of Section 3.1.3

1Technically this is uniform continuity and not continuity ;
however, since the space of probability distributions over [n]
is compact, by the Heine-Cantor theorem every continuous
function here is thus also uniformly continuous.
2The notion of “Canonical Tester” here is very much related
to that used in [13], but ours is in a sense stronger because
we have exactly one —explicitly given— canonical tester for
each property, while [13] defines a class of canonical testers
and shows that at least one of them must work for each
property.
3As a side note, it would have been nice if there were an illus-
trative example where we could invoke the Canonical Test-
ing theorem to derive a better algorithm for a well-studied
problem; however, previous algorithmic work has been so
successful that all that remains is for us to provide match-
ing lower bounds.

Theorem 1. Distinguishing two identical distributions from
two distributions with statistical distance at least 1

2
requires

Ω(n2/3) samples.

Theorem 2. For any constants 0 < α < β < 1, distin-
guishing between distribution pairs with statistical distance
less than α from those with distance greater than β requires
n1−o(1) samples.

Theorem 3. For real numbers α < β, distinguishing be-
tween distributions with entropy less than α from those with
entropy greater than β requires nα/β−o(1) samples.

Theorems 2 and 3 result directly from the Canonical Tester;
Theorem 1 is proven from one of the structural theorems we
develop along the way.

1.2 Our Techniques
To prove our contributions, we rely on results from a va-

riety of fields, including multivariate analysis and linear al-
gebra. However, rather than directly applying these tech-
niques, we are forced to forge two specific tools, described
below, that may be of independent interest.

Wishful Thinking.
Prior lower-bounds for testing symmetric properties of dis-

tributions have relied on the following crucial observation:
since the property is invariant under permutation of the sam-
ple frequencies, the tester may as well be invariant under
permutation of the observed sample frequencies. In other
words, the identities of the samples received do not mat-
ter, only how many elements appear once, twice, etc. We
summarize this as “collisions describe all”.

However, analyzing the distribution of different types of
collisions has proven to be very difficult. One of our main
technical contributions is what we call the Wishful Thinking
Theorem (Theorem 6). Analyzing the statistics of collisions
would be easy if the distributions involved were coordinate-
wise independent with simple marginals. The Wishful Think-
ing Theorem guarantees that treating the collision statistics
as such does not introduce any meaningful error, thus mak-
ing collision analysis “as easy as we might wish”.

Importantly, the Wishful Thinking Theorem does not re-
quire any continuity condition, and thus can be applied to
analyze testing general symmetric properties. Indeed, we
apply this result directly to show the bound of Theorem 1.

Low-Frequency Blindness.
Prior work on testing properties of distributions noted

that the frequencies of the high-frequency elements of a dis-
tribution (typically those expected to appear at least log n
times among the samples) will be well-approximated by the
observed frequencies of these items in the drawn samples.
Thus if we are interested in a continuous property of the
distribution, then these approximate frequencies give mean-
ingful information. The question, however, is what to do
with the low-frequency elements, which may not even ap-
pear in the given sample, despite being in the support of
the distribution. Clearly the approximation of the elements
not appearing in the sample cannot be taken to be 0 —
approximating a distribution with support size n based on
k samples would yield a distribution with support at most k,
potentially distorting the distribution beyond recognition.



Our second technique leverages continuity to show that,
no matter how we analyze them, there is no way to mean-
ingfully extract information from low-frequency elements:
we call this the Low-Frequency Blindness Theorem (Theo-
rem 5). This result considerably simplifies the design of a
Canonical Tester: the high-frequency elements can be easily
well-approximated; the low-frequency ones can be ignored.
(See Section 5 for a more thorough discussion of how we use
continuity and how our techniques relate to previous work,
specifically [18].)

2. DEFINITIONS
For the sake of simplicity of presentation we work primar-

ily with properties of single distributions in this extended
abstract (e.g. entropy). For the full presentation see [21].

For positive integers n we let [n] denote the integers {1, . . . , n}.
All logarithms are base 2. We denote elements of vectors
with functional notation —as v(i) for the ith element of v.

Definition 1. A distribution on [n] is a function p :
[n] → [0, 1] such that

∑
i p(i) = 1. We use Dn to denote

the set of all distributions on [n].

Throughout this work we use n to denote the size of the
domain of a distribution.

Definition 2. A property of a distribution is a function
π : Dn → R. A binary property of a distribution is a func-
tion β : Dn → {“yes”,“no”, ∅}.

Any property π and pair of real numbers a < b induces a
binary property πba defined as: if π(p) > b then πba(p) =“yes”;
if π(p) < a then πba(p) =“no”; otherwise πba(p) = ∅.

Definition 3. Given a binary property πba on distribu-
tions and a function k : Z+ → Z+, an algorithm T is a
“πba-tester with sample complexity k(·)” if, for any distribu-
tion p, algorithm T on input k(n) random samples from p
will accept with probability greater than 2

3
if πba(p) =“yes”,

and accept with probability less than 1
3

if πba(p) =“no”. The

behavior is unspecified when πba(p) = ∅.

The metric we use to compare vectors is the L1 norm,
|v| ,

∑
i |v(i)|. For the special case of probability distri-

butions we define the statistical distance between p+, p− as
1
2
|p+ − p−|. (In some references the normalization constant

1
2

is omitted.) We may now define our notion of continuity:

Definition 4. A property π is (ε, δ)-weakly-continuous if
for all distributions p+, p− satisfying |p+ − p−| ≤ δ we have
|π(p+)− π(p−)| ≤ ε.

Finally, we define symmetric properties:

Definition 5. A property π symmetric if for all distri-
butions p and all permutations σ we have π(p) = π(p ◦ σ).

3. THE CANONICAL TESTER AND APPLI-
CATIONS

To motivate the rest of the paper we introduce the Canon-
ical Tester here. Given a binary property πba : Dn → {“yes”,
“no”, ∅}, k samples from [n] represented as the histogram
s : [n]→ Z+ counting the number of times each element has
been sampled, and a threshold θ ∈ Z+, then the k-sample
T θ tester for πba returns an answer “yes” or “no” according
to the following steps.

Definition 6 (Canonical Tester T θ for πba).

(1) For each i such that s(i) > θ insert the constraint

p(i) = s(i)
k

, otherwise insert the constraint p(i) ∈ [0, θ
k

].

(2) Insert the constraint
∑
i p(i) = 1.

(3) Let P be the set of solutions to these constraints.

(4) If the set πba(P ) (the image of elements of P under πba)
contains “yes” but not “no” then return “yes”; if πba(P )
contains “no” but not “yes” then return “no”; otherwise
answer arbitrarily.

We note that the Canonical Tester is defined as a func-
tion not an algorithm, bypassing issues of computational
complexity. The tradeoffs between computational and sam-
ple complexity are a potential locus for much fruitful work,
but are beyond the scope of this paper.

As a brief illustration of the procedure of the Canonical
Tester, consider the operation of the Canonical Tester with
threshold θ = 2 on input 10 samples drawn from the set [5]:
(1, 2, 2, 1, 1, 1, 4, 5, 5, 5). The histogram of these samples is
the function s mapping 1→ 4 (since “1” occurs four times),
2 → 2, 3 → 0, 4 → 1, and 5 → 3. Since both “1” and
“5” occur more than θ = 2 times, Step 1 adds the equality
constraints p(1) = 4

10
and p(5) = 3

10
, and inequality con-

straints for the remaining elements p(2), p(3), p(4) ∈ [0, 2
10

].
The Canonical Tester then finds all probability distributions
p that satisfy these constraints, and in Step 4 determines
whether these constraints induce a unique value for the prop-
erty πba.

Our main result is that (for appropriately chosen θ) the
Canonical Tester is optimal: “if the Canonical Tester cannot
test it, nothing can.” The specifics of this claim depend on
the continuity property of π. Explicitly:

Theorem 4 (Canonical Testing Theorem). Given a
symmetric (ε, δ)-weakly-continuous property π : Dn → R and
two thresholds a < b, such that the Canonical Tester T θ for
θ = 600 logn

δ2
on πba fails to distinguish between π > b + ε

and π < a − ε in k samples, then no tester can distinguish
between π > b− ε and π < a+ ε in k · δ

1000·24
√

logn samples.

Essentially, the Canonical Tester is optimal up to small
additive constants in a and b, and a small (no(1)) factor in
the number of samples k.

Discussion.
While it will take us the rest of the paper to prove the

Canonical Testing theorem, we note one case where it is
reasonably clear that the Canonical Tester does the “right
thing”. Given a distribution on [n], consider an element
whose expected number of occurrences in k samples is some-
what greater than θ. For large enough θ we can appeal to the
Law of Large Numbers to see that the observed frequency
of this element will be (greater than θ

k
so that the Canon-

ical Tester will invoke an equality constraint, and) a very
good estimate of its actual frequency. Since π is a (weakly)
continuous function, evaluating π on a good estimate of the
input distribution will yield a good estimate of the property,
which is exactly what the Canonical Tester does. Thus the
Canonical Tester does the “right thing” with high-frequency
elements, and if all the elements are high-frequency will re-
turn the correct answer with high probability.

The low-frequency case, however, does not have such a
simple intuition. Suppose all the frequencies of the distribu-



tion to be tested are at most 1
k

. Then with high probability
none of the elements will be observed with high frequency. In
this case the Canonical Tester constructs the set P̂ defined
by the constraints ∀i, p(i) ∈ [0, θ

k
],
∑n
i=1 p(i) = 1 effectively

discarding all its input data! Thus for every “low-frequency
distribution” the Canonical Tester induces the same set P̂ ,
from which Step 4 will generate the same output. How can
such a tester possibly be optimal?

By necessity, it must be the case that “no tester can ex-
tract useful information from low-frequency elements”. We
call this result the Low-Frequency Blindness theorem, which
constitutes our main lower bound. The Canonical Testing
theorem shows that these lower bounds are tight, and in
fact match the upper bounds induced by the operation of
the Canonical Tester.

Theorem 5 (Low Frequency Blindness). Given a
symmetric property π on distributions on [n] that is (ε, δ)-
weakly-continuous and two distributions, p+, p− that are iden-
tical for any index occurring with probability at least 1

k
in

either distribution but where π(p+) > b and π(p−) < a, then
no tester can distinguish between π > b− ε and π < a+ ε in
k · δ

1000·24
√

logn samples.

To prove this theorem we (1) derive a general criterion for
when two distributions are indistinguishable from k samples,
and (2) exhibit a procedure for generating a pair of distribu-
tions p̂+, p̂− that satisfy this indistinguishability condition
and where π(p̂+) is large yet π(p̂−) is small (greater than b−ε
and less than a+ ε respectively). We call the indistinguisha-
bility criterion the Wishful Thinking theorem (Theorem 6),
in part because the criterion involves a particularly intuitive
comparison of the moments of the two distributions; the sec-
ond component is the matching moments theorem (Theorem
7), which shows how we may slightly modify p+, p− into a
pair p̂+, p̂− whose moments match each other so that we
may apply the Wishful Thinking theorem.

3.1 Applications
We prove Theorems 2 and 3 here, and further, outline how

to reproduce the results of [18] on estimating the distribution
support size. (Theorem 1 is shown at the end of Section 4.)
As noted above, these results yield lower-bounds matching
previously known upper bounds; thus we do not need the full
power of the Canonical Testing theorem to generate optimal
algorithms, but may simply apply our lower bound, the Low-
Frequency Blindness theorem.

We note one thing that the reader may find very strange
about the following proofs: to apply the Low Frequency
Blindness theorem we construct distributions p+, p− that
have very different values of the property π and then invoke
the theorem to conclude that the property cannot be ap-
proximated; however, this does not mean that p+ and p−

are themselves hard to distinguish between —in the exam-
ples below they are often in fact quite easy to distinguish.

In practice, it may be hard to come up with such indis-
tinguishable distributions, and for this reason we set up the
machinery of this paper to save the property testing com-
munity from this step: as noted above, internal to the proof
of the Low Frequency Blindness theorem (specifically the
Matching Moments theorem) is a procedure that constructs
a pair of distributions p̂+, p̂− with property values almost
exactly those of p+, p− respectively, but which are indistin-
guishable. In this manner we can now prove property testing

lower-bounds without having to worry about indistinguisha-
bility.

The Entropy Approximation Bound.
We prove a more formal statement of Theorem 3, making

use of the fact (proven in the full version of this paper [21])
that entropy is (1, 1

2 logn
)-weakly-continuous.

Lemma 1. For any real number γ > 1, the entropy of a
distribution on [n] cannot be approximated within γ factor
using O(nθ) samples for any θ < 1

γ2 , even restricting our-

selves to distributions with entropy at least logn
γ2 − 2.

Proof. Given a real number γ > 1, let p− be the uniform

distribution on 1
4
n1/γ2

elements, and let p+ be the uniform

distribution on all n elements. We note that p− has entropy
logn
γ2 − 2 and p+ has entropy logn. Further, all of the fre-

quencies in p+ and p− are less than 1
k

where k = 1
4
n1/γ2

. We
apply the Low Frequency Blindness Theorem with ε = 1 to
conclude that, since entropy is (1, 1

2 logn
)-weakly-continuous,

distinguishing distributions with entropy at least (logn)− 1

from those with entropy at most logn
γ2 −1 requires n1/γ2−o(1)

queries, which implies the desired result.

The Statistical Distance Bound.
Proof of Theorem 2. We note that statistical distance

is a symmetric property, and by the triangle inequality is
(ε, ε)-weakly-continuous for any ε > 0. We invoke the Low
Frequency Blindness Theorem as follows: Let p−1 = p−2 be
the uniform distribution on [n], let p+

1 be uniform on [n
2

],

and let p+
2 be uniform on {n

2
+ 1, . . . , n}. We note that

the statistical distance of p−1 from p−2 is 0, since they are
identical, while p+

1 and p+
2 have distance 1. Further, each

of the frequencies in these distributions is at most 2
n

. We
apply the Low Frequency Blindness Theorem with ε = δ =
min{α, 1− β} and k = n

2
to yield the desired result.

The Distribution Support Size Bound.
Distribution Support Size, as defined in [18] is the problem

of estimating the support size of a distribution on [n] given
that no element occurs with probability in (0, 1

n
) —that is,

if it has nonzero probability then it has probability at least
1
n

. We note that for any δ > 0 the support size function
is (nδ, δ)-weakly-continuous, and further, for any constants
a < b < 1, uniform distributions with support size na or
nb are “low frequency” for any number of samples k = o(n).
Thus, letting δ < b−a

2
the Low Frequency Blindness theorem

implies that that distinguishing support size > nb from <
na requires n1−o(1) samples. . . modulo one small detail: as
noted above, distribution support size is only defined on
certain distributions, and one must check that our proof
techniques maintain this constraint. We defer the details to
the full version of this paper [21].

3.2 Further Directions
It is not immediately clear why symmetric and weakly-

continuous are related to the Canonical Tester, since syn-
tactically the tester could conceivably be applied to a much
wider class of properties.4 Indeed we suspect that this tester
—or something very similar— may be shown optimal for

4We note that if a property is drastically discontinuous then



more general properties. However, neither the symmetry
nor the continuity condition can be relaxed entirely:

• Consider the problem of determining whether a distri-
bution has more than 2

3
of its weight on its first half

or its second half. Specifically, on distributions of sup-
port [n] let π(p) = |p({1, . . . , bn

2
c})|, where we want to

distinguish π < 1
3

from π > 2
3
. We note that π is con-

tinuous but not symmetric. The optimal tester for this
property draws a single sample, answering according
to whether this sample falls in the first half or second
half of the distribution. Further, this tester will likely
return the correct answer even when each frequency in
p is in [0, 2

n
]. However, the Canonical Tester will dis-

card all such samples unless θ
k
< 2

n
, that is, unless the

number of samples is almost n. Thus there is a gap of
roughly n between the performance of the Canonical
Tester and that of the best tester for this property.

• The problem of Theorem 1, determining whether a
pair of distributions is identical or far apart can be
transformed into an approximation problem by defin-
ing π(p1, p2) to be −1 if p1 = p2 and |p1 − p2| oth-

erwise, and asking to test π
1/2

−1/2. We note that π is

clearly symmetric, but not continuous. It can be seen

that the Canonical Tester requires Θ̃(n) samples (this

follows trivially from our Theorem 2), which is ∼ n1/3

worse than the bound of Õ(n2/3) provided by [6] (and
proven optimal by out Theorem 1).

4. THE WISHFUL THINKING THEOREM
It is intuitively obvious that the order in which samples

are drawn from a distribution can be of no use to a prop-
erty tester, and we have already implicitly used this fact
by noting that a property tester may be given, instead of a
vector of samples, just the histogram of the samples —the
number of times each element appears. This is an important
simplification because it eliminates extraneous information
from the input representation, thus making the behavior of
the property tester on such inputs easier to analyze. For
the class of symmetric properties, however, a further sim-
plification is possible: instead of representing the input by
its histogram, we represent it by the histogram of its his-
togram, an object that appears in the literature under the
name “fingerprint” [3].

To give an explicit example, consider the sample sequence
(3, 1, 2, 2, 5, 1, 2); the histogram of this is the sequence (2, 3, 1,
0, 1), expressing that 1 occurs two times, 2 occurs three
times, 3 occurs once, etc.; the histogram of this histogram
is the sequence (2, 1, 1) indicating that two elements occur
once (3,5), one element occurs twice (1) and one element
occurs three times (2) —the zeroth entry, expressing those
elements not occurring, is ignored. This is the fingerprint: a
vector whose ith entry denotes the number of elements that
experience i-way collisions.

To motivate this, we note that for a symmetric prop-
erty —that is, a property invariant under relabelings of the
elements— a distribution which takes value 1 half of the
time, 2 a quarter of the time and 3 a quarter of the time

essentially anything is a “Canonical Tester” for it, since such
a property is not testable at all. So the tester we present is
canonical for weakly-continuous and “drastically discontin-
uous” properties. The situation in between remains open.

has the same property as a distribution that takes value 1 a
quarter of the time, 2 half of the time, and 3 a quarter of the
time. It is not relevant to the tester that “1” occurs more
times than “2” or vice versa; the only useful information is
that (for example) one element appears twice, and two ele-
ments appear once; in short, the only useful information is
the“collision statistics”, which is exactly what the histogram
of the histogram captures. (See for example [3, 6].)

Our goal in this section is to establish a general condition
for when two low-frequency distributions are indistinguish-
able by k-sample symmetric property testers, which we do
by establishing a general condition for when the distribution
of k-sample fingerprints of two distributions are statistically
close, a result that we call the Wishful Thinking theorem.
To motivate the main result of this section, we present a
“wishful thinking” analysis, of the relevant quantity: the
statistical distance between the distributions of the k-sample
fingerprints induced by two distributions p+, p− respectively.
None of the following derivation is technically correct except
for its conclusion, which we prove via a different (technically
correct!) method in the rest of this section.

Consider the contribution of the ith element of a distri-
bution p to the ath entry of the fingerprint: 1 when
i is sampled a times out of k samples, 0 otherwise.
Since each sample draws i with probability p(i), the
probability of drawing i at all in k samples is roughly
k · p(i), and we (wishfully) approximate the probabil-
ity of i being drawn a times as this quantity to the
ath power, ka · p(i)a. Thus the binary random variable
representing the contribution of i to the ath fingerprint
entry has mean and mean-squared equal to (roughly)
ka · p(i)a, where, since p is low-frequency, this is also
essentially the variance. Assuming (wishfully) that the
contributions from different i are independent, we sum
the mean and variance over all i to find that the dis-
tribution of the value of the ath fingerprint entry has
mean and variance both equal to ka

∑n
i=1 p(i)

a, a quan-
tity recognizable as proportional to the ath moment of
p; denote this by ma. Thus to compare the ath finger-
print entries induced by p+ and p− respectively, we may
(wishfully) just compare the mean and variance of the
induced distributions. Intuitively, the induced distribu-
tions are close if the difference between their means is
much less than the square root of the variance of either:

we estimate the statistical distance as
|m+
a −m

−
a |√

m+
a

. Thus

to estimate the statistical distance between the entire

fingerprints, we sum over a:
∑
a

|m+
a −m

−
a |√

m+
a

. If this ex-

pression is much less than 1, then p+ and p− are not
distinguishable by a symmetric tester in k samples.

In this intuitive analysis we made use of“wishful thinking”
once trivially to simplify small constants, but more substan-
tially, twice to eliminate high-dimensional dependencies of
distributions: we assumed that the contributions of differ-
ent elements i to the ath fingerprint entry were independent;
and we assumed that the distributions of different fingerprint
entries were independent. As noted above, despite how con-
venient these claims are, neither of them is true. (Intuitively
one may think of the first independence assumption as be-
ing related to the question of whether one application of the
histogram function preserves entry-independence —in gen-
eral it does not— and the second independence assumption



as being related to issues arising from the second applica-
tion of the histogram function.) To address the first kind of
dependency, we appeal to the standard technique of Pois-
sonization (see [4]). The second dependency issue will be
analyzed by appeal to a recent multivariate analysis bound.

Definition 7. A Poisson process with parameter λ ≥ 0
is a distribution over the nonnegative integers where the

probability of choosing c is defined as poi(c;λ) , e−λλc

c!
.

We denote the corresponding random variable as Poi(λ).

For a vector ~λ ≥ 0 of length t we let Poi(~λ) denote the t-
dimensional random variable whose ith component is drawn

independently from the univariate Poi(~λ(i)) for each i.

Definition 8. A k-Poissonized tester T is a function that
correctly classifies a property on a distribution p with prob-
ability 7

12
on input samples generated in the following way:

• Draw k′ ← Poi(k).

• Return k′ samples from p.

We have the following standard lemma:

Lemma 2. If there exists a k-sample tester T for a prop-
erty πba then there exists a k-Poissonized tester T ′ for πba.

The reason for applying this Poissonization transform is
the following elementary fact: taking Poi(k) samples from p,
the number of times element i is sampled is (1) independent
of the number of times any other element is sampled, and
(2) distributed according to Poi(k · p(i)). In other words,
the histogram of these samples may be computed entry-by-
entry: for the ith entry return a number drawn from Poi(k ·
p(i)). We have resolved the first interdependence issue of
the wishful-thinking argument.

To resolve the second interdependence issue, pushing the
element-wise independence through the second application
of the histogram function, we show how we may approximate
the distribution of the fingerprint of Poi(k) samples by an
element-wise independent distribution (which will turn out
to be a multivariate Poisson distribution itself). To express
this formally, we note that the fingerprint of Poi(k) samples
from p is an example of what is sometimes called a “gen-
eralized multinomial distribution”, and then invoke a result
that describes when generalized multinomial distributions
may be approximated by multivariate Poisson distributions.

Definition 9. The generalized multinomial distribution
parameterized by matrix ρ, denoted Mρ, is defined by the
following random process: for each row ρi of ρ, draw a col-
umn from the distribution ρi; return a row vector recording
the total number of samples falling into each column (the
histogram of the samples).

Lemma 3. For any distributions p with support [n] and
positive integer k, the distribution of fingerprints of Poi(k)
samples from p is the generalized multinomial distribution
Mρ where matrix ρ has n rows, columns indexed by finger-
print index a, and (i, a) entry equal to poi(a; k · p(i)), that
is, the ath row of ρ expresses the distribution Poi(k · p(i)).

Proof. As noted above, the ith element of the histogram
of drawing Poi(k) samples from p is drawn (independently)
from the distribution Poi(k ·p(i)). The generalized multino-
mial distribution Mρ simply draws these samples for each i
and returns the histogram, which is distributed as the his-
togram of the histogram of the original Poi(k) samples, as
desired.

We introduce here the main result from Roos[19] which
states that generalized multinomial distributions may be
well-approximated by multivariate Poisson processes.

Roos’s Theorem [19]. Given a matrix ρ, letting ~λ(a) =∑
i ρ(i, a) be the vector of column sums, we have

|Mρ − Poi(~λ)| ≤ 8.8
∑
a

∑
i ρ(i, a)2∑
i ρ(i, a)

.

Thus the multivariate Poisson distribution is a good ap-
proximation for the fingerprints, provided ρ satisfies a small-
ness condition. We provide a straightforward bound of this
distance from the fact that the underlying distribution p is
“low-frequency” as follows:

Lemma 4. Given a distribution p, an integer k, and a real
number 0 < ε ≤ 1

2
such that ∀i, p(i) ≤ ε

k
, if ρ is the matrix

with (i, a) entry poi(a; k · p(i)) then
∑
a

∑
i ρ(i,a)

2∑
i ρ(i,a)

≤ 2ε.

Proof. We note that ρ(i, a) = poi(a; k·p(i)) = e−k·p(i)(k·p(i))a
a!

≤
(k · p(i))a ≤ εa. Thus∑

a

∑
i ρ(i, a)2∑
i ρ(i, a)

≤
∑
a

max
i
ρ(i, a) ≤

∑
a

εa ≤ 2ε.

Via the Poissonization technique and Roos’s theorem we
have thus reduced the problem to that of comparing two
multivariate Poisson distributions. To this end we apply the
following bound, derived from the fact that the statistical
distance between univariate Poisson distributions with pa-

rameters λ+, λ− is at most 2 |λ+−λ−|√
1+max{λ+,λ−}

and the fact

that the statistical distance of two distributions with in-
dependent marginals is at most the sum of the respective
distances between the marginals:

Lemma 5. The statistical distance between two multivari-
ate Poisson distributions with parameters ~λ+, ~λ− is bounded
as

|Poi(~λ+)− Poi(~λ−)| ≤ 2
∑
a

|~λ+(a)− ~λ−(a)|√
1 + max{~λ+(a), ~λ−(a)}

.

Combining results yields:

Lemma 6. Given an integer k > 0 and two distributions
p+, p− all of whose frequencies are at most 1

500k
, then, letting

~λ+(a) =
∑
i poi(a; k · p(i)), if it is the case that∑
a

|~λ+(a)− ~λ−(a)|√
1 + max{~λ+(a), ~λ−(a)}

<
1

25
.

then it is impossible to test any symmetric property that is
true for p+ and false for p− in k samples.

Proof. Combining Lemma 4 with Roos’s Theorem we
have that for each of p+ and p− the distance of the Pois-
son approximation from the distribution of fingerprints of
Poi(k) samples is at most 2·8.8

500
< 1

25
. Thus, by the triangle

inequality, the distance between the distribution of finger-
prints of Poi(k) samples from p+ versus p− is at most 2

25

plus the bound from Lemma 5, which is also 2
25

, yielding



a total distance of at most 4
25

, which is less than 1
6
. As-

sume for the sake of contradiction that there is a k-sample
tester that distinguishes between p+ and p−. By Lemma 2
there must thus exist a tester on Poi(k) samples. However,
the definition of a Poissonized tester requires that the tester
succeed with probability at least 7

12
on p+ and succeed with

probability at most 5
12

on p−, which contradicts the fact that
their input distributions have statistical distance strictly less
than 1

6
. Thus no such tester can exist.

As it turns out, we can simplify this bound by replacing
~λ(a) here with the ath moments of the distributions, yielding
the final form of the Wishful Thinking theorem. The proof

involves expressing each ~λa as a power series in terms of the
moments, and is straightforward but technical; we omit it
from this abstract (see [21] for details).

Definition 10. For integer k and distribution p, the k-
based moments of p are the values ka

∑
i p(i)

a for a ∈ Z+.

Theorem 6 (Wishful Thinking). Given a positive in-
teger k and two distributions p+, p− all of whose frequencies
are at most 1

500k
, then, letting m+,m− be the k-based mo-

ments of p+, p− respectively, if it is the case that∑
a

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

<
1

50
.

then it is impossible to test any symmetric property that is
true for p+ and false for p− in k samples.

We will find it convenient to work with a finite subset
of the moments in Section 5, so we prove as a corollary
to the Wishful Thinking Theorem that if we have an even
tighter bound on the frequencies of the elements, then we
may essentially ignore all moments beyond the first

√
logn.

Corollary 1. Given a positive integer k, real number
ε ≤ 1

10·2
√

logn and two distributions p+, p− all of whose fre-

quencies are at most ε
k

, then, letting m+,m− be the k-based

moments of p+, p− respectively, if it is the case that
√

logn∑
a=2

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

<
1

120
.

then it is impossible to test any symmetric property that is
true for p+ and false for p− in k samples.

Proof. We derive this from the bound of the Wishful
Thinking Theorem. We note that for any distributions p+, p−,
we have m+(0) = m−(0) = n, and m+(1) = m−(1) = k, so
thus the terms for a < 2 vanish. To bound the terms for a >
max{2,

√
logn} we note that for such a we have m+(a) ≤

kan( ε
k

)a = nεa ≤ .1a Thus, since |m+(a)−m−(a)|√
1+max{m+(a),m−(a)}

≤

m+(a), we can bound these terms by
∑
a≥2 .1

a+b < 1
50
− 1

120
,

yielding the corollary.

The Closeness Testing Lower Bound.
We are now in a position to prove Theorem 1, the bound

on testing whether two distributions are identical or far
apart. The proof is a realization of an outline that appeared
in [6], but making essential use of the Wishful Thinking
Theorem.

As we have deferred discussion of the two-distribution ver-
sions of our results to the full version of this paper (see [21]),
we mention briefly that for a pair of distributions (p1, p2)
we define the k-based moments to be the matrix with en-
tries m(a, b) = ka+b

∑
i p1(i)a · p2(i)b, and note that the

Wishful Thinking theorem generalizes naturally to the two-
distribution case with the parameters changing from 1

500k

and 1
50

to 1
1000k

and 1
250

respectively.

Proof of Theorem 1. Let x, y be distributions on [n]

defined as follows: for 1 ≤ i ≤ n2/3 let x(i) = y(i) = 1

2n2/3 .

For n/2 < i ≤ 3/4n let x(i) = 2
n

; and for 3n/4 < i ≤ n let

y(i) = 2
n

. The remaining elements of x and y are zero.

Let p+
1 = p+

2 = p−1 = x, and p−2 = y and let k = n2/3

800
. We

note that each frequency defined is at most 1
1600k

. Let m+
a,b

and m−a,b be the k-based moments of (p+
1 , p

+
2 ) and (p−1 , p

−
2 )

respectively. We note that since x and y are permutations
of each other, whenever one of a = 0 or b = 0 we have
m+
a,b = m−a,b, so the corresponding terms from the Wishful

Thinking Theorem vanish. For the remaining terms, a, b ≥
1 and we explicitly compute m−a,b = n2/3

1600a+b
and m+

a,b =
n2/3

1600a+b
+ n

4(400n1/3)a+b
, so thus

∑
a,b

|m+
a,b −m

−
a,b|√

1 + max{m+
a,b,m

−
a,b}

≤
∑
a,b

|m+
a,b −m

−
a,b|√

m−a,b

≤
∑
a,b≥1

n

4(400n1/3)a+b√
n2/3

1600a+b

=
∑
a,b≥1

n2/3

4(10n1/3)a+b

=
1

400

∑
a,b≥0

1

(10n1/3)a+b
≤ 1

400

∑
a,b

1

10a+b
<

1

250
.

Invoking the Wishful Thinking theorem (two-distribution
version) yields the desired result.

5. THE MATCHING MOMENTS THEOREM
In the previous section we showed essentially that mo-

ments are all that matter in the low-frequency setting. In
this section we consider the new ingredient of (ε, δ)-weak
continuity and show that with this ingredient, even moments
become useless for distinguishing properties; in short, no
useful information can be extracted from the low-frequency
portion of a distribution, a claim that will be made explicitly
in the final section.

To see how the Wishful Thinking theorem relates to an
(ε, δ)-weakly-continuous property π, we note that if πba is
testable, then for any distribution p+ with large value of π
and distribution p− with small value of π, we must not only
be able to distinguish samples of p+ from samples of p−, but
further, we must be able to distinguish samples of any dis-
tribution in a ball of radius δ about p+ from samples of any
distribution in a ball of radius δ about p−. By the Wishful
Thinking theorem this means that we can test the property
only if the images of these balls under the moments function
lie far apart. The main result of this section is (essentially)
that the images of these balls under the moments function
always overlap.

We carry out this analysis under the constraint that we
desire an intersection point that is itself a low frequency
distribution (we relax the constraint to frequency at most
no(1)

kδ
), so that we can conclude the argument as follows:



there exists p̂+ near p+ with moments vector near some
fixed m̂ and there exists p̂− near p− with moments also near

m̂ such that both p̂+ and p̂− have frequencies below no(1)

kδ
;

thus by the Wishful Thinking theorem, large values of π are
indistinguishable from small values of π in kδ

no(1)
samples.

More specifically, there is a fixed vector m̂ in moments space
that each of these spheres lies close to.

In other words, the plan for this section is to show how
we can modify low-frequency distributions (1) slightly, (2)
into almost-low-frequency distributions so that (3) their mo-
ments almost match m̂. Recall from Section 4 that the ze-
roth and first moments already match (being always n and k
respectively), so we need only work to match the second and
higher moments. Further, the second and higher moments
all depend on quadratic or higher powers of the frequencies,
so the original moments of the low-frequency distribution
will be swamped by the moments of the small “almost-low-
frequency” modifications we make.

To give a flavor of how to find these modifications to match
the second and higher moments, suppose for the moment
that we ignore the constraints that the distribution p has
n entries summing to 1, and consider, for arbitrary κ, c, γ,
what happens to the κ-based moments if we add c new en-
tries of value γ

κ
. By trivial application of the definition, the

κ-based moments of the distribution will simply increase by
the vector c ·(1, γ, γ2, . . .). The crucial fact here is that these
moments are a linear function of c. In order to be able to
fix the first µ =

√
logn moments we need µ linear equations

with µ unknowns: instead of using one value of c and γ we
let γ range over [µ] and let cγ denote the number of new
entries of value γ

κ
we insert. Given the desired value for

m̂ we solve for the vector c by matrix division: if V is the
transform matrix such that the new moments equal m+V ·c
then, equating this to our moments target m̂, we solve for c
as c = inv(V )(m̂−m).

There are a few evident concerns with this approach: (1)
how do we ensure each cγ is integral? (2) how do we ensure
that each cγ is positive? (3) how do we ensure each cγ is
small enough that the distribution is not changed much? and
(4) how do we reinstate the constraints that the distribution
has n entries summing to 1?

The short answers to these questions are: (1) Round to
the nearest integer. (2) If we are worried about c being
negative, say as low as the negation of c̄ = maxm inv(V ) ·m
we simply set m̂ = V · c̄ since we are free to choose m̂ as
we wish. Now c = inv(V )(m̂ −m) = c̄ − inv(V )m ≥ 0 by
definition of c̄, so c is always positive. (3) To bound the
size of c we note that the matrix V is in fact an example of
a Vandermonde matrix, a class which is both well studied
and well-behaved; we use standard bounds on the inverse of
Vandermonde matrices. And (4) see Definition 12 for the
details of the fairly straightforward construction.

(We note that [18] previously used Vandermonde matri-
ces to control moments in a similar context. One principle
distinction is that they did not have a“wishful thinking theo-
rem”to motivate the general approach we take here; instead,
they essentially seek one special case of the Matching Mo-
ments theorem, and apply it to bound the complexity of the
particular problem of testing distribution support size.)

We define the particular Vandermonde matrices we use:

Definition 11. For positive integer µ define the µ × µ
matrix V µ to have entries V µ(i, j) = ji.

As noted above, we need a bound on the size of elements
of inv(V µ). To compute this we make use of the following
standard (if slightly unwieldy) formula:

Lemma 7 (From [15]). For any vector z of length µ
the inverse of the µ × µ Vandermonde matrix with entries
z(j)i has (i, j)th entry

(−1)i+1
∑

1≤s1<s2<...<sµ−i≤µ
∀q,sq 6=j

µ−i∏
q=1

zsq

∏
q∈{1,...,µ}−{j}

(zq − zj)
.

We apply this lemma to bound the inverse of V µ. We omit
the straightforward computation.

Lemma 8. Each element of inv(V µ) has magnitude at
most 6µ.

We now present the construction for“matching moments”.

Definition 12. Define the function M mapping distri-
bution p on [n], positive integer k ≤ n, and real number
number 0 < δ ≤ 1 to distribution p̂←Mk

δ (p) via the follow-
ing sequence of modifications to p:

1. Let δ′ = δ
2

; let I be the largest set of indices i such that∑
i∈I p(i) ≤ δ

′. Set p̂ equal to p on [n]− I, and 0 on I.

2. Let µ = b
√

lognc, and let κ = k · δ′

4µ36µ
; for integers

2 ≤ a ≤ µ let m(a) be the κ-based moments of this
modified vector, with m(1) = 0 defined separately. Let
ĉ = inv(V µ) ·m.

3. Let m(a) be an upper-bound on m which has value 0 for

a = 1 and value κ2

k
otherwise. Let V

µI
be a µ× µ matrix

with entries 6µ, and let c = V
µI ·m.

4. For each γ < µ choose c(γ) = bc(γ)− ĉ(γ)c indices i ∈ I
with p̂(i) = 0 and set p̂(i) = γ

κ
for these indices.

5. Make
∑
p̂(i) = 1 by filling in n δ

′

2
of the unassigned entries

from I uniformly.

Let m̂k
δ be the moments produced by applying this procedure

to the uniform distribution.

For these m̂,M we prove:

Theorem 7 (Matching Moments Theorem). For in-
tegers k, n and real number δ, the vector m̂k

δ and the function
Mk
δ of Definition 12 are such that for distribution p such that
∀i, p(i) ≤ 1

k
, letting p̂←Mk

δ (p) and k̂ = kδ

100·23
√

logn we have

• For all i ∈ [n], p̂(i) ≤ 1/k̂;

• |p− p̂| ≤ δ
• The k̂-based ath moment of p̂, for a ≤

√
logn equals

m̂ to within 1
10000 logn

.

Proof of the Matching Moments Theorem. We first
show that the definition of M is valid.

We note that m̂ is indeed an upper-bound on m: when
a = 1 we have m(1) = m(1) = 0; otherwise, since p(i) ≤ 1

k
for each i, the κ-based moments are bounded as m(a) ≤∑
i p̂(i)(

1
k

)a−1 · κa ≤ κ2

k

∑
i p̂(i) ≤

κ2

k
, as desired. The fact



that V
µI

bounds the magnitudes of the elements of inv(V µ)

is Lemma 8. Since V
µI

and m respectively bound the mag-
nitudes of inv(V µ) and m, their product c̄ bounds the mag-
nitudes of ĉ. Thus each of the expressions bc̄(γ) − ĉ(γ)c is
nonnegative and Step 4 can be carried out.

We now show that Step 5 can be carried out. Note that the
total frequency contribution of the elements added in Step 4
is just 1

κ
times the κ-based first moment computed as V µ1 ·c,

where V µ1 denotes the first row of V µ. We note that V µ1 has

entries 1 through µ, with sum µ(µ+1)
2

. Since c̄ bounds the
magnitude of ĉ and c = bc̄− ĉc, we have that the entries of c
are bounded by corresponding entries of 2c̄. Further, each of
these entries we may compute explicitly from the definition

as 2 (µ−1)κ26µ

k
. Thus the total new weight from Step 4 is at

most µ3κ6µ

k
= δ′

4
. By construction, the weight before Step

4 is at least 1 − δ′, and cannot exceed this by more than
the highest frequency in p, which is at most 1

k
≤ δ

100
. Thus

the total weight of p̂ is at most 1− δ′

2
by the end of Step 4.

Further, because each element we added to the distribution
has frequency (much) greater than 1

k
, and each element we

removed from p in Step 1 had frequency less than 1
k

, the
number of nonzero elements in p̄ by Step 4 is no greater

than n(1 − δ′

2
), so the elements “fit”, and we have proven

consistency of the construction.
The first property of the theorem follows trivially from

the construction.
The second property of the theorem follows from the fact

that in Step 1 we removed at most δ′ weight from the dis-
tribution, and in the remaining steps we only added weight.
Thus the distribution has changed by at most 2δ′ = δ.

We now examine the moments of the resulting distribu-
tion. We note that the first µ moments would be exactly
the vector V µ · c̄ save for two caveats: the rounding in Step
4 and the new elements added in Step 5.

We note that rounding affects the ath κ-based moment by
at most (one times) the sum of the absolute values of the
entries of the ath row of V µ, which we represent as |V µa | and
analyze later.

We analyze Step 5 by noting that the total weight added
in Step 5, namely the gap between 1 and the weight at the
end of Step 4, is controlled by the linear equations, up to
rounding errors. Thus the difference between the maximum
and minimum weight possibly added is at most the total
weight of (one copy each of) the elements 1

κ
, 2
κ
, . . . , µ

κ
, which

equals µ(µ+1)
2κ

≤ µ2

κ
. Since the total weight to be added is

at most δ′ and the number of entries this weight is divided

among is n δ
′

2
, we bound the gap between the maximum

and minimum values of the ath κ-based moment using the

inequality xa − (x(1 − y))a ≤ yaxa−1 by κa µ
2

κ
a
(

2
n

)a−1 ≤
µ3 2κ

n
. Since n ≥ k (otherwise we could not have ∀i, p(i) ≤

1
k

), by definition of κ (Definition 12) this expression is at
most 1.

Thus, for any fixed a between 2 and µ the difference be-
tween the maximum and minimum κ-based moments reached
by M , from any starting distribution p, is at most 1 + |V µa |.
Since the elements of the ath row of V µ are the values γa

for 1 ≤ γ ≤ µ, the sum |V µa | consists of µ integer elements,
all at most µa and some strictly less, so 1 + |V µa | ≤ µa+1.

To convert this bound on the κ-based moments to a bound
on the k̂-based moments we multiply by ( k̂

κ
)a where k̂

κ
=

8µ36µ

100·23
√

logn ≤
1

100µ2 , where the last equality holds for large

n asymptotically, and for n > 3 by inspection for small
integer values of µ. Thus the bound on the variation of the
k̂-based moments is µa+1( 1

100µ2 )a ≤ 1
10000µ2 for a ≥ 2, and

0 for a < 2, as desired.

6. THE CANONICAL TESTING THEOREM
In this section we prove the main results of this work, the

Low Frequency Blindness and Canonical Testing theorems
(Theorems 4 and 5 as stated in Section 3). First we show
how to combine the results of the previous two sections to
show a general class of lower-bounds for testing symmet-
ric weakly-continuous properties. Then we show that these
lower-bounds apply in almost exactly those cases where the
Canonical Tester fails, providing a tight characterization of
the sample complexity for any symmetric weakly-continuous
property.

The lower-bound we present completes the argument we
have been making in the last few sections that testers can-
not make use of the low-frequency portion of distributions.
Explicitly, if we have two distributions p+, p− that are iden-
tical on their high-frequency indices then the tester may as
well return the same answer for both pairs. Thus if a prop-
erty takes very different values on p+ and p− then it is not
testable. We first show this result for the case where nei-
ther distribution has high-frequency elements —this lemma
is a simple consequence of the combination of the Wishful
Thinking and Matching Moments theorems.

Lemma 9. Given a symmetric property π on distributions
on [n] that is (ε, δ)-weakly-continuous and two distributions,
p+, p− all of whose frequencies are less than 1

k
but where

π(p+) > b and π(p−) < a, then no tester can distinguish
between π > b− ε and π < a+ ε in kδ

1000·24
√

logn samples.

Proof. Consider the distributions obtained by applying
the Matching Moments Theorem to p+, p−: let p̂+ = Mk

δ (p+)
and p̂− = Mk

δ (p−). From the Matching Moments theorem’s
three conclusions we have that (1) the modified distribu-

tions have frequencies at most 1/k̂ = 100·23
√

logn

kδ
; (2) the

statistical distance between each modified distribution and
the corresponding original distribution is at most δ, which,
since π is (ε, δ)-weakly-continuous implies that π(p̂+) > b−ε
and π(p̂−) < a+ ε; and (3) the k̂-based moments of p̂+ and
p̂− up to degree

√
logn are equal to within 2

10000 logn
.

We then apply the corollary to the Wishful Thinking The-
orem (Corollary 1) for k = k̂ 1

10·2
√

logn . (The k we use for

the Wishful Thinking theorem is different from the k used
in the previous paragraph for the Matching Moments the-
orem; however, we retain k̂ from the previous paragraph.)
We note that the ath k-based moment is proportional to ka,
so since the k̂-based moments of p̂+ and p̂− match to within

2
10000 logn

and since k < k̂, the k-based moments also match
to within this bound. We may thus evaluate the condition
of Corollary 1 as
√

logn∑
a=2

|m+(a)−m−(a)|√
1 + max{m+(a),m−(a)}

≤

√
logn∑
a=2

|m+(a)−m−(a)|

≤ 2
√

logn

10000 logn
<

1

120
,

and thus Corollary 1 yields the desired conclusion.



We now easily derive the full Low Frequency Blindness
theorem (Theorem 5).

Proof of the Low Frequency Blindness theorem.
The intuition behind the proof is that the high-frequency
samples give no useful information to distinguish between
p+, p−, and the low frequency samples are covered by Lemma
9.

Let H be the set of indices of either distribution occurring
with frequency at least 1

k
and let pH = p−|H(= p+|H),

namely the high-frequency portion of p− and p+. let L =
[n]−H, and let ` = |p+(L)|, namely the probability that p+

or p− draws a low-frequency index.
Formally, we construct a property π′ that is only a func-

tion of distributions on L, but can “simulate” the operation
of π on both p+ and p−. We show how a tester for π would
imply a tester for π′, and conclude by invoking Lemma 9 to
see that neither tester can exist.

Consider the following property π′ on arbitrary distri-
butions pL with support L: define the function f map-
ping pL to the distribution p on [n] such that p|H = pH ,
p|L = pL, and the probability of being in L, p(L), equals `.
Let π′(pL) = π(f(pL)).

Assume for the sake of contradiction that there exists a
k̄-sample tester T for πb−εa+ε (for some k̄). We construct a

k̄-sample tester T ′ for π′b−εa+ε as follows: let kL be the result

of counting the number of heads in k̄ flips of a coin that
lands heads with probability `; return the result of running
T on input the concatenation of the first kL samples input to
T ′, and k̄ − kL samples drawn at random from pH (defined
above).

Clearly for any distribution pL on L, running the above
algorithm on k̄ samples from pL will invoke T being run on
(a simulation of) k̄ samples drawn from f(p); thus since, by
assumption, T distinguishes π > b − ε from π < a + ε we
conclude that T ′ distinguishes π′ > b− ε from π′ < a+ ε.

To finish the argument we show that this cannot be the
case. Note that since f is a linear function with coefficients
` ≤ 1, the (ε, δ)-weak-continuity of π implies the (ε, δ)-weak-
continuity of π′. Further, we have that p+|L and p−|L are
both ` · k-low-frequency distributions, where by definition,
π′(p+|L) > b and π′(p−|L) < a. We thus invoke Lemma 9
on π′, p+|L, p−|L, and ` · k to conclude that no tester can
distinguish π′ > b−ε from π′ < a+ε in `kδ

1000·24
√

logn samples,

which implies from the previous paragraph that no tester can
distinguish π > b− ε from π < a+ ε in the same number of
samples.

To eliminate the ` from this bound requires a slightly
tighter analysis, for which we refer the reader to [21].

We conclude with a proof of the Canonical Testing theo-
rem (Theorem 4), making use of the following lemma:

Lemma 10. Given a distribution p and parameter θ, if
we draw k random samples from p then with probability at
least 1 − 4

n
the set P constructed by the Canonical Tester

will include a distribution p̂ such that |p− p̂| ≤ 24
√

logn
θ

.

The proof is elementary: use Chernoff bounds on each index
i and then apply the union bound to combine the bounds.

Proof of the Canonical Testing theorem. Without
loss of generality assume that the Canonical Tester fails by
saying “no” at least a third of the time on input samples

from some distribution p when in fact πba(p) > b + ε. From
the definition of the Canonical Tester this occurs when, with
probability at least 1

3
, the set P constructed contains a dis-

tribution p− such that π(p−) < a. From Lemma 10, P
contains some p+ within statistical distance δ from p with
probability at least 1− 4

n
. Thus by the union bound there

exists a single P with both of these properties, meaning
there exist such p−, p+ lying in the same P , and thus hav-
ing the same θ-high-frequency components. Since π is (ε, δ)-
weakly-continuous, π(p+) > b. Applying the Low Frequency
Blindness Theorem to p+, p− yields the desired result.
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