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Abstract—Star-convexity is a significant relaxation of
the notion of convexity, that allows for functions that do
not have (sub)gradients at most points, and may even be
discontinuous everywhere except at the global optimum. We
introduce a polynomial time algorithm for optimizing the
class of star-convex functions, under no Lipschitz or other
smoothness assumptions whatsoever, and no restrictions
except exponential boundedness on a region about the origin,
and Lebesgue measurability. The algorithm’s performance
is polynomial in the requested number of digits of accuracy
and the dimension of the search domain. This contrasts with
the previous best known algorithm of Nesterov and Polyak
which has exponential dependence on the number of digits
of accuracy, but only nω dependence on the dimension n
(where ω is the matrix multiplication exponent), and which
further requires Lipschitz second differentiability of the
function [1].

Despite a long history of successful gradient-based opti-
mization algorithms, star-convex optimization is a uniquely
challenging regime because 1) gradients and/or subgradients
often do not exist; and 2) even in cases when gradients exist,
there are star-convex functions for which gradients provably
provide no information about the location of the global
optimum. We thus bypass the usual approach of relying
on gradient oracles and introduce a new randomized cutting
plane algorithm that relies only on function evaluations. Our
algorithm essentially looks for structure at all scales, since,
unlike with convex functions, star-convex functions do not
necessarily display simpler behavior on smaller length scales.
Thus, while our cutting plane algorithm refines a feasible
region of exponentially decreasing volume by iteratively
removing “cuts”, unlike for the standard convex case, the
structure to efficiently discover such cuts may not be found
within the feasible region: our novel star-convex cutting
plane approach discovers cuts by sampling the function
exponentially far outside the feasible region.

We emphasize that the class of star-convex functions we
consider is as unrestricted as possible: the class of Lebesgue
measurable star-convex functions has theoretical appeal,
introducing to the domain of polynomial-time algorithms
a huge class with many interesting pathologies. We view
our results as a step forward in understanding the scope
of optimization techniques beyond the garden of convex
optimization and local gradient-based methods.

I. INTRODUCTION

Optimization is one of the most influential ideas in
computer science, central to many rapidly developing ar-
eas within computer science, and also one of the primary
exports to other fields, including operations research,
economics and finance, bioinformatics, and many design

problems in engineering. Convex optimization, in partic-
ular, has produced many general and robust algorithmic
frameworks that have each become fundamental tools in
many different areas: linear programming has become a
general modeling tool, its simple structure powering many
algorithms and reductions; semidefinite programming is
an area whose scope is rapidly expanding, yielding
many of the best known approximation algorithms for
optimizing constraint satisfaction problems [2]; convex
optimization generalizes both of these and has introduced
powerful optimization techniques including interior point
and cutting plane methods. Our developing understanding
of optimization has also led to new algorithmic design
principles, which in turn leads to new insights into opti-
mization. Recent progress in algorithmic graph theory has
benefited enormously from the optimization perspective,
as many recent results on max flow/min cut [3], [4], [5],
[6], [7], bipartite matching [3], and Laplacian solvers [8],
[6], [9] have made breakthroughs that stem from devel-
oping a deeper understanding of the characteristics of
convex optimization techniques in the context of graph
theory. These successes motivate the quest for a deeper
and broader understanding of optimization techniques: 1)
to what degree can convex optimization techniques be
extended to non-convex functions; 2) can we develop
general new tools for tackling non-convex optimization
problems; and 3) can new techniques from non-convex
optimization yield new insights into convex optimization?

As a partial answer to the first question, gradi-
ent descent—perhaps the most natural optimization
approach—has had enormous success recently in a variety
of practically-motivated non-convex settings, sometimes
with provable guarantees. The method and its variants are
the de facto standard for training (deep) neural networks,
a hot topic in high dimensional non-convex optimization,
with many recent practical results (e.g. [10], [11]). Gra-
dient descent can be thought of as a “greedy” algorithm,
which repeatedly chooses the most attractive direction
from the local landscape. The efficacy of gradient descent
algorithms relies on local assumptions about the function:
for example, if the first derivative is Lipschitz (slowly
varying), then one can take large downhill steps in the
gradient direction without worrying that the function will
change to going uphill along this direction. Thus the con-
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vergence of gradient descent algorithms typically depends
on a Lipschitz parameter (or other smoothness measure),
and conveniently does not depend on the dimension of the
search space. Many of these algorithms converge to within
ε of a local optimum in time poly(1/ε), with additional
polynomial dependence on the Lipschitz constant or other
appropriate smoothness guarantee [12], [13]. In cases
where all local optima are global optima, then one has
global convergence guarantees.

While one intuitively expects gradient descent algo-
rithms to always converge to a local minimum, in this
paper we study the optimization of a natural general-
ization of convex functions where, despite the global
optimum being the only stationary point/local minimum
for every function in this class, provably no variant
of gradient descent converges in polynomial time. The
class of star-convex functions, which we define below,
includes many functions of both practical and theoretical
interest, both generalizing common families of convex
functions to wider parameter regimes, and introducing
new “pathologies” not found in the convex case (for a
complete discussion, see [14]). We show, essentially, how
to make a gradient-based cutting plane algorithm “robust”
to many new pathologies, including lack of gradients or
subgradients, long narrow ridges and rapid oscillation in
directions transverse to the global minimum, and, in fact,
almost arbitrary discontinuities. This challenging setting
gives new insights into what fundamentally enables cut-
ting plane algorithms to work, which we view as progress
towards answering questions 2 and 3 above.

A. Star-Convex Functions

This paper focuses on the optimization of star-convex
functions, a particular class of (typically) non-convex
functions that includes convex functions as a special
case. We define these functions as follows, based on the
definition in Nesterov and Polyak [1].

Definition 1 (Star-convex functions). A function f :
Rn → R is star-convex if there is a global minimum
x∗ ∈ Rn such that for all α ∈ [0, 1] and x ∈ Rn,

f(αx∗ + (1− α)x) ≤ αf(x∗) + (1− α)f(x)

We call such an x∗ a star center of f . For convenience,
we shall refer to the minimum function value as f∗.

The name “star-convex” comes from the fact that each
sublevel set (the set of x for which f(x) < c, for some
c) is “star-shaped”.

Intuitively, if we visualize the objective function as a
landscape, star-convexity means that the global optimum
is “visible” from every point—there are no “ridges” on
the way to the global optimum, but there could be many
ridges in transverse directions. Since the global optimum
is always visible in a downhill direction from every point,
gradient descent methods would seem to be effective.

(a) g defined on the unit circle (b) Linear extension of g to f

Figure 1: An example star-convex function f defined
by linearly extrapolating an arbitrary positive function
g defined on the unit circle (in white).

Counterintuitively, these methods all fail in general (see
Section I-D for details).

One broad class of star-convex functions that gives a
good sense of the scope of this definition is constructed
by the following process: 1) pick an arbitrary positive
function g(θ) on the unit circle (see Figure 1a) which
may be discontinuous, rapidly oscillating, or otherwise
badly behaved; and 2) linearly extend this function to a
function f on the entire plane, about the value f(0) = 0
(see Figure 1b), defining

f(x) = ||x||2 · g
(

x

||x||2

)

At any point at which a gradient or subgradient exists,
the star center (global optimum) lies in the halfspace op-
posite the (sub)gradient. However, even for the relatively
benign example of Figure 1, gradients do not exist for
angles θ at which g is discontinuous, and subgradients
do not exist for most angles, including those angles
where g is a local maxima with respect to θ. Further,
even for differentiable star-convex functions, gradients
can be misleading, since a rapidly oscillating g implies
that gradients typically point in the transverse direction,
nearly orthogonal to the direction of the star center.

While it is often standard to design algorithms assum-
ing one has access to an oracle that returns both function
values and gradients, we instead only assume access to the
function value: even in the case when gradients exist, it
is unclear whether they are algorithmically helpful in our
setting. (See Section I-D for details.) Indeed, we pose this
as an open problem: under what assumptions (short of the
Lipschitz guarantees on the second derivative of Nesterov
and Polyak [1]), can one meaningfully use a gradient
oracle to optimize star-convex functions? For example,
is there a natural gradient-based algorithm whose perfor-
mance depends polynomially or even polylogarithmically
on parameter L when the function is L-Lipschitz and
differentiable?
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B. Main Result

In this paper, we show that, assuming only Lebesgue
measurability and an exponential bound on the function
value within a large ball, our algorithm optimizes a star-
convex function in polylog(1/ε) time where ε is the
desired accuracy in function value.

Theorem 2. (Informal) Given evaluation oracle access to
a Lebesgue measurable star-convex function f : Rn → R
and an error parameter ε, with the guarantee that x∗

is within radius R of the origin, our adapted ellipsoid
algorithm returns an estimate f0 of the minimum function
value such that |f0−f∗| ≤ ε with high probability in time
poly(n, log 1

ε , logR).

In previous work, Nesterov and Polyak [1] introduced
an adaptation of Newton’s method to find local minima
in functions that are twice-differentiable, with Lipschitz
continuity of their second derivatives. For the class of
Lipschitz-twice-differentiable star-convex functions, they
show that their algorithm converges to within ε of the
global optimum in time O( 1√

ε
), using star convexity to

lower bound the amount of progress in each of their
optimization steps.

Our results are stronger in two significant senses: 1) as
opposed to assuming Lipschitz twice-differentiability, we
make no continuity assumptions whatsoever, optimizing
over an essentially arbitrary measurable function within
the class of star-convex functions; 2) while the algorithm
of [1] requires exponential time to estimate the optimum
to k digits of accuracy, our algorithm is polynomial in the
requested number of digits of accuracy.

The reader may note that the complexity of our al-
gorithm does depend polynomially on the number of
dimensions n of the search space, whereas the Nesterov-
Polyak algorithm uses a number of calls to a Hessian
oracle that is independent of the dimension n. However,
our dependency on the dimension n is necessary in
the absence of Lipschitz guarantees, even for convex
optimization [15].

We further point out an important distinction between
star-convex optimization and star-shaped optimization.
A star-shaped function is defined similarly to a star-
convex function, except the star center is allowed to be
located away from the global minimum. Certain NP-
hard optimization problems, including max-clique, can be
rephrased in terms of star-shaped optimization [16], and
the problem is in general impossible without continuity
guarantees, for the global minimum may be hidden along
a single ray from the star center that is discontinuous from
the rest of the function. In this sense, our star-convex
optimization algorithm narrowly avoids solving an NP-
hard optimization problem.

C. Applications of Star-Convex Functions

Any polynomial of |x|, |y|, |z|, . . . with positive coeffi-
cients is star-convex, and this includes sums of squares of
monomials, which arise in many different contexts. More
generally, finite positive linear combinations of products
of positive powers of |x|, |y|, |z| are star-convex when
raised to a sufficiently large positive power, and thus may
also be optimized with our techniques. Such functions are
seen in the following more general and practical setting.

Empirical risk minimization is a central technique in
machine learning [17], where, given training data xi with
labels yi, we seek a hypothesis h so as to minimize
1
m

∑m
i=1 L(h(xi), yi), where L is a loss function that

describes the penalty for misprediction, on input our
prediction h(xi) and the true answer yi. We take the
hypothesis h to be a linear function (this setting includes
kernel methods that preprocess xi first and then apply a
linear function). If the loss function L is convex, then
finding the optimal hypothesis h is a convex optimization
problem, which is widely used in practice: for exponent
p ≥ 1, we let L(ŷi, yi) = |ŷi − yi|p and thus aim to
optimize the convex function arg minh

∑m
i=1 |h·xi−yi|p.

In this paper, instead, we draw attention to the inter-
esting regime where p < 1. This regime is not accessible
with standard techniques. Intriguingly, when the data yi is
consistent with some linear hypothesis, then the (1/p)th
power of the above objective function is star-convex,
and thus the main result of our paper yields an efficient
optimization algorithm (however, removing the guarantee
that the data is consistent with a linear hypothesis, the
problem becomes NP-hard). Slightly more generally:

Corollary 3. Consider data (xi, yi), a loss function
L(ŷi, yi), and a power p > 0 such that there is a
true hypothesis h such that for each example i, the loss
L(ĥ(xi), yi)

1/p—considered as a function of ĥ—is star-
convex, with a global optimum of 0 at ĥ = h. Then
the following empirical risk minimization problem can be
solved to accuracy ε in time poly(n, log 1/ε) by inputting
its (1/p)th power to the main algorithm of this paper:

arg min
h

1

m

m∑
i=1

L(h(xi), yi),

The regime where p ∈ (0, 1) has the structure that,
when one is far from the right answer, small changes to
the hypothesis do not significantly affect performance, but
the closer one gets to the true parameters, the richer the
landscape becomes. One of many interesting settings with
this behavior is biological evolution, where “fit” creatures
have a rich landscape to traverse, while drastically unfit
creatures fail to survive. A paper by one of the authors
proposed star-convex optimization as a regime where
evolutionary algorithms might be unexpectedly success-
ful [18]. This current work finds an affirmative answer
to an open question raised there by showing the first

604605605



polynomial time algorithm for optimizing this general
class of functions. (The previous results by Nesterov
and Polyak [1] fail to apply to this setting because the
objective function has regions that behave—for some
parameter regimes—like

√
|x|, which is not Lipschitz.)

Corollary 4 (Extending Theorem 4.5 of [18]). There
is a single mutation algorithm under which for any
p > 0, defining the loss function L(ŷ, y) = |ŷ − y|p,
the class of constant-degree polynomials from Rn → Rm
with bounded coefficients is evolvable with respect to all
distributions over the radius r ball.

D. Need for Novel Algorithmic Techniques

Before we outline our strategy for optimizing star-
convex functions, we demonstrate the need for novel
algorithmic approaches by explaining how a wide variety
of standard techniques fail on this challenging class of
functions. We start by explaining how simple star-convex
functions such as (

√
|x| +

√
|y|)2 confound gradient

descent and its variants, and end with a pathological
example with information-theoretic guarantees about its
hardness to optimize, even given arbitrarily accurate first-
order (gradient) oracle access.

Consider the star-convex function (
√
|x| +

√
|y|)2,

which can be thought of essentially as
√
|x|+

√
|y|. This

function has unique global minimum (and star center) at
the origin. Gradients of this function go to infinity as ei-
ther x or y goes to 0, thus the function essentially has deep
canyons along both the x and y axes, with gradients near
either “canyon” (axis) leading the algorithm deeper into
the canyon instead of towards the origin. Many variants
of gradient descent will have the following behavior on
this function: rapidly jump towards one of the two axes,
and then fail to make significant further progress as the
search point oscillates around that axis. This is in part a
reflection of the fact that the gradient of (

√
|x|+

√
|y|)2

is not Lipschitz, and in fact varies arbitrarily rapidly as
(x, y) converges towards either axis; since these axes are
“canyons” in the search space, typical algorithms will
spend a disproportionate amount of their time stumbling
around this badly-behaved region. More sophisticated and
modern gradient descent techniques have been developed
to handle regimes with badly scaled gradients, including
the normalized gradient descent algorithm [13]; however
the “strict local quasi-convexity” property required by
their analysis fails to hold for the above function.

Complementing the above example, which illustrates
how standard gradient descent variants cannot optimize
star-convex functions, we now present a more sophisti-
cated and pathological example which proves that, even
with access to a first-order oracle and the assumptions
of infinite differentiability and boundedness on a region
around the origin, no deterministic algorithm can effi-
ciently optimize star-convex functions without Lipschitz

guarantees, motivating the somewhat unusual randomized
flavor of the algorithm of this paper.

Proposition 5. For any deterministic polynomial time al-
gorithm A, there is a set X∗ ⊂ [0, 1] covering at least half
of the unit interval, such that for each x∗ ∈ X∗ there is an
infinitely differentiable star-convex function f : R2 → R
with unique global minimum f(x∗,

√
1/2) = 0, such that,

when algorithm A is run on function f , the returned
values and gradients are independent of x∗:

1) The function value is always f(x, y) = 1;
2) The gradient is a fixed function of y only,

∇f(x, y) =

(
0, 1

y−
√

1/2

)
.

Since the function and gradient oracles return zero
information about the x-coordinate of the star center
x∗ ∈ X∗, algorithm A clearly has a hopeless task
optimizing this class of functions.

We construct the functions of Proposition 5 via a
simulation argument—given an arbitrary algorithm A,
simulate it using properties 1 and 2 to determine the
results of all function and gradient queries; then define
the function f “after the fact” via interpolation, to be
consistent with the queried values and gradients.

In summary, gradient information is very hard to use
effectively in star-convex optimization, even for smooth
functions. Our algorithm, outlined below, instead only
queries the function value—not because we object to
gradients, but rather because they do not seem to help.

E. Our Approach

Our overall approach is via the ellipsoid method, which
repeatedly refines an ellipsoidal region containing the star
center (global optimum) by iteratively computing “cuts”
that contain the star center, while significantly reducing
the overall volume of the ellipsoid.

As mentioned in Section I-D, even for smooth func-
tions with access to a gradient oracle, the cutting planes
induced by the gradients may yield no significant progress
in some directions. Finding “useful” cutting planes in
the star-convex setting requires three novelties—see Sec-
tion III for complete details. First, the star-convex func-
tion may be discontinuous, without even subgradients
defined at most points, so we instead rely on a sam-
pling process involving the “blurred logarithm” of the
objective function. The blurred logarithm mitigates both
the (potentially) exponential range of the function, and
the (potentially) arbitrary discontinuities in the domain.
The blurred logarithm, furthermore, is differentiable, and
sampling results let us estimate and use its derivatives
in our algorithm. This technique is similar to that of
randomized smoothing [19]. Second, the negative gra-
dient of the blurred logarithm might point away from
the star center (global optimum)—despite all gradients of
the unblurred function (when they exist) pointing towards
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the star center—because of the way blurring interacts
with sharp wedge-shaped valleys (see Figure 2 below).
Addressing this requires an averaging technique that re-
peatedly samples Gaussians-in-Gaussians, until it detects
sufficient conditions to conclude that the gradient may
be used as a cut direction. Third and finally, the usual
cutting plane criterion—that the volume of the feasible
region decreases exponentially—is no longer sufficient in
the star-convex setting, as an ellipsoid in two coordinates
(x, y) might get repeatedly cut in the y direction without
any progress restricting the range of x. This is provably
not a concern in convex optimization (Theorem 5.2.1
of [20]). Our algorithm tackles this issue by “locking”
axes of the ellipsoid smaller than some exponentially
small threshold τ , and seeking cuts orthogonal to these
axes; this orthogonal signal may be hidden by much larger
derivatives in other directions, and hence requires new
techniques to expose. The counterintuitive approach is
that, in order to expose structure within an exponentially
thin ellipsoid dimension we must search exponentially far
outside the ellipsoid in this dimension.

F. Stochastic Optimization

Our approach extends easily to the stochastic optimiza-
tion setting. Here, the objective function is the expectation
over a distribution of star-convex functions which share
the same star center and optimum value, e.g. the empirical
risk minimization setting of Corollary 3.

The optimization algorithm for this new stochastic
setting is actually identical to the general star-convex
optimization algorithm. Since star-convex functions can
take arbitrarily unrelated values on nearby rays from the
star center, our algorithm is already fully equipped to deal
with the situation, and adding explicitly unrelated values
to the model by stochastically sampling from a family of
functions Li makes the problem no harder. The algorithm,
analysis, and convergence are unchanged.

II. PROBLEM STATEMENT AND OVERVIEW

Our aim here is to discuss algorithms for optimizing
star-convex functions in the most general setting possible,
and thus we must be careful about how the functions
are specified to the algorithms. In particular, we do not
assume continuity, so functions with one behavior on the
rational points and a separate behavior on irrational points
are possible. Therefore, it is essential that our algorithms
have access to the function values of f at inputs be-
yond the usual rational points expressible via standard
computer number representations. As motivation, see the
following proposition.

Proposition 6. For any integers i, j, there exists a (dis-
continuous) star-convex function fi,j with unique global
minimum at fi,j(1/

√
2 + i, 1/

√
3 + j) = 0, such that:

1) The function is essentially a cone on the irrational
points—with probability 1 (over any continuous
distribution on x and y),
fi,j(x, y) = ||(x, y)− (1/

√
2 + i, 1/

√
3 + j)||2;

2) On every rational point (x, y) that is not within
distance 1 of (1/

√
2 + i, 1/

√
3 + j), the function is

constant, fi,j(x, y) = 1.

If in Proposition 6, we choose i, j randomly from
an exponentially large range, then any (deterministic or
randomized) polynomial time algorithm that only queries
f on rational points is exponentially unlikely to ever see a
function evaluation that is not 1; and thus cannot optimize
the function.

Since directly querying function values of general star-
convex functions at rational points is so limiting, we in-
stead introduce the notion of a weak sampling evaluation
oracle for a star-convex function, adapting the definition
of a weak evaluation oracle by Lovász [21].

Definition 7. A weak sampling evaluation oracle for a
function f : Rn → R takes as inputs a point x ∈ Qn,
a positive definite covariance matrix Σ, and an error
parameter γ. The oracle first chooses a random point y ←
N (x,Σ), and returns a value r such that |f(y)− r| < γ.

The Gaussian sampling in Definition 7 can be equiv-
alently changed to choosing a random point in a ball
of desired (small) radius, since any Gaussian distribution
can be approximated to arbitrary precision (in the total
variation sense) as the convolution of itself with a small
enough ball, and vice versa.

Because inputs and outputs to the oracle must be
expressible in a polynomial number of digits, we consider
“well-guaranteed” star-convex functions (in analogy with
Lovász [21]), where the radius bound R and function
bound B below should be interpreted as huge numbers
(with polynomial numbers of digits), such as 10100 and
101000 respectively. Numerical accuracy issues in our
analysis are analogous to those for the standard ellipsoid
algorithm and we do not discuss them further.

Definition 8. A weak sampling evaluation oracle for a
function f is called well-guaranteed if the oracle comes
with two bounds, R and B, such that 1) the global
minimum of f is within distance R of the origin, and
2) within `2 distance 10nR of the origin, |f(x)| ≤ B.

Such sampling gets around the obstacles of the exam-
ples in Propositions 5 and 6 because even if the evaluation
oracle is queried at a predictable rational point, the value
it returns will represent the function evaluated at an
unpredictable, (typically) irrational point nearby.

At this point, our notion of oracle access may seem
unnatural, in part because it allows access to the function
at irrational points that are not computationally express-
ible. However, there are two natural justifications for this
approach, of different flavors. First, the oracle represents

606607607



a computational model of a mathematical abstraction
(the underlying star-convex function), where even for
mathematically pathological functions, we can actually
in many cases implement simple code to emulate oracle
access in the manner described above. For example, it
is easy to implement a weak sampling evaluation oracle
for the function of Proposition 6, where, with probability
1, the function equals fi,j(x, y) = ||(x, y) − (1/

√
2 +

i, 1/
√

3+j)||2: return this simple function, and ignore the
complexities of fi,j that are infinitely unlikely to arise.

Second, setting oracle implementation issues aside, the
model cleanly separates accessing a potentially pathologi-
cal function, from computing properties of it, in this case,
optimizing it. The more pathological a function is, the
more surprising it is that any efficient automated tech-
nique can extract structure from it. Thus, in some sense,
the unrealistic regime of pathological functions, for which
we do not even know how to write code emulating oracle
access, yields the most surprising regime for the success
of the algorithmic results of this paper. This regime is the
most insightful from a theory perspective almost exactly
because it is the most unnatural and counterintuitive from
a practical perspective.

Having expressed the input to the optimization problem
in terms of function values sampled on a Gaussian, we
define the output in similar terms.

Definition 9. The weak star-convex optimization prob-
lem for a Lebesgue measurable star-convex function f ,
parameterized by δ, ε, F , is as follows. Given a well-
guaranteed weak sampling evaluation oracle for f , return
with probability at least 1 − F a Gaussian G such that
Pr[f(x) ≤ f∗ + ε : x← G] ≥ 1− δ.

Providing such a Gaussian G to the weak sampling
evaluation oracle (Definition 7), allows one to easily
estimate f∗ to within ε by taking the minimum of a few
samples. See the full version of the paper [14] for a dis-
cussion of why x∗ itself cannot be estimated for general
star-convex functions, and why we must instead return a
region that “looks like x∗ except with δ probability.”

We now formally state our main result.

Theorem 10. Algorithm 1, by providing cutting planes to
the ellipsoid algorithm, optimizes (in the sense of Defini-
tion 9) any Lebesgue measurable star-convex function f
in time poly(n, 1/δ, log 1

ε , log 1
F , logR, logB).

Observe that we require only Lebesgue measurability
of our objective function, and we make no further conti-
nuity or differentiability assumptions. The measurability
is necessary to ensure that probabilities and expectations
regarding the function are well-defined, and is essentially
the weakest assumption possible for any probabilistic
algorithm. The minimality in our assumptions contrasts
that of the work by Nesterov and Polyak, which assumes
Lipschitz continuity in the second derivative [1].

It is mathematically interesting that the cardinality
of the set of star-convex functions which we optimize,
even in the 2-dimensional case, equals the huge quantity
2|R|, while the cardinality of the entire set of continuous
functions—which is NP-hard to optimize, and strictly
contains most standard optimization settings—is only |R|.

III. COMPUTING CUTS FOR STAR-CONVEX
FUNCTIONS

The general goal of this section is to explain how
to compute a single cut, in the context of the ellipsoid
algorithm. Namely, given (weak sampling, in the sense
of Definition 7) access to a star-convex function f , and a
bounding ellipsoid in which we know the global optimum
lies, we present an algorithm (Algorithm 1) that will
either 1) return a cut passing close to the center of the
ellipsoid and containing the global optimum, or 2) directly
return an answer to the overall optimization problem. For
space reasons, we do not rederive the standard ellipsoid
algorithm analysis (see the full version of the paper [14]).
To summarize the ellipsoid method: starting with the huge
ball of radius R about the origin, it repeatedly reduces the
volume (by ratio 1−Ω(1/n) per iteration) of the “feasible
ellipsoid”, in which the global optimum is known to
lie, via cuts produced by Algorithm 1; it stops within a
polynomial number of iterations either when the ellipsoid
has exponentially small diameter, or when Algorithm 1
declares that the optimum has already been found.

Designing Algorithm 1 to construct valid cuts requires
surmounting three major obstacles, introduced in Sec-
tion I-E. First, the star-convex function f might be
discontinuous, without any gradients or even subgradients
defined at most points; we instead work with a proxy
for f , the “blurred logarithm”, which is continuous and
differentiable, and further, we may efficiently estimate
its value and derivatives (see Definition 11 and Propo-
sition 12). Second, this solution, however, introduces a
new problem: while the original star-convex f always de-
creases when moving towards the star center, the blurred
logarithm of f may not, and its gradients may point in
misleading directions (see Figure 2 for an illustration).
Third, the ellipsoid algorithm produces a sequence of
feasible ellipsoids of exponentially decreasing volume,
and for convex functions this additionally guarantees
exponentially convergence of both the feasible region’s
diameter and overall optimization accuracy (see Theorem
5.2.1 of [20]); however, for star-convex functions, neither
of these guarantees hold, and successive iterations of the
ellipsoid method might repeatedly cut certain dimensions
while neglecting others, and fail to converge to the
optimum. In order to solve this, we introduce a new
cutting plane approach that produces cuts orthogonal to
any dimensions of the ellipsoid that are already too thin.

To implement the intuition of the first point above, we
define Lz(x), a truncated and translated logarithm of the
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Figure 2: The classic “Shoot the Moon” game, with a steel
ball resting on two diverging rails sloping upwards to the
left. One wins the game by carefully adjusting the (hor-
izontal) angle between the two rails, counterintuitively
getting the ball to roll “uphill”, as far left as possible. In
the context of this paper, the landscape of the rails is star-
convex, sloping down to the right, towards a hypothetical
star center at the convergence point of the rails; however,
the large steel ball effectively “blurs” the landscape f ,
changing it so that from the ball’s local perspective, left
is the downhill direction, and the ball may roll far away
from the star center (winning the game, but losing in the
optimization context!).

star-convex function f , which maps the potentially expo-
nentially large range of f to the (polynomial-sized) range
[log ε′, log 2B], where ε′ is defined below (Definition 22),
and is slightly smaller than our function accuracy bound
ε. In the below definition, z intuitively represents our
estimate of the global optimum function value, and will
record, essentially, the smallest function evaluation seen
so far (see Step 2 of Algorithm 1).

Definition 11. Given an objective function f with bound
|f(x)| ≤ B when ||x||2 ≤ 10nR and an offset value
z ≥ f∗, we define the truncated logarithmic version of f
to be

Lz(x) =


log ε′ f(x)− z ≤ ε′

log 2B f(x)− z ≥ 2B

log(f(x)− z) otherwise

While mapping to a small range, Lz(x) nonetheless
gives us a precise view of small changes in the function
as we converge to the optimum. The next result shows
that, if we “blur” Lz(x) by drawing x from a Gaussian
distribution, then not only can we efficiently estimate
the expected value of the “blurred logarithm of f”, we
can also estimate the derivatives of this expectation with
respect to changing either the mean or the variance of the
Gaussian.

For an arbitrary bounded (measurable) function h, the
derivative of its expected value over a Gaussian of width σ
with respect to either 1) moving the mean of the Gaussian
or 2) changing its width σ, is bounded by O( 1

σ ). Thus
we normalize the estimates below in terms of the product
of the Gaussian width σ and the derivative, instead of
estimating the derivative alone.

Proposition 12. Let N (µ,Σ) be a Gaussian with di-
agonal covariance matrix Σ consisting of elements
σ2

1 , σ
2
2 , . . . , σ

2
n. For an error bound κ > 0 and a probabil-

ity of error δ > 0, we can estimate each of the following
functions to within error κ with probability at least 1− δ
using poly(n, 1

κ , log 1
δ , log 2B/ε′) samples: 1) the expec-

tation E[Lz(x) : x← N (µ,Σ)]; 2) the (scaled) derivative
σ1 · d

dµ1
E[Lz(x) : x ← N (µ,Σ)]; and 3) the derivative

with respect to scaling σ1 · d
dσ1

E[Lz(x) : x← N (µ,Σ)].
A fortiori, these derivatives exist.

This proposition allows us to efficiently estimate gra-
dients, which we then aim to use as cut directions. The
caveat, as mentioned above however, is that the gradient
of the blurred logarithm of f may unfortunately point
in the wrong direction, potentially inducing a cut that
would catastrophically exclude the star center from the
feasible region. See Figure 2 for an illustration of this
phenomenon.

A. The Cutting Plane Algorithm

One of the primary concerns for our cutting plane
algorithm is to prevent any axis of the feasible ellipsoid
from getting too small. Therefore, we establish a small
threshold τ (defined to be exponentially small in Defini-
tion 22 below), where we insist on finding a cut to the
ellipsoid that is orthogonal to any ellipsoid axes that are
already smaller than τ . The notation introduced in the
below definition will let us separately analyze the “thin”
and “non-thin” dimensions of the ellipsoid.

Definition 13. Given an ellipsoid, consider an orthonor-
mal basis parallel to its axes. Each semi-principal axis of
the ellipsoid whose length is less than τ , we call a “thin
dimension”, and the rest are “non-thin dimensions”.
Given a vector µ, we decompose it into µ = µ⊥ + µ>
where µ⊥ is non-zero only in the non-thin dimensions,
and µ> is non-zero only in the thin dimensions. Simi-
larly, given the identity matrix I , we decompose it into
I = I⊥ + I>.

We apply a scaling to the non-thin dimensions, scaling
the non-thin semi-principal axes of the ellipsoid to unit
vectors (making the ellipsoid a unit ball in the non-thin
dimensions). We keep the thin dimensions as they are.

We now present the cutting plane algorithm, Algo-
rithm 1, along with Proposition 14, our main result de-
scribing the structural properties needed for the ellipsoid
algorithm, yielding Theorem 10. We make use of con-
stants defined in Definition 22 that may be interpreted as
follows: k is a polynomial number of mesh points; η is the
mesh spacing; τ ′ is the minimum size of σ>, a Gaussian
width in the thin dimensions that is somewhat larger than
τ , the size of the ellipsoid in the thin dimensions; σ′⊥
is a Gaussian width in the ⊥ (non-thin) dimensions, of
inverse polynomial size; σ⊥ is polynomially smaller than
σ′⊥, and s is a polynomial quantity. S is a polynomial
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Algorithm 1 (Single cut with locked dimensions)
Take an orthonormal basis for the ellipsoid, as in
Definition 13. We apply an affine transformation so
that 1) the ellipsoid is centered at the origin, and 2)
the ellipsoid, when restricted to the ⊥ dimensions,
is the unit ball.

Input: An ellipsoid containing the star center, under
an affine transformation as above.
Output: Either 1) A cut direction d⊥ or 2) A
Gaussian G.

1) For each i ∈ [0, k]

1a. Evaluate f at S samples from the Gaus-
sian Gi of width τ ′ηi in the > dimensions
and width σ′⊥ in the ⊥ dimensions (that
is, Gi = N (0, σ′2⊥I⊥ + τ ′2η2iI>)).

1b. If at least 1− 31δ
32 fraction of the evalua-

tions are within ε′ of the minimum evalu-
ation (at this iteration i), then Return Gi
and Halt.

2) Otherwise, let z be the minimum of all samples
in Step 1.

3) Repeatedly sample the following, estimating gz
to within ± δ

32 each time

gz(µ
′
⊥, σ>) : µ′⊥ ← N (0, (σ′2⊥ − σ2

⊥)I⊥)

and (σ> = eX ;X ← Unif[log τ ′, logR/s])

3a. Accept the first pair (µ′⊥, σ>) such that
gz(µ

′
⊥, σ>) > 7

32δ.
4) Return the gradient d⊥ = ∇⊥[E[Lz(x) : x←
N (µ′⊥, σ

2
⊥I⊥ + σ2

>I>)]] (the derivative as
µ′⊥ changes, computed via Proposition 12).

number of samples defined in the proof of Proposition 14
(in the full version of this paper [14]).

The crucial function gz used in the algorithm is defined
as the difference P−(C+D), where P is the expression
on the right hand side of Proposition 16, and C and D are
the last two terms on the right hand side of Lemma 15,
motivated and discussed below.

Proposition 14 (Correctness of Algorithm 1). With negli-
gible probability of failure, Algorithm 1 either 1) returns
a Gaussian region G such that

P[f(x) ≤ f∗ + ε : x← G] ≥ 1− δ
or 2) returns a direction d⊥, restricted to the ⊥ dimen-
sions, such that when normalized to a unit vector d̂⊥, the
cut {x : x · d̂⊥ ≤ 1

3n} contains the global minimum.

We note that a special case of Algorithm 1 is when
there are no > (very thin, thinner than τ ) dimensions. This
applies, for example, at the beginning of the optimization.

B. Proof Sketches

The rest of this section outlines the key ideas in the
proof of Proposition 14.

The overall algorithm will hope to return a valid cut
by returning the gradient ∇⊥[E[Lz(x) : x ← G]] of
(the blurred logarithm of) f with respect to translation
in the ⊥ dimensions—which is in some sense the most
natural way to use the tools we have set up: blurring the
logarithm of f by a Gaussian G makes f differentiable;
and we seek a gradient that is restricted to the non-
thin (i.e., ⊥) dimensions because we seek a cut that will
“make progress” in the dimensions that are not already
thin. Recall that we can efficiently estimate such gradients
via Proposition 12. The crucial difficulty, however, is that
using the ⊥ gradient may not yield a valid cut, pointing in
a direction that may accidentally cut the star center from
the feasible region. See Figure 2 for an illustration of a
case where this gradient points in the opposite direction
from the intended signal, and “the ball rolls uphill.”
Therefore, our algorithmic task is to search for a pair
z and G such that the gradient ∇⊥[E[Lz(x) : x ← G]]
has a (detectably) positive component in the direction
away from the star center. To analyze this component
and bound it away from zero, we use the fundamental
decomposition illustrated in Figure 3, where the derivative
of (the logarithm of) the star-convex function f with
respect to scaling each point in the Gaussian G towards
the star center is expressed as the sum of four derivative
terms, where the first term is exactly the component of
the ⊥ gradient in the direction away from the star center,
and the remaining three derivatives are confounding terms
that we must measure and bound.

We refer to this four-way decomposition as the equation
“L = A + B + C + D”, where, the aim is to show
that A > 0; namely, A = L − (B + C + D) > 0.
Intuitively, L is large, as it describes the fact that, because
of star convexity, “moving towards the star center strongly
decreases the function value”. Essentially, we show that
L will be large in every case except when we have
already successfully found a Gaussian G that optimizes
the function in the desired sense (of Definition 9). In this
case, Algorithm 1 halts and returns such a Gaussian G in
Step 1b; otherwise, L is large—Ω(δ) as we will explain
in Section III-D—and it remains to bound the potential
negative effects of B + C + D.

For the second case, where L is large, our strategy is
to sample (in Step 3 of Algorithm 1) a Gaussian G for
which the confounding terms B + C + D are small in
expectation—namely, O(δ)—by leveraging the following
properties of each term: 1) B is always small because
of the thinness, τ , of the thin dimensions; 2) C can be
made small via a “Gaussian in Gaussian subsampling”
technique, where the value of C is small, in expectation,
with respect to minor random translations in the ⊥ di-
mensions; 3) D, the derivative with respect to expanding
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Figure 3: The derivative of (the logarithm of) the star-convex function f with respect to scaling each point in a Gaussian
G away from the star center, pictorially expressed as the sum of four terms, the derivative of the average over G of f
with respect to four different modifications of G: A) translating G away from the star center in the ⊥ directions; B)
translating G away from the star center in the > directions; C) scaling the variance of G in the ⊥ directions; and D)
scaling the variance of G in the > directions.

Note that the center (µ⊥, µ>) of the Gaussian is very close to (within τ of) x∗ in the > dimensions where the
ellipsoid algorithm has essentially already converged, but far from x∗ in the ⊥ dimensions; conversely, the Gaussian
G may have very large variance in the > dimensions (as depicted in the diagram), since in Step 3 of Algorithm 1, σ>
is drawn from a distribution that extends exponentially far outside the feasible region.

the variance of G in the > dimensions, cannot remain
large over an exponentially large range of variances, or
else the function value would blow up, and thus D is also
small in expectation, like the previous C term. Hence we
randomly sample a Gaussian from a product distribution
that simultaneously makes each of the terms C and D
small in expectation, (in Step 3 of Algorithm 1) and
test the resulting Gaussian for suitability by estimating
A = L − (B + C + D), halting when we are confident
that A� 0.

In the following subsections, we discuss the terms in
more detail. For the sake of clarity, our lemmas are stated
in the coordinate system where the star center is translated
to the origin. The point µ, namely the center of Gaussians
we consider, will be a point that is inverse polynomially
close to the center of our current ellipsoid.

C. The “A” Term:

The formal statement of the equation A = L − (B +
C + D), when expressed as L = A + B + C + D is the
following straightforward application of the multivariate
chain rule. See Figure 3 for an illustration.

Lemma 15.
d

dα
E
[
Lz(x) : x← N (αµ, α2σ2

⊥I⊥ + α2σ2
>I>)

]∣∣∣∣
α=1

=
d

dα
E
[
Lz(x) : x← N (αµ⊥ + µ>, σ

2
⊥I⊥ + σ2

>I>)
]∣∣∣∣
α=1

+
d

dα
E
[
Lz(x) : x← N (µ⊥ + αµ>, σ

2
⊥I⊥ + σ2

>I>)
]∣∣∣∣
α=1

+
d

dα
E
[
Lz(x) : x← N (µ⊥ + µ>, α

2σ2
⊥I⊥ + σ2

>I>)
]∣∣∣∣
α=1

+
d

dα
E
[
Lz(x) : x← N (µ⊥ + µ>, σ

2
⊥I⊥ + α2σ2

>I>)
]∣∣∣∣
α=1

D. The “L” Term Inequality “L ≥ P”:

The following proposition formalizes our lower bound
for the “L” term, and is effectively the main structural

proposition we leverage of star-convex functions for opti-
mization. For compactness, we later refer to the following
inequality as L ≥ P.

Proposition 16. For a star-convex function f and z ≥ f∗:

d

dα
E
[
Lz(x) : x← N (αµ, α2σ2

⊥I⊥ + α2σ2
>I>)

]∣∣∣∣
α=1

≥ P[f(x)− z ∈ (ε′, 2B) : x← N (µ, σ2
⊥I⊥ + σ2

>I>)]

As mentioned before, the intuition behind the lower
bound is that L is a derivative moving every point away
from the star center. For a star-convex function f , this
derivative must be high unless most of the points in the
Gaussian are already close to the global optimum. Recall
that the function Lz(x) (from Definition 11) is clamped
when f(x) − z is outside the interval (ε′, 2B), and thus
our bound for the derivative L depends on—and in fact is
equal to—the probability that f(x)− z is “not clamped”.
Thus P is the probability that f(x)− z is in the interval
(ε′, 2B), yielding the convenient bound L ≥ P.

When the probability P (and hence L) is large, the
bounds we outline in the following sections (showing that
B+C+D is small) let us conclude A = L− (B+C+
D)� 0 and allow us to output a valid cut for our ellip-
soid, as described above. However, when the probability
P is small—say, P ≤ 31

32δ—we need to argue that in
fact, we have already found a Gaussian G that optimizes
the function f in the sense of Definition 9. Consider the
distribution of {f(x) : x← G} in the case that P ≤ 31

32δ,
bounding the probability that f(x) − z ∈ (ε′, 2B). The
crucial observation is that f(x)− z is extremely unlikely
to be larger than 2B, because B was our global bound
for the absolute value of any function evaluation within
a giant ball around the origin; and further, f(x) − z is
extremely unlikely to be negative, as z was computed
to be the minimum of a large number of samples of
f(x) across a range of Gaussians that cover G in a δ-net
(described in Step 1a of Algorithm 1), and we are unlikely
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to find a better sample now. Thus P ≤ 31
32δ implies that

P[f(x) ∈ [z, z + ε′] : x← G] > 1− δ.
Hence, when P is small, the function f is “flat” to

within ε′ on a 1− δ fraction of the points in Gaussian G.
The following lemma says that for star-convex functions,
such a large, flat Gaussian G must be close to the global
optimum in function value, and we may in fact return G
as the overall solution to the optimization problem.

Lemma 17. Given a star-convex function f with global
optimum at the origin, if for some location µ and number
z we have P[f(x) ∈ [z, z + ε′] : x ← N (µ, I)] > 0.95
then the function value at the global optimum, f∗ = f(0),
satisfies f∗ ≥ z − 6ε′max{||µ||2,

√
n}.

The above lemma is useful when δ ≤ 0.05; we may
easily reduce larger δ to 0.05 and only improve the
optimization result. We choose ε′ in Definition 22 poly-
nomially smaller than ε so that, for the Gaussians consid-
ered in Algorithm 1, the optimization error promised by
Lemma 17 is bounded as ε′ + 6ε′max{||µ||2,

√
n} ≤ ε.

E. The “B” Term, B ≤ 1
16δ:

In general, our aim is to bound B + C + D ≤ 1
4δ (in

expectation). In this section, we discuss the term B, which
is the derivative of the blurred logarithm with respect
to translation in the exponentially thin (>) directions.
The expression for B, that is the left hand side of
the inequality in Lemma 18 below, is defined as the α
derivative (evaluated at α = 1) of an expression where
α only appears in the term αµ>, and thus this derivative
will naturally be proportional to ||µ>||2, the distance from
the star center to the Gaussian mean in the > dimensions.
By construction, this distance will always be less than the
exponentially small quantity τ , implying that the overall
derivative defining B will also be small, as desired. (More
technically, B is bounded by a quantity proportional to
the ratio ||µ>||2

σ>
, and we choose σ> to be always Ω( 1

δ )
greater than τ in Step 3 of Algorithm 1, by the choice
of parameters in Definition 22.) Formally, we have the
following lemma.

Lemma 18. For all z, µ⊥, σ⊥ and all ||µ>||2 ≤ τ and
σ> ≥ τ ′ we have:∣∣∣∣ d

dα
E
[
Lz(x) : x← N (µ⊥ + αµ>, σ

2
⊥I⊥ + σ2

>I>)
]∣∣∣∣
α=1

∣∣∣∣
≤ δ

16

F. The “C” Term, Eµ′
⊥

[C] ≤ 1
8δ:

The bound for the term C (and later, D) is less
straightforward than that for B, in part because it will
only hold in expectation. We first show in Lemma 19
the crude bound C ≤

√
2n log

(
2B
ε′

)
, whose right hand

side is unfortunately somewhat larger than 1, but which
holds in all cases, and which we leverage below to yield
a tighter bound, in expectation, over a carefully chosen

distribution. Lemma 19 may be thought of as a general
“reverse isoperimetric inequality”, which relies on no
structural properties of f or Lz(x) except the ambient
dimension, which we denote as dim(⊥) ≤ n, and the fact
that Lz(x) maps to a bounded interval of size log

(
2B
ε′

)
.

Lemma 19. For any z, µ, σ⊥ and σ> we have the
following inequality:∣∣∣∣ d

dα
E
[
Lz(x) : x← N (µ, α2σ2

⊥I⊥ + σ2
>I>)

]∣∣∣∣
α=1

∣∣∣∣
≤
√

2 dim(⊥) log

(
2B

ε′

)
≤
√

2n log

(
2B

ε′

)
where dim(⊥) is the number of ⊥ dimensions.

Recall our goal of showing that, in expectation over
some distribution of G, we may bound E[C] � δ,
which is unfortunately rather smaller than the quantity√

2n log
(

2B
ε′

)
shown by Lemma 19.

Our technique is to consider a certain relationship
between independent Gaussian random variables: adding
samples from two independent Gaussians yields a sample
from a new Gaussian whose mean is the total mean of the
two Gaussians and whose variance is the total variance
of the two Gaussians. Phrased differently, if we draw a
Gaussian sample µ′⊥ ← N (µ⊥, (σ

′2
⊥ − σ2

⊥)I⊥), and then
use this random variable µ′⊥ as the mean of a second
Gaussian x← Gµ′

⊥

∆
= N (µ′⊥+µ>, σ

2
⊥I⊥+σ2

>I>), then a
sample x drawn from this second Gaussian will itself have
a Gaussian distribution x ∼ G′ ∆

= N (µ⊥ + µ>, σ
′2
⊥I⊥ +

σ2
>I>) whose variance is the total of the previous two

variances.
Crucially, we ask, for the above distribution of µ′⊥, how

does the value of C evaluated on Gaussian G′ compare
to the expected value of C on Gaussian Gµ′

⊥
? By the

above argument, the distributions of points x on which
the derivative d

dαE[Lz(x)] is computed are identical in the
two cases. The below lemma states that, in fact, the value
of C on Gaussian G′ is exactly equal to the expectation
of C on Gaussian Gµ′

⊥
, times a multiplicative factor

of
(
σ⊥
σ′
⊥

)2

; we conveniently choose these parameters in
Definition 22 to make the resulting bound small enough
when multiplied by the bound C(G′) ≤

√
2n log

(
2B
ε′

)
from Lemma 19.1

Explicitly, defining for the moment the notation
C(µ⊥, σ⊥) to denote the C term

d

dα
E
[
Lz(x) : x← N (µ⊥ + µ>, α

2σ2
⊥I⊥ + σ2

>I>)
]∣∣∣∣
α=1

with the remaining parameters µ>, σ>, and z fixed, we
have the following lemma.

1It is important to be able to choose parameters so that the ratio σ⊥
σ′
⊥

is inverse polynomial instead of inverse exponential, as the number of
samples required by Proposition 12 to accurately estimate gradients in
the ⊥ dimensions is inversely proportional to the Gaussian variance σ⊥.
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Lemma 20. For all µ⊥, and σ⊥ < σ′⊥, we have:

E
[
C(µ′⊥, σ⊥) : µ′⊥ ← N (µ⊥, (σ

′2
⊥ − σ2

⊥)I⊥)
]

=

(
σ⊥
σ′⊥

)2

C(µ⊥, σ
′
⊥) ≤ δ

8

This sampling, µ′⊥ ← N (µ⊥, (σ
′2
⊥−σ2

⊥)I⊥), is exactly
what occurs in Step 3 of Algorithm 1.

The explanation for the
(
σ⊥
σ′
⊥

)2

term is straightforward:
C(µ⊥, σ⊥) is defined as the α derivative (evaluated at
α = 1) of an expression where α only appears in the
term α2σ2

⊥, and thus this derivative will naturally be
proportional to σ2

⊥, and changing from σ′⊥ on the right
hand side to σ⊥ on the left hand side induces an overall
scaling of

(
σ⊥
σ′
⊥

)2

, as claimed.

G. The “D” Term, Eσ> [D] ≤ 1
16δ:

In the last section, we gave a distribution over Gaus-
sians which, on average, takes a small value for the term
C. Analogously, we show in the following lemma that
the term D on average takes a small value when σ> is
sampled from an appropriate loguniform distribution. It is
important to note that the two distributions are on different
parameters (µ′⊥ for the term C and σ> for the term D),
and the bounds on the expectations individually hold for
any value taken by the other parameter. Therefore, we are
able to take the product distribution on the two parameters
and claim that the expectation of C + D is small.

As above, we temporarily define a convenient notation
for the D term, letting D(σ>) equal

d

dα
E
[
Lz(x) : x← N (µ⊥ + µ>, σ

2
⊥I⊥ + α2σ2

>I>)
]∣∣∣∣
α=1

Lemma 21. For all z, µ, σ⊥,

E
[
D(σ>) :

(
σ> = eX ;X ← Unif[log τ ′, logR/s]

)]
≤ log 2B − log ε′

log(R/s)− log τ ′
=

δ

16

The equality is by the choice of τ ′ in Definition 22.
The proof of this lemma is surprisingly straightforward,

following directly from the fundamental theorem of cal-
culus and the boundedness of Lz(x). Explicitly, the α
derivative in the definition of D(σ>), when reweighted
by the pdf of the distribution of σ>, becomes a deriva-
tive with respect to σ>; by the fundamental theorem
of calculus, the integral (expectation) over σ> and the
derivative with respect to σ> “cancel”. What remains
is proportional to the change in value of the blurred
logarithm Lz between σ> = τ ′ and σ> = R/s; since
Lz maps to the interval (log ε′, log 2B), the bound of the
lemma is thus proportional to log 2B− log ε′, as claimed.

The denominator in the lemma, log(R/s)− log τ ′ is a
normalizing constant from the probability distribution of
σ>, and the usefulness of the lemma results from our abil-
ity to choose τ ′ exponentially small—in Definition 22—
so that the overall ratio reaches our target of δ

16 .

H. Parameters

The parameters we have been using above are:

Definition 22. Let

s =
√
n

(
1 +

√
4
3

√
n+ 1

δ
+ log BR

εF

)
; η = e

δ2

8n

σ′⊥ = 1
3ns

; σ⊥ = σ′⊥

√
δ/8

log 2B−log ε′

√
1
2n

; ε′ = ε
(
1 + 12

σ′
⊥

)−1

τ ′ = R
s

(
2B
ε′

)− 16
δ ; τ = τ ′ δ

16
· 1

log( 2B
ε′ )

√
π

2
√
2
; k =

log( 2B
ε′ )

16
δ

log η

I. The Algorithm, in Whole

With the tools from the previous subsections in hand,
we now walk through Algorithm 1, outlining its proof of
correctness.

Proposition 14 (Correctness of Algorithm 1). With negli-
gible probability of failure, Algorithm 1 either 1) returns
a Gaussian region G such that

P[f(x) ≤ f∗ + ε : x← G] ≥ 1− δ
or 2) returns a direction d⊥, restricted to the ⊥ dimen-
sions, such that when normalized to a unit vector d̂⊥, the
cut {x : x · d̂⊥ ≤ 1

3n} contains the global minimum.

Recall that we have been working since Section III-B
with the decomposition A = L−(B+C+D), an identity
expressing L as the sum of four derivatives A + B +
C + D via the multivariate chain rule (see Lemma 15),
as illustrated in Figure 3; we add to this the inequality
L ≥ P of Proposition 16, relating the derivative L to a
probability P. Our goal is to bound A positively away
from 0, since the sign of the term A records whether
the cut we make includes the star center. In the preceding
subsections we have assembled algorithmic and analytical
tools to help us bound each term of this decomposition.

Algorithm 1 starts in Step 1 by sampling within a
fine mesh of different Gaussians, and checking if the
function values within any of them are “flat” enough that
Lemma 17 lets us conclude that we have already found an
optimum region of the function. Comparing the probabil-
ities computed in Lemma 17 and Proposition 16 (under
an affine transformation so the Gaussian regions being
sampled correspond), we see that Lemma 17 measures the
probability that f(x) ∈ [z, z + ε′], while Proposition 16
measures the probability that f(x) ∈ (z + ε′, z + 2B).
Collectively, these two intervals disjointly cover the entire
interval [z, z+2B), which, as explained in Section III-D,
essentially contains the entire range of function eval-
uations (with high probability). Thus the probabilities
computed by Lemma 17 and Proposition 16 are essen-
tially complementary, yielding complementary paths to
victory: either the probability computed by Lemma 17
is small enough for some Gaussian examined in Step 1
that we can terminate the optimization by outputting that
Gaussian, or the complementary probability P is large
for all Gaussians, yielding, by the bound L ≥ P of
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Proposition 16, that we always have a satisfactorily large
bound for the elusive expression L.

In the case that Algorithm 1 does not halt in Step 1,
we record in Step 2 as z the minimum function value
observed so far; the fine mesh of Gaussians in Step 1a
is set up so that it is a δ-net, essentially “covering” all
distributions sampled in Step 3, so that z can be thought
of as a good approximate lower bound for any function
evaluation seen in Step 3.

Next, in Step 3, we repeatedly sample new Gaussians
on which we evaluate gz , defined as P − (C + D),
and halt when the evaluation is sufficiently positive. This
expression P− (C+D) is a proxy for P−(B+C+D),
where we omit B because of the convenient bound of
Lemma 18, that B ≤ δ

16 , where δ is our desired overall
error bound.

The crucial technique in Step 3 is sampling µ′⊥ and σ>
from carefully chosen distributions so that the expected
value of each of C and D is a small multiple of δ,
by Lemmas 20 and 21. Explicitly, Lemma 20 says that
the expected value of the C(µ′⊥, σ⊥) term is bounded
by δ

8 , when µ′⊥ is drawn from a Gaussian of variance
σ′2⊥ − σ2

⊥. Lemma 21 says that the expected value of the
D(σ>) term is bounded by δ

16 when σ> is drawn from the
loguniform distribution of the algorithm (σ> = eX ;X ←
Unif[log τ ′, logR/s]).

As for the P term, it is large on each of the Gaussians
examined in Step 1a, of variance σ′2⊥ in the ⊥ dimen-
sions; however, in Step 3 we instead subsample smaller
Gaussians of variance σ2

⊥, with centers chosen from a
Gaussian of variance σ′2⊥ − σ2

⊥. Thus the bounds on P
from Step 1a do not hold for individual Gaussians in Step
3, but instead hold on average for each sample in Step 3.
Namely, over the choice of Gaussians considered in Step
3, the expected value of P is Ω(δ).

Adding up all three bounds yields that, over the ran-
dom Gaussian chosen in Step 3, the expected value of
P−(C+D) will be ≥ 1

2δ. Because of reasonable bounds
on the range of each of P, C, and D, Markov’s inequality
implies that, with at least inverse polynomial probability,
a given random Gaussian will have P− (C + D) ≥ 1

4δ.
Subtracting the bound B ≤ 1

16δ, and accounting for in-
verse polynomial sampling errors (via Proposition 12) still
leaves P− (B+C+D) = Ω(δ), implying, since L ≥ P
(Proposition 16), that A = L−(B+C+D) = Ω(δ)� 0,
and thus the cut returned in Step 4 of Algorithm 1 will
contain the star center, as desired.
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