Distribution Free Evolvability of Polynomial Functions over
all Convex Loss Functions

*
Paul Valiant
UC Berkeley
Berkeley, California
pvaliant@gmail.com

ABSTRACT

We formulate a notion of evolvability for functions with do-
main and range that are real-valued vectors, a compelling
way of expressing many natural biological processes. We
show that linear and fixed-degree polynomial functions are
evolvable in the following dually robust sense: There is a
single evolution algorithm that for all convex loss functions
converges for all distributions.

It is possible that such dually robust results can be achieved
by simpler and more natural evolution algorithms. In the
second part of the paper we introduce a simple and natural
algorithm that we call “wide-scale random noise” and prove
a corresponding result for the Lo metric. We conjecture that
the algorithm works for more general classes of metrics.

1. INTRODUCTION

Since the introduction of the evolvability model by L.
Valiant in [11], significant work has been done to show both
the power and the robustness to modeling variations of this
computational framework for investigating how complexity
can arise in a fixed environment [2, 3, 4, 7, 10]. In this
work we present two complementary constructions, which
extend this body of work in a new and very natural direc-
tion: while previous papers studied evolvability of Boolean
functions (from {0,1}" — {—1,1}) we here consider func-
tions from R™ — R™. Many of the functions that evolve
in biology, for example, “how should the concentration of
protein A in this cell vary in response to the concentrations
of proteins B through Z7”, might be much more naturally
represented as real functions as opposed to Boolean func-
tions. Of course, real functions, when restricted to Boolean
domain and range, become Boolean functions, so in some
sense this model is more general than the original Boolean
model of evolvability.

We first define the notion of evolvability over the reals,
and then proceed in two directions. The first direction con-

*Research partially supported by NSF grant CC-0964033
and by a Google University Research Award

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITCS’12, January 8-10, Cambridge, Massachusetts, USA.

Copyright 2012 ACM 978-1-4503-1115-1 ...$10.00.

sists of an adaptation of Feldman’s results on evolvabil-
ity from [4] to our setting, which, because of the differ-
ent setting, immediately yields results of a somewhat differ-
ent nature: evolvability can simulate arbitrary polynomial-
time optimization algorithms that only require approzimate
access to the function being optimized. In the terminol-
ogy of Lovasz [9], this is weak optimization. We show that
his construction of polynomial time weak convex optimiza-
tion can be leveraged to yield evolution algorithms for lin-
ear functions, and further, fixed-degree polynomials, in a
distribution-independent sense, for any convex loss function—
including a fortiori the commonly considered linear and
quadratic (L1 and Ls-squared) loss functions.

For the original Boolean framework of evolvability, Feld-
man showed that, as long as the underlying distribution is
known, then the class SQ (statistical queries) defined by
Kearns in [8] exactly characterizes the classes of evolvable
functions [2]. SQ is both a powerful and natural framework,
and seems to capture most of the power of PAC learning.
However, the assumption that the evolution algorithm must
know the underlying distribution is decidedly unnatural, as
one would hope for evolution to function across a broad
range of potentially quite intricate and varying distributions
of conditions for its creatures. In subsequent work, Feldman
showed that if one reinterprets the Boolean model by al-
lowing hypotheses that take real values (even though the
hypotheses are then compared, via a loss function, to tar-
get values that are Boolean), then if the performance metric
is mon-linear—that is, essentially anything except the cor-
relation metric (the L; metric restricted to a small enough
region so that it is a linear function, instead of the usual
piecewise linear)—one can take advantage of a “kink” in it
to, in fact, evolve everything in SQ (Theorem 4.3 of [4]). In
a sense, by changing part of the Boolean model to allow for
real values, Feldman circumvents an apparent limitation of
the purely Boolean evolution setting.

In this current work we consider all elements of the evolv-
ability model to be real instead of Boolean. The results we
derive are of a rather different form from those in the (par-
tially) Boolean settings previously considered. We show that
there exists an algorithm that evolves linear and fixed-degree
polynomial functions over the reals, for all distributions and
all convex metrics (including both the L; and Ly metrics).

While these results demonstrate the power of the real
evolvability framework, they come at the expense of a cer-
tain unnaturalness of the underlying evolution algorithm.
We balance this out in the second part of this paper by con-
sidering perhaps the simplest and most natural algorithm

that could be hoped to work, and showing that it in fact
can reproduce a significant portion of these results, albeit
less efficiently. In a generation of this algorithm, a par-
ent produces a polynomial number of nearby children, each
chosen in a uniformly and independently random direction.
“Survival of the fittest” turns this into a kind of “steepest de-
scent” strategy, which enables us to prove that, for quadratic
loss functions, constant progress is made in each generation,
which will rapidly lead to the optimum.

This algorithm, which we call “wide-scale random noise”
to emphasize its simple unstructured nature, has in fact
been found in simulations to converge rapidly in many cases
beyond that of the quadratic loss function, though how it
achieves this convergence seems rather different than its
provable behavior in the quadratic case. In particular, while
for quadratic loss functions, the algorithm provably consis-
tently produces offspring which perform better than the par-
ent, leading to a guaranteed improvement, in contrast for the
case of the L; loss function the ability to evolve to a descen-
dent whose performance is worse than that of the parent
seems crucial for efficient progress. It would seem coun-
terintuitive that such “backtracking” would help in a convex
landscape with no spurious local minima. However, this was
exactly the effect found in a paper on simulated annealing
that also considered a very similar L; optimization setting
[6]. It would appear that both evolvability and simulated
annealing seem effective in unexpected cases, and one might
hope that new analysis of one might shed light on the other.?

2. DEFINITIONS

We adapt much of our notation from [4].

We note a concrete example to motivate the following defi-
nitions: consider the task of trying to evolve linear functions.
Namely, there is an unknown linear function f : R™ — R™
refered to as the target function, and an unknown distri-
bution D over R™ from which “nature” draws test cases to
evaluate the performance of a creature. Creatures are distin-
guished by the hypothesis encoded in their genome, namely
a function h : R®™ — R™. The creature’s “life” consists of
being presented a set of samples from the distribution D;
on each sample, it evaluates h and is penalized by nature
according to how its answers differ from the target function
f. To make this precise, we must introduce the notion of a
loss function.

DEFINITION 1. For hypotheses having range R™, a loss
function is a nonnegative function L : R™ x R™ — [0, 00)
such that for any x € R™, L(z,z) = 0.

DEFINITION 2. Given a loss function L and a target func-
tion f: R™ — R™, the performance of a hypothesis function
h: R™ — R™ relative to a distribution D (over R™) is de-
fined as LPerf; p(h) = Ezp[L(f(z), h(x))]. Given a posi-

tive integer s, the s-sample empirical performance LPerf} p(h)

!Feldman has defined “monotone” evolvability to be the re-
striction where each generation’s performance must be at
least that of the previous generation, in part inspired by
a desire to consider evolution algorithms that seem more
“natural”. Monotone evolvability has been shown in a
distribution-independent setting for point functions under
the Li metric [4], conjunctions under the Lo metric [3],
and very recently, for linear threshold functions with “non-
negligible margin”, for Ls and related metrics [5].

is defined to be the random variable resulting from drawing s
samples z1, . .., zs < D and evaluating 2 35 L(f(z:), h(z:)).

In a manner which will be made precise shortly, evolution
picks a hypothesis h which, empirically, is chosen to have
small loss.

In general, instead of considering the class of linear func-
tions, we consider the evolvability of a concept class C, con-
sisting of a subset of the functions f : R® — R™. And,
as there may be some pathological distributions that bar
progress, we may restrict ourselves to a class D of distribu-
tions over R™.

In particular, working over the real numbers introduces
problems of scale that are not present in the Boolean case.
For example, since the “feedback” that nature gives the evo-
lution algorithm in any generation is simply the choice of
which, of a bounded (polynomial) number of potential chil-
dren, survives to the next generation, there is no way to
evolve in bounded time a good approximation to an un-
bounded real number. It is thus important to work with
concept classes C' that are in some sense bounded. A re-
lated issue arises with the distribution class D. Suppose we
are working with the L; loss function, L(z,y) = |z —y|, and
suppose D is such that, with probability 1—7, D samples the
point 0, and with probability 7 samples a point more than
%-far from the origin. If 7 is super-polynomially small, then
evolution will likely never see any samples other than 0, but
meanwhile, the expected loss of hypotheses is unknown and
potentially huge. Thus D (and L) must also be reasonably
bounded. We make precise the kinds of bounds we use in
the particular theorems.

We now define the components of evolvability.

DEFINITION 3 (DEFINITION 3.6 IN [4]). Given parame-
ter ¢ > 0, a mutation algorithm A is defined by a pair
(R, M) where

e R is a representation class of functions R™ — R™.

e M is a randomized polynomial (inn, m, and 1/¢) time
Turing machine that, given r € R and 1/¢ as inputs
outputs a representation r € R with probability that
we denote Pra(r,r1). The set of representations that
can be output by M (r, €) is referred to as the neighbor-
hood of r for € and is denoted by Neigh 4(r,¢€).

As far as the representation class, recall that the hypoth-
esis functions are ultimately stored as the “genomes” of our
creatures, and thus are represented as strings over a finite
alphabet. For the results of Section 3 we explicitly represent
functions as binary strings, though the class of functions rep-
resented by the scheme of Section 3 is somewhat artificial.
In Section 4 we consider genomes that can represent the en-
tire class of fixed-degree polynomial functions, and implicitly
consider these polynomials as being represented by approx-
imately representing each real-valued coefficient as a short
string in the genome—only limited precision is required.

The mutation algorithm is the source of potential genomes
for the next generation; which one survives is determined
by the selection rule, an efficiently-implementable algorithm
that we imagine nature running, defined as follows (from
Definition 3.7 of [4]).

DEFINITION 4. For a loss function L, tolerance t, candi-

date pool size p, and sample size s, the selection rule SelNB[L, ¢, p, s]

is an algorithm such that for any function f, distribution
D, mutation algorithm A = (R, M), representation v € R
and accuracy €, SeINB[L,t,p,s](f, D, A,r) outputs a ran-
dom wvariable that takes a value r1 determined as follows.
First run M(r,e) p times and let Z be the set of repre-
sentations obtained. For r' € Z, let Prz(r') be the rela-
tive frequency with which ' was generated among the p ob-
served representations. For each r' € Z U {r}, compute an
empirical value of performance v(r') < LPerf} p(r'). Let
Bene(Z) denote the set of empirically beneficial mutations,
{r' € Z|v(r") < v(r) —t} and Neut(Z) denote the set of
empirically neutral mutations, {r' € Z| |v(r") —v(r)| < t}.
Then

(i) If Bene(Z) # () then output a random ri € Bene(Z)
distributed with relative probabilities according to Pryz.

(i) If Bene(Z) = 0 and Neut(Z) # 0 then output a ran-
dom r1 € Neut(Z) distributed with relative probabilities
according to Prz.

(i1) If Neut(Z) U Bene(Z) = () then output L.

The situation where all children perform noticeably worse
than the parent, in which case the selection rule outputs “_L”
is viewed as unnatural, and we view such a case as aborting.
Otherwise, if for a concept class (and class of distributions)
there exists a mutation algorithm that, under selection rule
SelNB, efficiently converges to any target function in the
class, then we say that the concept class is evolvable:

DEFINITION 5 (SEE DEFINITION 3.3 OF [4]). A concept
class C, distribution class D, and loss function L are said
to be evolvable if there exists a mutation algorithm A =
(R, M), polynomials p(n,m, %), s(n,m, %), a poly-bounded
tolerance t(r,n,m, %) and a polynomial number of genera-
tions g(n,m, L) such that for all n,m, target functions f €
C, distributions D € D, € > 0, and any initial genome ro €
R, with probability at least 1 — € the random sequence defined

by r; <— SeINB[L, t, p, s](f, D, A, ri—1) will have LPerfs p(ry) <

€.

(We note that the sign convention most natural for the real
case is opposite that used in previous work for the Boolean
case, and in particular, a “perfect organism” in our setting

has LPerf = 0 while in [4] would have LPerf = 1.)

3. EVOLVABILITY AS “WEAK” OPTIMIZA -

TION

The idea at the center of this section is that evolvability
can reproduce any result efficiently obtainable from approz-
imate oracle access to LPerf. In this section we demonstrate
this connection, which lets us then leverage the entire field
of optimization algorithms towards our goal of evolvability,
yielding immediate fruits at the end of this section.

As noted in the introduction, we prove this connection
via an adaptation of the analogous result from the Boolean
case—which appears as Theorem 5.1 in [4]. The main hurdle
in both cases is showing that the selection rule SeINB can
efficiently simulate approximate responses to questions of
the form: “is LPerfs p(h) greater than a threshold 67” In
particular, this will be achieved in a single generation of
evolution.

One difference between the real case and the Boolean
case—or, more specifically, between how LPerf is defined
here versus in [4]—is that in our case we have no functions
whose performance we know a priori, while in their case, the
Boolean function that returns an independent unbiased coin
flip is guaranteed to have performance 0. Without such a
reference point, evolvability has no hope of addressing such
threshold queries. In lieu of an absolute benchmark like that,
we instead adopt a relative benchmark, comparing perfor-
mance always against LPerf(0).? Namely, our evolution al-
gorithm will function as though it had approximate oracle
access to LPerf(-) — LPerf(0).

We give an overview of the intuitive idea for the con-
struction to approximately answer, in a single generation,
queries of the form “is LPerf(h) — LPerf(0) > 07”. We as-
sume genomes may represent probabilistic functions, and,
moreover, assume as a sort of induction hypothesis that the
parent’s genome defines a function that is the 0 function
a “large” fraction of the time. Letting ¢ = q(n,m, 1) be a
bound on the total number of threshold queries we would
ever need to resolve, we will guarantee going forward that
the difference between the parent’s probability of expressing
the O function and any child’s is at most L.

Denoting the parent’s genome by r, its performance is
LPerf} p(r), and for a given tolerance ¢, the selection rule
SeINB treats children very differently according to whether
their observed loss is within ¢ of this (neutral mutations),
more than ¢ lower than this (beneficial mutations), or more
than ¢ higher than this and doomed to be culled. Since our
goal is to make the selection rule have a sharp threshold
near where LPerf(h) — LPerf(0) =~ 0, and the selection rule
already has these natural sharp thresholds, the natural ap-
proach, as in [4], is to make use of these thresholds for our
purposes, having r produce two types of children, r¢ that
outputs identically to the parent r, and r; that outputs the
function 0 with probability g less than its parent and h with
probability % more than its parent.

The details of the proof follow the ideas in the appendix
of [4] (specifically Theorem A.3) and are given below.

To state the result more cleanly, we introduce “weak” op-
timization terminology adapted from [9]:

DEFINITION 6. A u-weak evaluation oracle for a function
f:R¥ = R is an oracle that on input = returns a number a
such that | f(z) — a| < p.

DEFINITION 7. The v-weak function minimization prob-
lem for a function f : R¥ — R is that of finding an = such
that Yy € R*, f(y) > f(z) —v.

DEFINITION 8. A class of functions is weakly optimizable
if there exists a randomized polynomial time oracle algorithm
A and a polynomial p = pu(v, %) such that for every v > 0,
and any function f : R® — R in the class, A solves the v-
weak function minimization problem when given access to a
w(v, %)-weak evaluation oracle for f.

2We note that here and for the rest of the paper, we use no
special properties of the 0 function, and indeed any arbitrary
function from the hypothesis class could be substituted here
and throughout the paper. We use 0 simply to avoid intro-
ducing further notation. A more meticulous reader might
mentally substitute an arbitrarily chosen element of the hy-
pothesis class for 0 as it appears in the results below, to
handle the odd but perfectly legitimate case that 0 is not in
the hypothesis class of Theorem 1.

THEOREM 1. If L is a loss function, C is a concept class,
and D is a distribution class such that there is a polynomial
b(n,m) that bounds L(fi(x), f2(x)) for any fi, f2 € C and
any x in the support of a distribution in D, and such that
the class of functions LPerfy p(h) — LPerf; p(0) indezed by
f € C,D € D and evaluated on h € C is weakly optimizable,
then (C,D, L) is evolvable.

We will find it convenient to first prove this result in a
restricted model referred to as “evolvability with initializa-
tion”, where Definition 5 is modified so that instead of as-
suming evolution starts with an arbitrary genome ro € R, we
instead assume a fixed starting configuration. (See Theorem
A1 of [4].)

LEMMA 1. Theorem 1 holds under the restricted evolv-
ability with initialization model where Definition 5 is changed
by replacing the phrase “any initial genome ro € R” by “ini-
tial genome ro = %”.

ProOOF. By assumption, there is a randomized polyno-
mial time algorithm and a polynomial u = u(v, k) such that
for every v > 0 and any f € C and D € D, the algo-
rithm, when given p-weak oracle access to LPerfy p(-) —
LPerf; p(0), will return a hypothesis h € C that is within
v of optimal. Denoting by T a (polynomial) bound on the
runtime of this algorithm, we note that we may equivalently
reexpress it as a deterministic algorithm that is given as
auxiliary input a T-bit uniformly random string. Our goal
will be to show that we can simulate the operation of this
algorithm in the evolvability framework

As a first step, we will replace the weak evaluation oracle
with a simpler oracle, the weak comparison oracle.

The p-weak comparison oracle for a function g
will, on given an input « and a threshold 6, return
1if g(x) >0+ p, 0if g(x) < 6 — p, and either 1
or 0 otherwise.

We note that since by assumption, b bounds the value of
the function in question, that is, LPerfs p(-) — LPerf; p(0),
we have that log £ bounds the number of rounds of binary
search we need to p-weakly approximate the value of the
function via weak comparison queries. Denote this bound by
[, which since b and p are polynomial, is hence polynomially
bounded itself. We note, as will be important later, that
such a binary search can be designed so that none of the
thresholds queried ever have magnitude less than p.

We have thus trivially shown that there is a deterministic
algorithm that, when given as an auxiliary input a T-bit
uniformly random string, and given weak comparison oracle
access to LPerfy p(-) — LPerfs p(0), will return a v-weak
minimum within T8 steps. We denote this algorithm A,
and for the sake of concreteness, assume that after T3 steps
have passed, it halts and outputs a hypothesis, no matter
what.

We now turn to the task of expressing algorithm A in
the evolvability framework. Recall that by assumption, the
initial genome is uniquely fixed as “x”. We thus ask the mu-
tation algorithm to, upon seeing the initial genome, produce
children whose genome encodes T bits uniformly generated
at random. In each subsequent stage of mutation, these bits
will be preserved in the genome; in this manner, future gen-
erations will have access to this randomly generated T-bit
string, as desired.

All that remains is to describe how to simulate weak com-
parison queries. We will simulate one query per generation,
with the result of the query being stored in the genome for
the duration. Thus at time 0 the genome will consist of
“x” at time 1, of a T-bit random string, and at time 1 + j
we aim for the genome to consist of the concatenation of
this string with a j-bit string that stores the results of the
first j weak comparison queries as specified by the algorithm
A under simulation. For each such genome, we must spec-
ify how the corresponding creature responds to inputs. For
the genome “x” and any genome consisting solely of a T-bit
string, we return the 0 vector. Otherwise, let R be this T-bit
random string, and let z be the remainder of the genome,
whose length we denote by j, and whose ith bit we denote
z;. Recall the algorithm A whose results we are trying to
reproduce. Iteratively simulate A starting with string R,
and let (hi,01) be the first query sent to the weak compar-
ison oracle; interpreting z1 as the result of this query, let
(h2, 62) be the next query asked by A, and so on. We thus
derive (hs,0;) for each i € {0,...,5 — 1}, all computed in
polynomial time. We thus define the output behavior of our
genome on input z € R™: for each i € {0,...,7 — 1} such
that z; = 1, output hi(x) with probability IGH%T[? and other-
wise output the vector 0. Since |6;| is guaranteed to be at
least p by construction, the sum of the probabilities over the
(up to) T8 generations involved will never exceed 1.

A complete specification of the scheme requires only that
we now specify the mutation probabilities. Namely, given
the (random) string R of length T and a string z of length
j, where we may determine that (hjt1,60;4+1) is the next
query to be simulated, we must choose with what probability
the mutation algorithm M should output Tz0 as opposed
to Tz1. Very simply, if 6;11 < 0 then output 720 with
probability 1 — A and T'z1 with probability A, otherwise
output T'z1 with probability 1 — A and T'20 with probability
A, where A = ;—g is chosen so that in g (our target number of
generations) rounds of coin flips, a A-biased coin will never
land heads, except with probability somewhat less than e.

We choose the tolerance parameter ¢, which specifies the
width of the “neutral” zone of performance, to equal #5.
We choose s, the number of samples taken to evaluate the
empirical performance, to be large enough so that with prob-
ability > 1— £ the empirical estimates are never off by more
than ¢4 over the entire course of g generations. We analyze
the scheme in two cases, noting that, if we denote the ex-
pected performance of genome Tz by p, then the expected
performance of T'z0 equals p while the expected performance
of Tz1 equals p + m [LPerfs p(hjt1) — LPerfs p(0)],
where as just defined, #5 = t.

Case 1: 641 < 0. If the weak comparison query must re-
turn negative, that is, if the expected value of LPerf ¢ p(hj41)
LPerfs p(0) is at most 041 — u, then the expected perfor-
mance of Tzl is at most p + m(ej-{_l —p) <p—t—H,
Since by assumption, except with probability < 5, the em-
pirical performance will always approximate the expected
performance to within ;—‘;, we have that T'z1 will be found
to be beneficial, while T20 will be found to be neutral,
and thus the next genome will be 721, correctly encoding
the answer to the weak comparison query. Conversely, if
the weak comparison query should return positive, then by
analogous argument, the expected performance of Tz1 is at
least p — t + %’*, and T'z1 is thus either a neutral or neg-

ative mutation. Recall that by construction, in this case,
an overwhelming majority of the mutations in this genera-
tion were constructed to be T20 instead of Tz1, and thus
in either case, with very high probability (specifically, at
least A = %) T20 will thus be correctly chosen for the next
generation.

Case 2: 041 > 0. If the weak comparison query must re-
turn positive then, from the above argument, the expected
loss of T'z1 is at least p + ¢t + %‘, in which case Tz1 is a
negative mutation, and 720 will be chosen for the next gen-
eration, as desired. Otherwise, the expected loss of T'z1 is
at most p+¢— %“, which will be either neutral or beneficial;
since the mutation algorithm will construct Tz1 instead of
T'z0 an overwhelming fraction of the time (1—A), with over-
whelming probability T'z1 will thus by correctly chosen for
the next generation.

We conclude by stipulating that once the simulation of
A has completed (which will occur with probability at least
1 — €), the mutation algorithm will compute the result that
A would have computed, and thus return a satisfactory hy-
pothesis. [

We now prove Theorem 1, resulting from Lemma 1 and
a short argument that initialization is not necessary for the
successful evolution of our algorithm. We take a simpler
approach than [4] though at the expense of looser bounds.

PrROOF PROOF OF THEOREM 1. We note that the param-
eters in the proof of Lemma 1 were chosen so that the
probabilistic procedure described will deviate from its ex-
pected behavior with probability at most € over g genera-
tions, where, significantly, g is a parameter that we are still
free to specify. Intuitively, evolution will follow the proce-
dure set up in the proof of Lemma 1, which takes 1+7'3 gen-
erations, except that at every generation, there is probability
p to be defined shortly of reinitializing, that is, attempt-
ing to start evolution from scratch again. We will exhibit
a reinitialization procedure that takes % generations. Thus
one round of complete reinitialization and evolution will take
1+T8+ % generations, while in expectation this will happen
only once every % generations. Let p = 2¢ /(14+ T8 + 27’))
Since after %|1 + log €| generations, this procedure will have
occurred at least once with probability at least 1 — 5, we
have that for any moment in time after this, the probability
that evolution is at a weak optimum is at least 1 — e. Thus
letting g = %|1 + log €| yields the theorem with probability
of success at least 1 — 2e. We thus reparameterize 2e — e.

We now illustrate the very simple reinitialization proce-
dure, which will take 2717 generations, a number we denote
here as c. For each genome representation GG in the scheme
of Lemma 1, with the exception of “x”, we add copies labeled
by integers i € {0,...c — 1}, which we denote as G* with
the interpretation that G* is “G after i out of ¢ steps to-
wards reinitialization.” The mutator described in Lemma 1
we modify so that every time it might output a certain rep-
resentation G, now with probability p it will instead output
G°. The mutation rule for G* is even simpler: if i # ¢ — 1
then output G**!, and if i = ¢ — 1 then output “+”, that is,
reinitialize.

We now define how elements G* evaluate an input x: with
probability C:i output whatever G would output; with prob-
ability % output the 0 vector. We note that since the per-
formance difference between 0 and any other hypothesis is
at most b, that the expected change in performance over

any generation of reinitialization is thus at most g = %,

namely, these are all neutral mutations, and, by the param-
eter choice of Lemma 1 will be recognized as such, which
guarantees that this procedure will operate as claimed. [

While it is fairly immediate that our notion of evolvability
itself is indeed a weak optimization procedure, the surpris-
ing consequence of this theorem is the converse, that any
optimization technique that is “noise-tolerant”—or in our
notation “weak”—may be leveraged by evolution.

We may thus immediately leap to what is perhaps the
most powerful and robust framework for optimization: the
ellipsoid method. The ellipsoid method is famously known
to solve any (reasonably bounded) convex optimization prob-
lem, and in particular, its weak formulations [9]. (Specifi-
cally, both the domain and range of the functions should be
bounded.) We thus have that, as long as we can arrange
for LPerf to be convex and bounded, the associated triple
(C,D, L) is evolvable.

As an immediate and important consequence, consider a
degree d polynomial p : R" — R™, with D a distribution of
bounded support. Then for a hypothesis h, performance
is evaluated by taking a sample z < D and evaluating
L(p(z), h(x)). We note that if h is a degree d polynomial,
considered as a vector of its m - (":d) coefficients, then h(z)
is a linear function of this coefficient vector (though not lin-
ear in z!). Thus, if L is a convex function of its arguments,
L will be a convex function of the coefficients of h. In short,
finding the coefficients of h is a convex optimization problem
when L is convex:

THEOREM 2. For any constant positive integer d and pos-
itive number r, and an arbitrary convex loss function L
bounded on the radius v ball, the class of degree < d poly-
nomials from R™ — R™ with coefficients bounded by r is
evolvable with respect to all distributions over the radius r
ball.

We note that the case where m > 1, though trivial for
us to incorporate here, is in fact quite powerful for general
choices of loss function L. For example, it might seem nat-
ural and sufficient to decompose a function p : R® — R™
into a vector of m separate functions R™ — R and opti-
mize the performance of each separately, applying the loss
function to the vector where each of the other functions is
assumed to take some default value, perhaps 0. However,
this approach is in some sense analogous to trying to evolve
walking by optimizing each leg separately, assuming each
other leg were fixed immobile. Evolution seems an inher-
ently high-dimensional problem, in many senses, thus why
we emphasize the m > 1 case here.

We note that we insist on constant r and d in Theorem 2
because the definition of evolvability (Definition 5) insists
that each parameter of performance must be bounded by a
(polynomial) function of only n,m, and % However, each
of the parameters of evolution in fact depends as mildly as
might be expected on r and d, depending polynomially on
the number of coefficients needed to describe the hypothe-
sis class of degree-d polynomials, k = m - (":d), and on r?,
which captures the growth of the output of degree—d poly-
nomials on inputs of magnitude up to r. This same will hold
true for the main result of the next section, Theorem 3.

4. A DIRECT APPROACH

In this section we construct what is perhaps the simplest
conceivable random mutator that could hope to do “evolu-
tionary hill-climbing” (technically, in our case, the less glam-
orous sounding “valley descent”) and show that it is in fact
surprisingly adept. In particular, it is capable of efficiently
evolving the same class of general multivariate polynomials
as we considered at the end of the last section. While we
only derive results for the case of a quadratic loss function,
that is, L(x,y) = ||z — y||3, we conjecture that similar re-
sults hold for a much wider range of loss functions, including,
perhaps, any loss function L(z,y) = ||z — y||. for ¢ > 0 —
including specifically those functions for ¢ < 1 which are not
convex.

DEFINITION 9. The k-dimensional wide-scale random noise
parameterized by a lower and upper bound (¢,u) is the result
of the following process: choose a uniformly random number
p from the interval [Inf,Inu]; return e’ times a randomly
chosen element of the k-dimensional unit ball.

Our mutation algorithm consists simply of producing sev-
eral offspring each chosen by adding to the parent an inde-
pendent sample of wide-scale random noise.? Specifically:

DEFINITION 10. Given a concept class of degree d poly-
nomials from R™ — R™ with bounded coefficients, consider
their coefficients as k = m- (":d) -dimensional vectors in R*.
The mutation algorithm A = (R, M) for wide-scale random
noise is defined as:

e R is the representation of vectors in R, and

e M consists of generating wide-scale random noise and
adding it to the parent.

THEOREM 3. Given any positive integer constant d then,
for any real number r there exist bounds £,u and an inte-
ger ¢ = poly(n, m,r) such that the wide-scale random noise
mutator with scale in [¢,u] and ¢ children per generation
evolves the class of degree < d polynomials from R™ — R™
with coefficients at most r over the class of distributions on
the n-dimensional radius r ball, with respect to the quadratic
loss function.

To prove this theorem, we first will show that progress can
always be made if we choose the “right” radius, and then will
observe that, because of the exponential way in which the
radius is chosen, it is very likely to choose a radius that is
almost exactly “right”.

For the first part, we note that the expectation (over any
distribution) of the quadratic loss function between a poly-
nomial and an arbitrary function, is a positive semidefinite
quadratic function of the polynomial’s parameters. This is
simply because, for any element in the support of the distri-
bution, x € R", the value of the polynomial is a linear func-
tion of its coefficients; the value of the other function is fixed;
and hence the square of the discrepancy between these two

3Vitaly Feldman has pointed out [personal communication]
that one can “derandomize” this procedure by instead of
choosing random elements of the k-dimensional unit ball,
rather taking each of the k standard unit basis vectors, and
their negations. It may be, however, that in evolution ran-
domization is the more natural.

is positive semidefinite. Integrating these positive semidefi-
nite functions over the distribution will thus yield a positive
semidefinite function. Consider a rotation and translation
of this positive semidefinite function so that it has the form
Zle ¢;-x?, for nonnegative c;, where {x;} are a rotated and
translated form of the polynomial’s k = m - ("Id) parame-
ters. Viewing the expected loss of a genome evolving in the
context of Theorem 3 in this form, we show the following
lemma, implying that progress can always be made:

LEMMA 2. Given € > 0 and a vector of non-negative co-
efficients, (c1,...,ck), with o = Zle ¢, then the quadratic
function p : RF — R defined as p(z) = Zf:l ci - x2 has
the property that for any vector x of length at most 1, if
p(z) > € then with probability at least , a randomly cho-

sen vector y in the ball of radius 606\/E about x will have

p(y) < p(z) —

e2
120k

The restriction that = has length at most 1 is for the sake
of convenience of the proof; when we apply the lemma in

the context of Theorem 3, we will scale the inputs so that
the radius r ball becomes a diameter 1 ball.

Proor PROOF OF LEMMA 2. To aid with the proof, we

first note the following elementary fact: (see for example
Chapter 1 of [1])

Fact: A k-dimensional ball of unit radius has at
least i of its volume in the region where its first
coordinate exceeds ﬁ
Consider p restricted to the line connecting « to the origin.
Since p has value 0 and derivative 0 at the origin, and is
quadratic, it must have derivative (along this line) of ZTT(”‘”)
at x; since by assumption p(z) > € and |z| < 1, this is at
least 2¢. Since this is just the derivative in one direction,
the gradient at must have magnitude at least this.
We further note that the second derivative in any direction
is at most 20, from the definition of o.
Consider the value of p in the ball of radius r £ 6;\@

around z, and specifically, in the portion that is at least
7v% in the direction of the (downward) gradient from z. By
the above fact, this portion comprises at least a quarter of
the ball.

Considering the second-degree Taylor expansion of p about
xr—which is exact, since p is quadratic—we note that the lin-
ear contribution is a decrease of at least 2¢ (our lower bound
on the magnitude of the gradient) times the distance trav-
eled in the direction of the gradient, namely ﬁ = am

yielding %. The quadratic contribution is bounded by %
times the directional second derivative in our direction times

the square of the distance, which is bounded by r in our
2
3éo'k'

ball, yielding or?® = Subtracting yields the desired

bound. [

We now assemble the pieces into a proof of Theorem 3.

PROOF PROOF OF THEOREM 3. Let k = m- (") be the
dimension of our degree d polynomials when viewed as a
vector space, and let b be a bound on the loss of any pair
of hypotheses functions evaluated at any point in the n-
dimensional radius 7 ball. These are both bounded by poly-
nomials for constant d.

For any k-dimensional unit vector v, regarded as a degree
d polynomial, and any point x in the n-dimensional radius
r ball, the loss of an arbitrary multiple of v, awv, relative
to the zero polynomial, evaluated on the point must be a
quadratic function ca?, for ¢ < T%. Thus for an arbitrary
distribution in the n-dimensional radius r ball, and arbi-
trary target function, the expected loss will be a positive
semidefinite quadratic form that can be rotated and trans-
lated into the form ZLI ci:vf with each ¢; > 0, and if we
further scale the input by % so that the radius r ball in k
dimensions maps into a region of diameter 1, then we have
o& Zf:l c; < 4kb.

We thus consider the application of Lemma 2 to this trans-
formed expected loss function. If there exists a genome in
the ball with expected loss greater than ¢, then Lemma 2
guarantees that there exists this “magic radius” p = Gai/E
such that moving the genome by a vector randomly chosen
in the k-dimensional ball of radius p will, with probability

at least %, improxfe the expected loss by at least % Since
we have polynomial upper bounds on ¢, Lemma 2 thus pro-
vides for inverse-polynomial progress, in exactly those cases
where we are not already within e of optimal.

We note that we have already bounded p > to

24kE
upper bound pu, we note that 25:1 ciz? is bounded by o
since ||z|| < 1, and hence by assumption, o > €, yielding the

bound p < ﬁ. Recalling that we scaled the coordinates by

a factor of 717« to apply Lemma 2, we have that in the original
coordinates and problem setup: either evolution is within €
(plus sampling error) of optimal, or there is a “magic ra-
dius” between ﬁ and ﬁ such that a randomly chosen
mutation in the k-dimensional ball of this radius will yield
significant improvement. We thus declare the lower and up-

per bounds of our wide-scale random noise to be 1225\/% and

ﬁ respectively.

We note in general that a pair of k-dimensional balls whose
radii 7,7’ have logarithms are within % of each other will
share a constant fraction of their volume. Thus with at
least inverse-polynomial probability, choosing a radius that

is e to the power of a number uniformly chosen between

In (122%) and In (m) will yield with constant probabil-

ity a mutation that improves the expected loss by at least
%. The candidate pool size is chosen so that with over-
whelming probability, say, at least 1 — 5, such a mutation
will be present in each generation.

Thus we may choose s—the number of samples with which
to evaluate the empirical performance—high enough that
with probability at least 1 — 5, over the entire course of the
algorithm all estimates will be accurate to within a third

of the minimum improvement, %. Further, we choose
t, the threshold for declaring a mutation beneficial, to be

2
equal to 75—, so that, assuming each empirical estimate is

in fact accurate to within 35%, then each of the beneficial
mutations guaranteed by Lemma 2 will be recognized and
declared to be beneficial. Thus with probability at least
1 — ¢, the performance of every generation will be at least

&
360k

within € + % of optimum, yielding the desired result. []

better than that of the previous, unless we are already

S. REFERENCES

[1] K. Ball. An Elementary Introduction to Modern
Convex Geometry. MSRI Publications, Volume 31,
1997.

[2] V. Feldman. Evolvability from Learning Algorithms.
STOC 2008.

[3] V. Feldman. A Complete Characterization of
Statistical Query Learning with Applications to
Evolvability. FOCS, 2009.

[4] V. Feldman. Robustness of Evolvability. COLT, 2009.

[5] V. Feldman. Distribution-Independent Evolvability of
Linear Threshold Functions. Manuscript, February
2011.

[6] A. Kalai and S. Vempala. Simulated Annealing for
Convex Optimization. Mathematics of Operations
Research, 31(2), 2006, pp. 253—266.

[7] V. Kanade, L. Valiant, and J. Vaughan. Evolution
with Drifting Targets. COLT, 2010.

[8] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM,
25(6):983-1006, 1998.

[9] L. Lovész. An Algorithmic Theory of Numbers,
Graphs, and Convexity, Chapter 2. STAM, 1986.

[10] L. Michael. Evolvability via the Fourier Tranform.
Theoretical Computer Science, to appear.

[11] L. Valiant. Evolvability. Journal of the ACM, 56(1),
2009.

