
�

�

�

�

�

�

�

�

12

Evolvability of Real Functions
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We formulate a notion of evolvability for functions with domain and range that are real-valued vectors,
a compelling way of expressing many natural biological processes. We show that linear and fixed-degree
polynomial functions are evolvable in the following dually-robust sense: There is a single evolution algorithm
that, for all convex loss functions, converges for all distributions.

It is possible that such dually-robust results can be achieved by simpler and more-natural evolution
algorithms. Towards this end, we introduce a simple and natural algorithm that we call wide-scale random
noise and prove a corresponding result for the L2 metric. We conjecture that the algorithm works for a more
general class of metrics.
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1. INTRODUCTION

Since Darwin first assembled the empirical facts that pointed to evolution as the source
of the hugely diverse and yet finely honed mechanisms of life, there has been the mys-
tery of how the biochemical mechanisms of evolution (indeed, how any mechanism)
can apparently consistently succeed at finding innovative solutions to the unexpected
problems of life. This is not a biological, chemical, or physical mystery, because even
stripping all these details from the phenomenon leaves us with a computational kernel
well beyond our current grasp: how can an algorithm reliably find innovative solutions
to unexpected problems? Any satisfactory account of evolution must explain how such
an algorithm is feasible, and furthermore, be efficient enough to work despite very
limited resources: millions of species, billions of members of a species, billions of gen-
erations, DNA length in the billions.

The realization that evolution embodies such a powerful algorithmic framework has
spawned significant effort over more than half a century to develop algorithms that
capture some of the power of evolution. Perhaps the oldest and most widely known
approach along these lines is the area of genetic algorithms (sometimes known as
evolutionary algorithms), which are routinely used in practice for many different ap-
plications. The genetic algorithms perspective views the evolution of an individual
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12:2 P. Valiant

species as an optimization problem relative to a fitness function, and aims to optimize
this function by simulating celebrated parts of the evolution story on a population of
candidates: survival of the fittest, mutation, and reproduction with genetic recombi-
nation. More explicitly, to optimize a function f over domain X, a pool of, say, 10,000
inputs (“creatures”) in X is maintained at any time, and a series of “generations” are
simulated, where in each generation, an input x ∈ X from the pool may “reproduce”
either by adding a number of new inputs to the pool that are slight variants on x
(mutation), or by picking a mate y ∈ X and adding a number of inputs to the pool
that are in some sense a combination of x and y (recombination); then “survival of the
fittest” is implemented, where each input in the pool is evaluated via f , and only the
top 10,000 performers survive to form the next generation. Unlike natural evolution,
genetic algorithms seem to require considerable expertise to set up for each new con-
text, with performance depending delicately on subtle details and parameters of the
mutation, recombination, and survival of the fittest procedures, as well as on initial
conditions. In this sense, genetic algorithms, instead of aiming at illuminating how
biology works, have rather become an independently successful field of their own. This
article aims not to compete with genetic algorithms as an optimization tool, but rather
to shed light on the biological mystery of evolution from a computational perspective.

1.1. The Evolvability Model

This article sits in the context of a line of work started by Leslie Valiant that seeks to
provide the first rigorous model for the types of adaptations that can (and cannot) be
evolved. The evolvability framework seeks to characterize functions that are evolvable,
analogously with how learning theory seeks to characterize what is learnable. One of
the chief hallmarks of PAC (probably approximately correct) learning theory—in con-
trast to what can be described as a general drawback of previous studies of evolution—
is robustness. One would hope that any model that claims to capture as flexible a phe-
nomenon as learning or evolution would itself be flexible. Whether the model classifies
something as learnable, or evolvable, should not depend on fragile combinations of
parameters or criteria or initial conditions. Indeed, in a different direction, the fun-
damental robustness of the notion of “computation” that crystalized with the work of
Turing could be said to be this single most significant fact that enabled the computer
revolution.

We will define the evolvability model explicitly in the next section, but for the mo-
ment, we will describe it intuitively in relation to the PAC notion of learning. Consider
a single species as it adapts to the challenges of nature. Its DNA determines how these
creatures will respond to the environment, essentially encoding a function which the
creatures will execute on “inputs” provided by nature. If the creatures survive and re-
produce, then their DNA has encoded a good function; in this sense, nature implicitly
judges the fitness of all creatures’ DNA. The question is to what degree the species can
“learn” good response functions (as encoded by its DNA). As in PAC learning, one of
the crucial questions is the distribution of inputs that nature provides. Indeed, most
creatures (and learners) cannot hope to learn an accurate model of the challenges that
will be presented to them; however, one does not have to know what challenges will be
presented, only how to respond to the ones that are.

1.2. Results

Since the introduction of the evolvability model by L. Valiant [2009], significant fur-
ther work has shown both its power and robustness to modeling variations [Feldman
2008, 2009a, 2009b; Kanade 2011; Kanade et al. 2010; Michael 2012]. In this article,
we present two complementary constructions which extend this body of work in a new
and natural direction: while previous papers studied evolvability of Boolean functions
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Evolvability of Real Functions 12:3

(from {0, 1}n → {−1, 1}), we here consider functions from R
n → R

m. Many of the func-
tions that evolve in biology, for example, “how should the concentration of protein A in
this cell vary in response to the concentrations of compounds B through Z?”, might be
much more naturally represented as real functions as opposed to Boolean functions. Of
course, real functions, when restricted to Boolean domain and range, become Boolean
functions, so in this sense, our model may be considered more general than the original
Boolean model of evolvability. Our generalization of the evolvability model can be seen
as introducing into evolvability notions that Haussler had introduced into the original
PAC model [Haussler 1992].

For the original Boolean framework of evolvability, Feldman showed that as long
as the underlying distribution from which nature draws examples is known, then the
class SQ (statistical queries) defined by Kearns [1998] exactly characterizes the classes
of evolvable functions [Feldman 2008]. SQ is both a powerful and natural framework,
and seems to capture most of the power of PAC learning. However, the assumption
that the evolution algorithm must know the underlying distribution is decidedly un-
natural, as one would hope for evolution to function across a broad range of potentially
quite-intricate and varying distributions of conditions for its creatures. In subsequent
work, Feldman showed that if one reinterprets the Boolean model by allowing hy-
potheses that take real values (even though the hypotheses are then compared, via
a loss function, to target values that are Boolean), then if the performance metric is
nonlinear—that is, essentially anything except the correlation metric (the L1 metric
restricted to a small enough region so that it is a linear function, instead of the usual
piecewise linear)—one can take advantage of a “kink” in it to, in fact, evolve everything
in SQ [Feldman 2009b, Theor. 4.3]. In a sense, by changing part of the Boolean model
to allow for real values, Feldman circumvents an apparent limitation of the purely
Boolean evolution setting.

In this current work, we consider all elements of the evolvability model to be real
instead of Boolean. The results we derive are of a somewhat different form from those
in the (partially) Boolean settings previously considered: instead of relating evolution
to learning theory, we relate it to the area of optimization algorithms.

Specifically, in Section 4, we adapt Feldman’s results on evolvability [Feldman
2009b] to our setting, which, because of the different setting, yields results of a dif-
ferent nature: evolvability can simulate arbitrary polynomial-time optimization algo-
rithms that only require approximate access to the function being optimized. In the
terminology of Lovász [1986], this is weak optimization. We show that his construction
of polynomial-time weak convex optimization can be leveraged to yield evolution algo-
rithms for the class of linear functions, and further, fixed-degree polynomials, over any
distribution, for any convex loss function—including a fortiori the commonly consid-
ered linear and quadratic (L1- and L2-squared) loss functions.

While these results demonstrate the power of the real evolvability framework, they
come at the expense of a certain unnaturalness of the underlying evolution algorithm
(a reduction to the ellipsoid algorithm does not on the surface appear to be a convincing
account of the biological evolution process). We thus begin the technical part of this
article in Section 3 by considering perhaps the simplest and most natural algorithm
that could hope to work, and show that it in fact can reproduce a significant portion
of these results. In a generation of this algorithm, a parent produces a polynomial
number of nearby children, each chosen in a uniformly and independently random
direction from the parent. Survival of the fittest turns this into a kind of “steepest
descent” strategy, which enables us to prove that, for quadratic loss functions, constant
progress is made in each generation, which will rapidly lead to the optimum.

This algorithm, which we call wide-scale random noise to emphasize its simple un-
structured nature, has in fact been found in simulations to converge rapidly in many
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12:4 P. Valiant

cases beyond that of the quadratic loss function, though how it achieves this conver-
gence seems rather different than its provable behavior in the quadratic case. In partic-
ular, while for quadratic loss functions, the algorithm consistently produces offspring
which perform better than the parent, leading to a guaranteed improvement, in the
case of the L1 loss function, the ability to evolve to a descendent whose performance is
worse than that of the parent seems crucial for efficient progress. It would seem coun-
terintuitive that such backtracking would help in a convex landscape with no spurious
local minima. However, this was exactly the effect found in a paper on simulated an-
nealing that also considered a very similar L1 optimization setting [Kalai and Vempala
2006]. It would appear that both evolvability and simulated annealing seem effective
in unexpected cases, and one might hope that new analysis of one might shed light on
the other.1 We conjecture here that the results of Theorem 3.3 hold much more gen-
erally than for just the case of L2 loss that we prove here: we conjecture that similar
results hold for any loss function L(x, y) = ||x−y||c for c > 0, including specifically those
functions for c < 1 which are not convex and where even the powerful tools of Section 4
fail. Specifically, the expected performance of the hypothesis h (for some fixed loss func-
tion L, distribution D, and target function x), may be a non-convex function LPerff ,D(h)
of h, when c < 1 (see Definition 2.3 and Theorem 4.4), yet must be effectively optimized
if evolution is to be successful. Though these functions may not be convex, they are al-
ways star-convex functions, a generalization of the notion of a star-convex set, where
the function will be convex on any line through the global optimum [Nesterov and
Polyak 2009]. This definition forbids local optima and further implies that from any
point, the global optimum lies in a downhill direction. Such functions are a tantalizing
frontier for research in optimization with significant structure that could potentially
be exploited, though not much is yet known.

1.3. Related Issues

Given the emphasis, both in this work and in the field of genetic algorithms, on opti-
mization as the perspective from which to analyze evolution, it is worth pointing out
the limitations of this view. A recent line of work started by Livnat et al. [2008, 2009]
asks what role sex plays in evolution, since breaking up successful gene combinations
(by randomly mixing two inputs x and y that are individually good) seems a subop-
timal optimization strategy. Yet the phenomenon of creatures going to great lengths
to combine their genes with those of other individuals is near-universal, so it must
be vital to evolution—vital to a sense of evolution broader than just “fitness optimiza-
tion”. What was found in a series of papers is that genetic recombination promotes
mixability instead of fitness, where this new notion of mixability describes genes that
work well with a variety of other genes, as opposed to achieving some sort of brittle
perfection only when combined in a unique way. Mixability is useful for a variety of
strange and subtle biological ends: mixability is very related to modularity—if a given
chunk of DNA helps the creature no matter which other chunks are present, one could
call this chunk a self-contained module. Modular functionality is an investment in the
future of evolution, enabling creatures to easily adapt to new conditions with small
(modular) changes to their DNA, instead of a very costly global reorganization. The
spontaneous transition from a global approach to a modular approach within a single

1Feldman has defined monotone evolvability to be the restriction that each generation’s performance must
be at least that of the previous generation, in part inspired by a desire to consider evolution algorithms
that seem more “natural”. Monotone evolvability has been shown in a distribution-independent setting for
point functions under the L1 metric [Feldman 2009b], conjunctions under the L2 metric [Feldman 2009a],
and recently, for linear threshold functions with nonnegligible margin, for L2 and related metrics [Feldman
2011]. Such work raises interesting questions about the potential difference in power between monotone vs.
non-monotone evolvability, and indeed, monotone vs. non-monotone optimization in general.
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Evolvability of Real Functions 12:5

optimization problem is beyond what we can satisfactorily model with mathematical
tools, but it provides tantalizing hints at the unusual effectiveness of evolution. More
concretely, while this article (and, in general, the optimization view of evolution) con-
siders evolution on a short enough timescale that the environment is fixed, the mixa-
bility papers [Livnat et al. 2008, 2009] provide evidence that the great challenges lie
in providing precise models of ever-longer and ever-richer slices of evolution.

In a different direction, one feature of the evolvability model is that at every gener-
ation, there is only a single parent that produces all the children that constitute the
next generation. However, this simplifying assumption is less of a restriction than it
might appear: even in the original paper introducing evolvability, it was argued that
the genome of this parent—instead of representing a single creature—could store the
concatenated genomes of a whole population of parents; in each generation, the life-
time of a single member of the population would be simulated (see Valiant [2009],
Sect. 6). Further, interactions among the genomes of a population of N parents—
such as recombination via sexual reproduction—can be modeled in the original
evolvability model via internal interactions within this concatenated genome from gen-
eration to generation, namely, mutation. Thus, a population of size N, whose genomes
may interact in complicated ways, can be emulated in the evolvability model (via only
a single parent per generation). However, a recent paper [Kanade 2011] has considered
explicitly introducing a population of parents into the evolvability model, along with
explicitly modeling recombination of pairs of their genomes. The paper demonstrates
that a polynomially-large parent population size may dramatically reduce the number
of generations required to evolve certain functions, from polynomial to (in some cases)
polylogarithmic.

2. DEFINITIONS AND COMMON FRAMEWORK

The definitions are adapted from the Boolean setting of evolvability [Feldman 2009b;
Valiant 2009], which are themselves inspired by the PAC-learning framework. We
start with a high-level overview of PAC learning: while nothing in this article relies
directly on PAC-learning results, the analogy will shed light on the definitions
to follow.

2.1. Motivation: PAC Learning

In PAC learning, there is a target function f : X → Y that we wish to “learn” via labeled
examples: we can request examples xi ← D from a certain distribution D over X, and
from the resulting pairs (xi, f (xi)), we hope to be able to construct a hypothesis function
h that is “probably approximately correct”. That is, our goal is a learning procedure
that, with high probability over the random training data, will yield a function h that
well-approximates the target f , at least with respect to further inputs x drawn from
the same distribution D that gave us the training data. Explicitly, we say that a class
F of functions f : X → Y is PAC-learnable if there is an algorithm A such that for
every ε, δ > 0, every target function f ∈ F, and every distribution D over X, if we run
A on a sample {xi} ← D, then with probability at least 1 − δ, algorithm A will return a
hypothesis h : X → Y such that Prx←D[ f (x) = h(x)] ≥ 1 − ε. The runtime of algorithm
A and the size of the sample given to A must both be polynomial in the parameters of
the domain, as well as 1

ε
and 1

δ
.

The fact that the distribution D is allowed to be arbitrary (and unknown) is crucial
to the goal of modeling learning in a realistic setting. For example, if we are mod-
eling how a certain creature learns to, say, classify other animals as predators and
prey, based on certain observable features that lie in some space X, then the distribu-
tion D (over X) captures the “distribution of animals that our creature encounters, as
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12:6 P. Valiant

represented by their features in X”. This distribution D is almost certainly not going to
be a clean mathematical object, such as a uniform distribution. Nevertheless, effective
learning algorithms exist, because as it turns out, one does not need to “understand”
the distribution of examples in order to learn to classify them.

The evolvability model is inspired by the notion that Darwinian evolution can be
viewed as a kind of learning. A creature’s environment presents it with a series of
random challenges to which the creature responds; these responses are in some sense
encoded in the creature’s DNA. Depending on whether the creature reacts appropri-
ately to the challenges of its environment, it may either survive and reproduce, or
die off.

We can model this interaction with notation from the PAC framework. Let h : X → Y
denote the hypothesis function encoded by the creature’s DNA, mapping environmental
challenges in X to its responses in Y, and let D denote nature’s distribution over X. For
each situation x ∈ X, we can represent the ideal response of the creature via the target
function f (x). The creature’s performance results from comparing h(x) to f (x), for x
drawn from nature’s distribution D. As is sometimes done with PAC learning, instead
of simply checking whether h(x) = f (x), we can evaluate performance via a general
loss function, L : Y × Y →[ 0, ∞), that takes h(x) and f (x) and returns a number
evaluating, in our case, “how much the creature’s choice of h(x) instead of f (x) hurt
its reproductive chances”. Thus, a “fit” creature is one for which Ex←D[ L(h(x), f (x))]
is close to 0. (As a philosophical note, the target function f , representing the ideal
response of a creature to environment x so as to maximize its chances of reproducing,
is a somewhat mysterious object in explicit biological settings. However, even if f is
not observable, it in principle exists and is explicitly definable. Our goal is to show
that no matter what f is—in a suitably generous class, which in this article is low-
degree polynomials—good approximations to f will evolve efficiently and with high
probability.)

Viewed in this light, Darwinian evolution is a form of PAC learning, where DNA
stores the hypothesis function, and each generation of life constitutes a cycle of an
algorithm whereby the hypothesis implicit in the DNA is evaluated, and if sufficiently
successful, will produce variant hypotheses populating the next generation. However,
evolution is a restricted form of PAC learning. In the PAC model, one may examine
a polynomially-large number of labeled examples and process them to determine a
hypothesis function h; this would be analogous to nature presenting a creature with
a history of all the situations the creature encountered, along with a labeling of what
the “correct” response to each situation would have been, and then challenging the
creature to optimize its offspring accordingly. In some ways, this description sounds
like the discredited Lamarckian model of evolution. The Darwinian model is much
cleaner, however. Your DNA gets no handbook of labeled examples: the only feedback
from nature is survival or death.

We note that this may be a slightly controversial point among biologists—there is
recent excitement about the notion of “epigenetics”, which provides unusual and ill-
understood biochemical mechanisms allowing creatures to pass down information from
their lifetimes to their offspring. However, we stress that the model of evolvability
does not seek to capture the totality of biological phenomena, but rather is aimed at
abstracting certain key features that may shed light on why evolution seems unlike
any computational model we are familiar with. When one designs an iterative learn-
ing algorithm—or when pre-Darwin thinkers imagined how successive generations
of life adapt to fit their conditions—one imagines communication between successive
iterations/generations to be fundamental. Lamarck envisioned that if a parent uses
and develops a certain muscle over its lifetime, then it will have children born with
that muscle, even larger—for how else could the species, over the course of generations,
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Evolvability of Real Functions 12:7

adapt to have all its muscles appropriate to the tasks that species does? Darwin
shocked the world in describing how such results could be achieved with no such com-
munication, with only random variation and survival of the fittest connecting subse-
quent generations to the previous ones. The model of evolvability seeks to model this
surprising phenomenon in a way that is both simple and general.

2.2. Definitions

We introduce the following definitions for evolvability in the (multidimensional) real
number setting.

Definition 2.1. For positive integers n, m, the (n, m)-dimensional evolvability model
considers the evolution of a hypothesis function h : Rn → R

m towards a target function
f with the same domain and range. These functions are evaluated at points drawn from
a distribution D over their domain X = R

n, where D is from a set of distributions D.
We will consider the evolution of target functions f that are unknown members of a
certain set C of functions, known as a concept class.

Definition 2.2. In the (n, m)-dimensional evolvability model, with hypotheses hav-
ing range R

m, a loss function is a nonnegative function L : Rm ×R
m →[ 0, ∞) such that

for any y ∈ R
m, L(y, y) = 0.

In this article, we will exclusively use n to denote the dimension of the domain of
the hypothesis and target functions, and m to denote the dimension of their range, and
thus for convenience will omit repeatedly reintroducing them.

Definition 2.3. Given a loss function L and a target function f : R
n → R

m, the
performance of a hypothesis function h : Rn → R

m relative to a distribution D (over Rn)
is defined as LPerff ,D(h) = Ex←D[ L(f (x), h(x))]. Given a positive integer s, the s-sample
empirical performance LPerfsf ,D(h) is defined to be the random variable resulting from
drawing a sample of size s, x1, . . . , xs ← D and evaluating 1

s
∑s

i=1 L(f (xi), h(xi)).

In a manner which will be made precise shortly, evolution evaluates a variety of
hypotheses h via their empirical performance LPerfsf ,D(h), aiming at the ideal perfor-
mance of the target function f , which has loss 0.

Hypotheses change with each generation via a mutation algorithm, which is a ran-
domized procedure that is run on a creature’s DNA to produce the DNA of an offspring.
The randomness in the mutation algorithm means that running it repeatedly from the
same input may yield different results. In our context, when a parent produces a pool
of p children, the DNA of each child is produced by a separate call to the mutation al-
gorithm, taking the DNA of the parent as input. The set of all possible DNA sequences
that the mutation algorithm may produce from a given DNA sequence is called the
neighborhood of the sequence, even though in any particular instance, the actual off-
spring may represent only a small portion of this neighborhood.

Definition 2.4 (Feldman [2009b], Def. 3.6). Given parameter ε > 0, a mutation al-
gorithm A is defined by a pair (R, M) where the following hold.

— R is a set of hypothesis functions R
n → R

m, where to each function h corresponds a
string of finite length r that we say represents the function.

— M is a randomized polynomial (in n, m, and 1/ε) time Turing machine that, given
r ∈ R and 1/ε as inputs, outputs a representation r1 ∈ R with probability that we
denote PrA(r, r1). The set of representations that can be output by M(r, ε) is referred
to as the neighborhood of r for ε and is denoted by NeighA(r, ε).

ACM Transactions on Computation Theory, Vol. 6, No. 3, Article 12, Publication date: July 2014.
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12:8 P. Valiant

Recall that the hypothesis functions are ultimately stored as the “DNA” of our crea-
tures, and thus are represented as strings over a finite alphabet. For the results of
Section 4, we explicitly represent functions as binary strings, though the class of func-
tions represented by the scheme of Section 4 is somewhat artificial. In Section 3, we
consider genomes that can represent the entire class of fixed-degree polynomial func-
tions, and implicitly consider these polynomials as having each real-valued coefficient
represented to fixed precision via a short string in the genome.

The mutation algorithm is the source of genomes for the next generation; which
genomes survive is determined by the selection rule, an efficiently-implementable al-
gorithm that we imagine being implicit in nature: in each generation, the parent pro-
duces a candidate pool of p creatures via running the mutation algorithm p times on
its DNA; the p creatures then compete with each other for survival. Instead of select-
ing the best one, the evolvability model suggests something weaker, more realistic,
and more robust: there is a threshold t such that if all of the offspring perform within
t of their parent, then they are viewed as being essentially indistinguishable, and a
random one of them survives; if some offspring perform more than t better than the
parent (their loss is t less than the loss of the parent), then a random one of these
“noticeably better offspring” is selected for the next generation; in the unusual case
where all offspring are noticeably worse than the parent, then the parent survives
to the next generation (or, equivalently, a clone of the parent survives). Explicitly, we
define SelNB, the selection rule that distinguishes neutral and beneficial mutations
(adapted from [Feldman 2009b], Definition 3.7).

Definition 2.5. For a loss function L, tolerance t, candidate pool size p, and sam-
ple size s, the selection rule SelNB[ L, t, p, s] is the algorithm that for any function f ,
distribution D, mutation algorithm A = (R, M), representation r ∈ R, and accuracy ε,
SelNB[ L, t, p, s] (f , D, A, r) outputs a random variable that takes a value r1 determined
as follows. First, run the mutator M(r, ε) p times and let Z be the set of representations
obtained. For r′ ∈ Z, let PrZ(r′) be the relative frequency with which r′ was generated
among the p observed representations. For each r′ ∈ Z∪{r}, compute an empirical value
of performance v(r′) ← LPerfsf ,D(r′). Let Bene(Z) denote the set of empirically beneficial
mutations, {r′ ∈ Z : v(r′) ≤ v(r) − t}, and Neut(Z) denote the set of empirically neutral
mutations, {r′ ∈ Z : |v(r′) − v(r)| < t}. Then, the following.

(i) If Bene(Z) �= ∅, then output a random r1 ∈ Bene(Z) distributed with relative
probabilities according to PrZ.

(ii) If Bene(Z) = ∅ and Neut(Z) �= ∅, then output a random r1 ∈ Neut(Z) distributed
with relative probabilities according to PrZ.

(iii) If Neut(Z) ∪ Bene(Z) = ∅, then output r, indicating that the genome of the parent
survives unaltered.

If for a concept class and set of distributions, there exists a mutation algorithm that,
under selection rule SelNB, efficiently converges to any target function in the class,
then we say that the concept class is evolvable.

Definition 2.6 (Adapted from [Feldman 2009b], Def. 3.3). A concept class C, set of
distributions D, and loss function L are said to be evolvable if there exists a mutation
algorithm A = (R, M), polynomials p(n, m, 1

ε
), s(n, m, 1

ε
), a tolerance t(n, m, 1

ε
) whose

inverse is poly-bounded, and a polynomial number of generations g(n, m, 1
ε
) such that

for all n, m, target functions f ∈ C, distributions D ∈ D, ε > 0, and any initial genome
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Evolvability of Real Functions 12:9

r0 ∈ R, and any number of generations g′ ≥ g, with probability at least 1 − ε, the ran-
dom sequence defined by ri ← SelNB[ L, t, p, s] (f , D, A, ri−1) will have LPerff ,D(rg′) ≤ ε,
namely, the mechanism of evolution will yield an almost-optimal genome in a polyno-
mial number of generations, g.

We note that the sign convention most natural for the real case is opposite that used
in previous work for the Boolean case, and in particular, a “perfect organism” in our
setting has LPerf = 0, while in Feldman [2009b], would have LPerf = 1.

One important distinction between the model of this article and the previous Boolean
model is that working over the real numbers introduces problems of scale that are not
present in the Boolean case. For example, since the “feedback” that nature gives the
evolution algorithm in any generation consists of simply choosing which of a bounded
(polynomial) number of potential children survives to the next generation, there is no
way to evolve in bounded time a good approximation to an unbounded real number.
It is thus important to work with concept classes C that are in some sense bounded.
A related issue arises with the set of distributions D. Suppose we are working with
the L1 loss function, L(x, y) = |x − y|, and suppose distribution D is such that, with
probability 1 − τ , D samples the point 0, and with probability τ , D samples a point
more than 1

τ
-far from the origin. If τ is super-polynomially small, then evolution will

likely never see any points other than 0 in the sample, but meanwhile, the expected
loss of hypotheses is unknown and potentially huge. Thus, D (and L) must also be
reasonably bounded. Thus, while such bounds do not appear in the Boolean case,
they are necessary to making sense of real evolvability. We make precise the bounds
we use in the statements of the theorems. We believe that they are as mild as is
reasonable.

In this article, we work with functions that range over R
m, and one may ask about

the role of m > 1. For example, it might seem natural and sufficient to decompose a
function p : Rn → R

m into a vector of m separate functions R
n → R and optimize the

performance of each separately, applying the loss function to the vector where each
of the other functions is assumed to take some default value, perhaps 0. However,
this approach is in some sense analogous to trying to evolve walking by optimizing
each leg separately, assuming each other leg were fixed immobile. Evolution seems
an inherently high-dimensional problem, in many senses, thus why we emphasize the
m > 1 case here. It is perhaps an unexpected bonus that the m > 1 case in the following
proofs essentially “comes for free”, requiring no special analysis.

3. A DIRECT APPROACH

In this section, we construct what is perhaps the simplest conceivable random muta-
tor that could hope to do “evolutionary hill-climbing” (technically, in our case, the less
glamorous sounding “valley descent”) and show that it is in fact surprisingly adept. In
particular, it is capable of efficiently evolving arbitrary low-degree multivariate poly-
nomials with bounded coefficients. We analyze the particularly well-behaved case of
the quadratic loss function, that is, L(x, y) = ||x − y||22, and show that our particularly
simple mutator significantly improves fitness with each generation, for any hypothesis
function that is not already very close to the target.

Definition 3.1. Wide-scale random noise parameterized by a lower and upper bound
(�, u) and a dimension k is the result of the following process: choose a uniformly ran-
dom real number ρ from the interval [ log2 �, log2 u]; return 2ρ times a randomly chosen
element of the k-dimensional unit ball.

ACM Transactions on Computation Theory, Vol. 6, No. 3, Article 12, Publication date: July 2014.
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12:10 P. Valiant

Our mutation algorithm consists simply of producing several offspring, each cho-
sen by adding to the parent an independent draw from the wide-scale random noise
distribution.2 Specifically, the following.

Definition 3.2. For degree d polynomials from R
n → R

m, the mutation algorithm
A = (R, M) for wide-scale random noise, parameterized by bounds � and u, is defined
as follows.

— R is the representation expressing a degree d polynomial Rn → R
m via the vector

of its k = m · (n+d
n

)
coefficients.

— M consists of generating k-dimensional, wide-scale random noise, parameterized
by bounds �, u, and adding it to the input vector.

THEOREM 3.3. Given any positive integer constant d, then for any real number r,
there exist bounds �, u, and an integer c = poly(n, m, r) such that the wide-scale random
noise mutator with scale in [ �, u] and c children per generation evolves (according to
Definition 2.6) the class of degree ≤ d polynomials from R

n → R
m with coefficients at

most r over the set of all distributions on the n-dimensional radius r ball, with respect
to the quadratic (L2) loss function.

We show that with very high probability, at least one of the children in the
next generation will have fitness significantly better than that of the parent, where
“significant”+ means greater than the tolerance threshold t of Definition 2.5. We an-
alyze the random mutation procedure in two steps: we first show that progress can
always be made if we choose the “right” radius in Definition 3.1, and then we observe
that, because of the exponential way in which the radius is chosen, the wide-scale
random noise mutator is very likely to choose a radius that is almost exactly “right”.

We start with a basic structural result.

LEMMA 3.4. Given an arbitrary fixed target function f : R
n → R

m and a fixed
distribution D over the input space R

n, then the expectation over D of the quadratic
loss function between f and a degree d polynomial hypothesis function h, namely,
Ex←D[ ||f (x) − h(x)||2], is a convex quadratic function of the coefficients of h.

PROOF. Consider an arbitrary x ∈ R
n; the function f (x) has some fixed value here, in

R
m. To analyze ||f (x)−h(x)||2, we must first recall how h(x) depends on the coefficients

of h. Recall how a degree d polynomial mapping x = (x1, . . . , xn) to the real numbers is
defined: for each sequence α = (α1, . . . , αn) of nonnegative integers with sum at most d,
the polynomial has a term cα ·xα1

1 ·xα2
2 ·. . .·xαn

n , where cα is an arbitrary real number. The
coefficients cα collectively define the polynomial. In our case, h maps R

n → R
m, thus

we may regard each coefficient cα itself as being an m-element vector. (Note that there
are

(n+d
n

)
valid sequences α, and hence coefficients cα; hence a degree d polynomial

from R
n → R

m is specified by m · (n+d
n

)
real numbers.)

Thus h(x), for fixed x, is a linear function of its coefficients cα. Thus f (x)−h(x) is also
a linear function of the coefficients of h, and ||f (x) − h(x)||2 is hence a convex quadratic
function of the coefficients of h.

Having shown that for each x, the expression ||f (x) − h(x)||2 is a convex quadratic
function of the coefficients of h, we now note that Ex←D[ ||f (x) − h(x)||2] is hence a

2Vitaly Feldman has pointed out [personal communication] that one can reproduce the results of this sec-
tion with a mutator with much smaller neighborhood: as opposed to choosing random elements of the k-
dimensional unit ball, one can instead just take one of the k standard unit basis vectors or its negation. This
discrete process is arguably more like the mutations that occur in DNA in nature, though in either case, the
result must still be scaled by a carefully chosen wide-scale multiplier.
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Evolvability of Real Functions 12:11

weighted average of convex quadratic functions and is hence a convex quadratic func-
tion itself, as claimed.

Before applying this lemma, we note that for any convex quadratic function on k
variables, there exists a rotation and translation of its input domain that puts the
function in the form

∑k
i=1 ci ·x2

i , for nonnegative ci (such a transformation may be found
from the eigenvalues of the positive semidefinite matrix that defines the quadratic
portion of the function). Viewing the expected loss of a polynomial hypothesis evolving
in the context of Theorem 3.3 in this form—as

∑k
i=1 ci · x2

i , for nonnegative ci, where
{xi} are a rotated and translated form of the polynomial’s k = m · (n+d

n

)
coefficients—

we show the following lemma, implying that provided the right radius is chosen in
Definition 3.1, each child has a significant chance of being significantly fitter than the
parent:

LEMMA 3.5. Given ε > 0 and a vector of nonnegative coefficients, (c1, . . . , ck), with
a bound σ ≥ ∑k

i=1 ci, then the quadratic function q : Rk → R defined as q(x) = ∑k
i=1 ci ·

x2
i has the property that for any vector x of length at most 1, if q(x) > ε, then with

probability at least 1
4 , a randomly chosen vector y in the ball of radius ε

6σ
√

k
about x will

have q(y) < q(x) − ε2

12σk .

The restriction that x has length at most 1 is for the sake of convenience of the proof;
when we apply the lemma in the context of Theorem 3.3, we will scale the inputs so
that the global bound (r) on the size of the inputs becomes scaled to 1.

PROOF OF LEMMA 3.5. To aid with the proof, we first note the following elementary
fact (see e.g., [Ball 1997, Chapter 1]).

Fact. A k-dimensional ball of unit radius centered at the origin has at least 1
4 of its

volume in the region where its first coordinate exceeds 1
3
√

k
.

Next, consider, for a vector x in the unit ball, the quadratic function q restricted to
the line connecting x to the origin. Since q has value 0 and derivative 0 at the origin and
is quadratic, it must have derivative (along this line) of 2q(x)

||x|| at x; since by assumption,
q(x) ≥ ε and ||x|| ≤ 1, this is at least 2ε. Since we have bounded the derivative in just
one direction, the gradient of q at x must have magnitude at least this bound of 2ε.

Consider the value of q in the ball of radius r � ε

6σ
√

k
about x, and specifically, in the

portion that is at least r
3
√

k
in the direction of the (downward) gradient from x. By this

fact, this portion comprises at least a quarter of the ball.
For a point y in this portion, consider the second-degree Taylor expansion of q about

x, which is exact, since q is quadratic. Letting g be the gradient of q at x, and b be the
directional second derivative of q at x in the direction of y, we have q(y) = q(x) + g ·
(y − x) + 1

2b · ||y − x||2. By the condition that y more than r
3
√

k
in the direction of the

(downward) gradient from x, and the gradient has magnitude at least 2ε, we bound the
linear term as g · (y − x) < −2ε r

3
√

k
= − ε2

9σk . We bound the remaining term by noting
that since σ is a bound on the sum of the coefficients of q, then 2σ bounds the second
derivative in any direction, and hence b. Thus, 1

2b · ||y − x||2 ≤ σr2 = ε2

36σk .
Combining these results yields the desired bound: over the entire portion of the ball

that we are considering, the quadratic function q has value less than q(x) − ε2

9σk +
ε2

36σk = q(x)− ε2

12σk , namely, ε2

12σk less than its value at x; because this portion of the ball
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12:12 P. Valiant

comprises at least 1
4 its volume, a randomly chosen vector in the ball will decrease the

value of q by more than ε2

12σk with probability at least 1
4 , as claimed.

We now assemble the pieces into a proof of Theorem 3.3.

PROOF OF THEOREM 3.3. Both the hypothesis functions and the target functions
are degree d polynomial functions f : R

n → R
m, which we represent via their k =

m·(n+d
n

)
coefficients, each of which have magnitude at most r by assumption. Given any

pair of these functions, h, f , and any point x ∈ R
n, whose coordinates have magnitude

at most r, consider the L2 loss function ||h(x) − f (x)||2 as a function of the k coefficients
{hi} of the hypothesis function h; after a suitable rotation and translation, the loss can
be represented in the form

∑k
i=1 cih2

i for nonnegative coefficients ci; let b be a bound on∑k
i=1 ci over all pairs f , h and all points x. Both k and b are bounded by polynomials for

constant d, and the same bound b applies for the expected loss, over any distribution
D over such points {x ∈ R

n : ∀i ≤ k, |xi| ≤ r}.
With a view towards applying Lemma 3.5, we note that if we rescale the parameters

{hi} by 1
r
√

k
, then the rescaled parameter vector will lie in the unit ball, and the coeffi-

cients of the quadratic loss function, in terms of these scaled parameters, will increase
by a factor of (r

√
k)2. Thus the coefficients now have a sum that is bounded by br2k. We

thus consider the application of Lemma 3.5 to this transformed expected loss function,
using the bound σ = br2k just computed. For any point in the k-dimensional unit ball
that has expected loss greater than ε, Lemma 3.5 guarantees that there exists a “magic
radius” μ = ε

6σ
√

k
such that moving the (rotated, translated, and rescaled) hypothesis

by a vector randomly chosen in the k-dimensional ball of radius μ will, with probability
at least 1

4 , improve the expected loss by more than ε2

12σk . Since we have polynomial up-
per bounds on σ , Lemma 3.5 thus provides for inverse-polynomial progress, in exactly
those cases where we are not already within ε of optimal (0) loss.

This analysis is predicated on choosing exactly the right “magic” radius μ, but in
fact, the wide-scale random noise procedure chooses the radius at random, as we would
not expect evolution to “know” all the parameters involved and exactly customize it-
self to them. We thus consider wide-scale random noise as choosing from a huge but
polynomially-sized range [ �, u] that is guaranteed to contain the radius μ, and con-
sider the following general fact: a pair of k-dimensional balls with the same center,
whose radii r, r′ have logarithms within 1

k of each other, namely, | log r− log r′| ≤ 1
k , will

share at least a 1
e fraction of their volume.

Thus, with at least inverse-polynomial probability, choosing a radius that is 2 to the
power of a number uniformly chosen between log2 � and log2 u will yield a radius whose
logarithm is within 1

k of the logarithm of μ, and from there, Lemma 3.5 guarantees that
with constant probability 1

4e , the resulting mutation will improve the expected loss by

at least ε2

12σk , provided the expected loss is not already within ε of optimal. Recall
that in each generation, many “candidates” are generated for the next generation; we
set the number of candidates high enough so that with overwhelming probability, say,
probability at least 1 − ε

2 , such a mutation will be present in each generation.
Thus, we may choose s, that is, the size of the sample with which to evaluate the

empirical performance, high enough so that via Chernoff bounds, with probability at
least 1 − ε

2 , over the entire course of the algorithm, all estimates will be accurate to

within a third of the minimum improvement, ε2

36σk . Further, we choose t, the threshold
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Evolvability of Real Functions 12:13

for declaring a mutation beneficial, to be equal to ε2

18σk , so that assuming each empirical

estimate is in fact accurate to within ε2

36σk , each of the beneficial mutations guaranteed
by Lemma 3.5 will be recognized and declared to be beneficial. Thus, with probability
at least 1 − ε, the performance of every generation will be at least ε2

36σk better than

that of the previous, unless we are already within ε + ε2

36σk of optimum, yielding the
desired result.

To give a sense of the parameters involved, given our bound b on the expected loss,
as already defined, the total number of generations needed for convergence is thus at
most b

/
ε2

36σk = 36bσk
ε2 . For the parameters of wide-scale random noise, we note that

the magic radius of Lemma 3.5, μ = ε

6σ
√

k
, after reversing the rescaling by 1

r
√

k
, equals

rε
6σ

, which by definition of σ = br2k equals ε
6brk ; hence, the interval [ �, u] should be

chosen so as to contain this number.

We note that we insist on constant r and d in Theorem 3.3 because the definition
of evolvability (Definition 2.6) insists that each parameter of performance must be
bounded by a polynomial function of only n, m, and 1

ε
. Explicitly, each of the param-

eters of the proof of Theorem 3.3 in fact depends as mildly as might be expected on
r and d, depending polynomially on the number of coefficients needed to describe the
hypothesis class of degree-d polynomials, k = m · (n+d

n

)
, and on rd, which captures the

growth of the output of degree-d polynomials on inputs of magnitude up to r. This same
will hold true in the next section, with Theorem 4.5.

We also point out that the radius of wide-scale random noise needed by our proof
of Theorem 3.3 is a single constant, and thus one could argue that a random radius
(the “scale” of wide-scale random noise) is not needed for evolution. However, the ap-
propriate radius, ε

6brk (as derived at the end of the proof of Theorem 3.3), depends on
many of the parameters of evolution, and we consider it an appealing feature of these
results that a single wide-scale mutator is effective over a wide range of parameters of
evolution, without any need to be customized for new parameter settings.

4. EVOLVABILITY AS “WEAK” OPTIMIZATION

Having shown that a very simple and robust approach can yield evolvability of fixed-
degree polynomials under the L2 loss function, we now turn to showing a much
stronger result, though one that relies on decidedly “unnatural” algorithms.

The idea at the center of this section is that evolvability can reproduce any result
efficiently obtainable from approximate oracle access to LPerf. In this section, we
demonstrate this connection, which lets us then leverage the entire field of optimiza-
tion algorithms towards our goal of evolvability, yielding immediate fruits at the end
of this section.

As noted in the introduction, we prove this connection via an adaptation of the
analysis of the analogous result from the Boolean case—which appears as Theorem
5.1 in Feldman [2009b] (see, specifically, the proof of Theorem A.3 in the appendix of
that paper). The main hurdle in both cases is showing that the selection rule SelNB
can efficiently simulate approximate responses to questions of the form “is LPerff ,D(h)
greater than a threshold θ?” In particular, this will be achieved in a single generation of
evolution.

One difference between the real case and the Boolean case—or, more specifically,
between how LPerf is defined here versus in Feldman [2009b]—is that in our case, we
have no functions whose performance we know a priori, while in the Boolean case,
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12:14 P. Valiant

the function that returns an independent unbiased coin flip is guaranteed to have
performance 0. Without such a reference point, evolvability has no hope of address-
ing such threshold queries. In lieu of an absolute benchmark like that, we instead
adopt a relative benchmark, comparing performance always against LPerf(0). Namely,
our evolution algorithm will function as though it had approximate oracle access to
LPerf(·) − LPerf(0).

We note that here and for the rest of the article, we use no special properties of the
0 function, and indeed, any arbitrary function from the hypothesis class could be sub-
stituted here and throughout. We use 0 simply to avoid introducing further notation.
A more meticulous reader might mentally substitute an arbitrarily-chosen element of
the hypothesis class instead of 0, in each of the following results, to handle the odd but
perfectly legitimate case that 0 is not in the hypothesis class C of Theorem 4.4.

We start with an overview of the intuitive idea for the construction to approximately
answer, in a single generation, threshold queries of the form “is LPerf(h) − LPerf(0) >
θ?”. We assume genomes may represent probabilistic functions and, moreover, assume
as a sort of induction hypothesis, that the parent’s genome defines a function that is
the 0 function a “large” fraction of the time.

Denoting the parent’s genome by r, its performance is LPerff ,D(r), and for a given tol-
erance t, the selection rule SelNB treats children very differently according to whether
their observed loss is within t of LPerff ,D(r) (neutral mutations), more than t lower
than this (beneficial mutations), or more than t higher than this and doomed to be
culled. Since our goal is to make the selection rule have a sharp threshold near where
LPerf(h) − LPerf(0) ≈ θ , and the selection rule already has sharp thresholds built-in
at LPerff ,D(r) ± t, the natural approach, as in Feldman [2009b], is to make use of these
thresholds for our purposes, having r produce two types of children: the first type has
(probabilistic) hypothesis function identical to the parent; the second type outputs the
function 0 with probability t

|θ | less than its parent and h with probability t
|θ | more than

its parent. Thus, given some bound q = q(n, m, 1
ε
) on the total number of threshold

queries we would ever need to resolve, and a lower bound on |θi|, we can set t suffi-
ciently small so that the expressions t

|θi| of probability mass for a sequence of q queries
θ1, . . . , θq can be readily made to sum up to a probability less than 1.

To state the result more cleanly, we introduce “weak” optimization terminology
adapted from Lovász [1986].

Definition 4.1. A μ–weak evaluation oracle for a function p : Rk → R is an oracle
that on input x returns a number a such that |p(x) − a| < μ.

Definition 4.2. The ν–weak function minimization problem for a function p : Rk →
R is that of finding an x such that ∀y ∈ R

k, p(y) > p(x)−ν. Namely, x has function value
within ν of the global optimum.

Definition 4.3. A class of functions is weakly optimizable if there exists a random-
ized polynomial-time oracle algorithm A and a polynomial μ = μ(ν, 1

k ) such that for
every ν > 0 and any function p : Rk → R in the class, A solves the ν-weak function
minimization problem when given access to a μ(ν, 1

k )-weak evaluation oracle for p.

THEOREM 4.4. If L is a loss function, C is a concept class, and D is a set of distribu-
tions such that there is a polynomial b(n, m) that bounds L(f1(x), f2(x)) for any f1, f2 ∈ C
and any x in the support of a distribution in D, and such that the class of functions
LPerff ,D(h) − LPerff ,D(0) indexed by f ∈ C, D ∈ D and evaluated on h ∈ C is weakly
optimizable, then (C,D, L) is evolvable.
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We will find it convenient to first prove this result in a restricted model referred to
as “evolvability with initialization”, where Definition 2.6 is modified so that instead
of analyzing evolution starting with an arbitrary genome r0 ∈ R, we instead assume
a fixed starting configuration. (This is analogous to the approach of Theorem A.1 of
Feldman [2009b].) Namely, we show a mutation algorithm that, starting from a fixed
initial genome “�”, will emulate the performance of any desired optimization algorithm
and yield a very good hypothesis after a reasonable number of generations; this propo-
sition is the first step to proving this result in the standard model, where the initial
genome is arbitrary.

PROPOSITION 1. Theorem 4.4 holds under the restricted evolvability with initializa-
tion model, where Definition 2.6 is changed by replacing the phrase “any initial genome
r0 ∈ R” by “initial genome r0 = �”.

PROOF. By the assumption that performance is weakly optimizable as a function of
the hypothesis, there is a randomized polynomial-time algorithm A and a polynomial
μ = μ(ν, k) such that for every ν > 0 and any f ∈ C and D ∈ D, algorithm A—when
given μ-weak oracle access to LPerff ,D(·) − LPerff ,D(0)—will return a hypothesis h ∈ C
that is within ν of optimal. Denoting by T a (polynomial) bound on the runtime of al-
gorithm A, we note that we may equivalently reexpress A as a deterministic algorithm
that is given as auxiliary input a T-bit uniformly-random string. Given such a deter-
ministic algorithm, our task is to show how to simulate its operation in the evolvability
framework.

As a first step, we will replace the weak evaluation oracle of Definition 4.1 with a
simpler oracle, the weak comparison oracle, at a cost of a factor of 2 in accuracy and a
logarithmic factor in the number of oracle calls. Thus, reparameterize μ

2 → μ before
doing the following analysis.

The μ–weak comparison oracle for a function p will, on given an input x and
a threshold θ , return 1 if p(x) ≥ θ + μ, 0 if p(x) ≤ θ − μ, and either 1 or 0
otherwise.

By assumption, b bounds the value of the function in question, that is, LPerff ,D(·) −
LPerff ,D(0), and thus we have that log b

μ
rounds of μ-weak comparison queries will let

us run a binary search to 2μ-weakly approximate the value of the function. Denote
this bound by β = log b

μ
, which since b and μ are polynomial, is hence polynomially

bounded itself. We note, as will be important later, that such a binary search can be
designed so that none of the thresholds θi queried ever have magnitude less than μ.

As a preliminary step, we have thus trivially shown that there is a deterministic al-
gorithm that, when given as an auxiliary input a T-bit uniformly-random string, and
given weak comparison oracle access to LPerff ,D(·) − LPerff ,D(0), will return a ν-weak
minimum within Tβ steps. We denote this algorithm A′, and for the sake of concrete-
ness, assume that after Tβ steps have passed, it halts and outputs a hypothesis no
matter what.

We now turn to the task of expressing algorithm A′ in the evolvability framework.
Recall that by assumption, the initial genome is uniquely fixed as “�”. We thus ask
the mutation algorithm, when it sees the initial genome “�”, to produce children whose
genomes each encode T bits uniformly generated at random. In each subsequent stage
of mutation, these bits will be preserved in the genome; in this manner, future gener-
ations will have access to this randomly-generated T-bit string, as desired.

What remains is to describe how to simulate weak comparison queries. We will sim-
ulate one query per generation, with the result of the query being stored in the genome
for the duration. At each generation, the next query to ask is computed adaptively in
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12:16 P. Valiant

terms of the results of all the previous queries, which are stored in the DNA. At time 0,
the genome will consist of “�”, at time 1, of a T-bit random string, and at time 1 + j, we
aim for the genome to consist of the concatenation of this string with a j-bit string that
stores the results of the first j weak comparison queries as specified by the algorithm
A′ under simulation. For each such genome, we must specify how the corresponding
creature responds to inputs. For the genome “�” and any genome consisting solely of a
T-bit string, we have the creature return the 0 vector. Otherwise, let R be the initial
T bits of the genome, which is a T-bit random string by construction, and let z be the
remainder of the genome, whose length we denote by j, and whose ith bit we denote zi.
Recall algorithm A′ whose results we are trying to reproduce. Iteratively simulate A′
starting with string R, and let (h1, θ1) be the first query sent to the weak comparison
oracle; interpreting z1 as the result of this query, let (h2, θ2) be the next query asked
by A′ given z1, and so on. We thus derive (hi, θi) adaptively for each i ∈ {1, . . . , j +1}, all
computed in polynomial time in terms of the bits z1, . . . , zj stored in the genome that
represent responses to the first j queries.

Since each genome encodes a function h : R
n → R

m, we define this relation now.
Given a genome of length T + j and an input x ∈ R

n, for each i ∈ {1, . . . , j} such that
zi = 0, output hi(x) with probability μ

|θi| Tβ
and otherwise output the vector 0. Since |θi|

is guaranteed to be at least μ by construction, the sum of the probabilities over the
(up to) Tβ generations involved will never exceed 1. Note that when zj = 1, the func-
tion represented equals that of the parent. The difference in the expected performance
when zj = 0 versus the parent (or, equivalently, versus zj = 1) equals the probability

μ
|θj| Tβ

times the difference in performance between hj and the zero function, namely,
μ

|θj| Tβ

[
LPerff ,D(·) − LPerff ,D(0)

]
. Setting t = μ

Tβ
means that this last expression crosses

±t (namely, zj = 0 changes from being a neutral mutation to being either beneficial or
negative) precisely when LPerff ,D(·)−LPerff ,D(0) crosses θ , which matches the intuition
given before Definition 4.1.

A complete specification of the scheme requires only that we now specify the muta-
tion probabilities. Namely, given a current genome Rz consisting of the (random) string
R of length T and a string z of length j, where we may determine that (hj+1, θj+1) is
the next query to be simulated, we must choose with what probability the mutation
algorithm M should output Rz0 as opposed to Rz1. Very simply, if θj+1 < 0, then out-
put Rz0 with probability 
 and Rz1 with probability 1 − 
, otherwise output Rz0 with
probability 1 − 
 and Rz1 with probability 
, where 
 = ε

3γ
, for γ = 2b

t + 1 + Tβ,
is chosen so that in γ rounds of coin flips, a 
-biased coin will never land heads, ex-
cept with probability less than ε/3. (Note that in this proposition, we only use 1 + Tβ

generations; the extra 2b
t will be used in the proof of Theorem 4.4.)

We choose the tolerance parameter t, which specifies the width of the “neutral” zone
of performance, to be t = μ

Tβ
. We choose s, the size of the sample used to evaluate

the empirical performance, to be large enough so that with probability > 1 − ε
3 , the

empirical estimates are never off by more than t μ
2b over the entire course of γ = 2b

t +
1 + Tβ generations. We analyze the scheme in two cases, making use of the preceding
observation that if we denote the expected performance of genome Rz by ρ, then the
expected performance of Rz1 equals ρ, while the expected performance of Rz0 equals
ρ + t

|θj+1|
[
LPerff ,D(hj+1) − LPerff ,D(0)

]
, where as just defined, t = μ

Tβ
.

Case 1. θj+1 < 0. In the subcase where the weak comparison query should return
“0”, that is, if the expected value of LPerff ,D(hj+1) − LPerff ,D(0) is at most θj+1 − μ,
then the expected performance of Rz0 is at most ρ + t

|θj+1| (θj+1 − μ) ≤ ρ − t − tμ
b , where
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b is the bound on the loss function in the theorem statement. Since by assumption,
except with probability < ε

3 , the empirical performance will always approximate the
expected performance to within tμ

2b , we have that Rz0 will be found to be beneficial as
compared to the parent’s performance of ρ; further, Rz1 represents the same function
as the parent and will be found to be neutral. Thus, the next genome will be Rz0,
correctly encoding the answer to the weak comparison query. Conversely, if the weak
comparison query should return “1”, then by an analogous argument, the expected
performance of Rz0 is at least ρ − t + tμ

b , and Rz0 is thus either a neutral or negative
mutation. Recall that by construction, in this subcase, an overwhelming majority (a
1 − 
 fraction) of the mutations in this generation were constructed to be Rz1 instead
of Rz0, and thus with very high probability (specifically, at least 
 = ε

3γ
), Rz1 will thus

be correctly chosen for the next generation.

Case 2. θj+1 > 0. In the subcase where the weak comparison query should return “1”
then, from the preceding argument, the expected loss of Rz0 is at least ρ + t + tμ

b , in
which case Rz0 is a negative mutation, and the neutral mutation Rz1 will be chosen for
the next generation, as desired. Otherwise, the expected loss of Rz0 is at most ρ+t− tμ

b ,
which will be either neutral or beneficial; since the mutation algorithm will construct
Rz0 instead of Rz1 an overwhelming fraction of the time (1 − 
), with overwhelming
probability, Rz0 will thus be correctly chosen for the next generation.

With probability at least 1 − ε, the simulation of algorithm A′ will faithfully execute
for 1 + Tβ generations, where the resulting genome Rz is the concatenation of the ran-
dom string of A′, and the results to all the (possibly adaptive) queries A′ asked of the
oracle. We conclude by stipulating that once the simulation of A′ has completed, the
mutation algorithm will compute the hypothesis function h that A′ would output, and
then with probability 1 − 
 mutate the genome to a special representation, ansh en-
coding h, and otherwise leave the genome unchanged. The mutation algorithm leaves
genomes of the form ansh unaltered, and when given an input x ∈ R

n, a creature with
genome ansh will simply output h(x). By definition, the output h of algorithm A′ will
have performance better than ν. Thus, either the mutation from Rz to ansh is rec-
ognized as a beneficial mutation, having performance better than ν, or the genome
already has performance within t of this already. Setting ν + t < ε guarantees that we
will end up with a genome that performs at least as well as ε, with probability 1 − ε,
as desired.

We now prove Theorem 4.4, resulting from the preceding proposition and a short
argument that initialization is not necessary for the successful evolution of our algo-
rithm. We take a simpler approach than Feldman [2009b] though at the expense of
looser bounds: Feldman’s construction relies on explicitly testing whether evolution
has reached a satisfactory end state and otherwise reinitializing and running through
evolution a second time; here, instead, we sidestep the need to ever evaluate absolute
performance, and instead of reinitializing based on a clever test, simply continually
reinitialize with suitably small probability at any point in the process.

PROOF OF THEOREM 4.4. Intuitively, evolution will follow the procedure set up in
the proof of the proposition, which takes 1 + Tβ generations, except that at every gen-
eration, there is probability ρ to be defined shortly of reinitializing, that is, attempt-
ing to start evolution from scratch again. We will exhibit a reinitialization procedure
that takes 2b

t generations, where b is the bound on the loss function from the theo-
rem statement, and t is the tolerance threshold for the selection rule of Definition 2.5.
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Thus one round of complete reinitialization and evolution will take 2b
t + 1 + Tβ gen-

erations, while in expectation, this will happen only once every 1
ρ

generations. Let

ρ = 1
2ε

/
(2b

t + 1 + Tβ) . Letting g = 1
ρ
|1 + log ε|, we have that after g generations,

reinitialization will have occurred at least once with probability at least 1 − ε
2 . At any

moment in time after this, with probability at most 1−ρ(2b
t +1+Tβ) = 1− 1

2ε, the most
recent reinitialization happened at least 2b

t + 1 + Tβ generations in the past and has
thus finished. Reinitialization succeeds, by the proposition, with probability at least
1 − ε. Combining these three expressions via the union bound yields that for any mo-
ment in time after g generations, the probability that evolution is at a weak optimum
is at least 1 − 2ε. We thus reparameterize 2ε → ε.

To summarize, evolution could have started in any configuration, including configu-
rations that mimic partial wrong simulations of the weak optimization algorithm A′ of
the preceding proposition; thus even when evolution has reached a state that, locally,
looks like an “answer”, it might be bogus. Thus, at every generation, with a certain
small probability ρ, we give up on evolution and restart from scratch, from the desired
initial condition “�”. This means that, over a long enough timescale, evolution will re-
peatedly find an optimum, settle there for a while, but then eventually abandon it and
recalculate from scratch. Setting the parameters appropriately so that the probability
of reinitialization is rather less than the inverse of the time it takes to properly reach
an optimum, will guarantee that after an appropriate time, the probability of being at
a weak optimum is high, regardless of how evolution was started.

We now present the very simple reinitialization procedure which will take 2b
t gen-

erations, a number we denote here as c. For each genome representation G in the
scheme of the proposition, with the exception of “�”, we add copies labeled by integers
i ∈ {0, . . . c − 1}, which we denote as Gi with the interpretation that Gi is “G after i out
of c steps towards reinitialization.” We modify the mutator described in the proposition
so that every time it might output a certain representation G, now with probability ρ,
it will instead output G0. The mutation rule for Gi is even simpler: if i �= c−1, then out-
put Gi+1, and if i = c − 1, then output “�”, that is, reinitialize evolution to the starting
point of the preceding proposition.

We now define how creatures with genome Gi evaluate an input x: with probability
c−i

c , output whatever G would output; with probability i
c , output the 0 vector. We note

that since the performance difference between 0 and any other hypothesis is at most b,
the expected change in performance over any generation of reinitialization is thus at
most b

c = t
2 , namely, these are all “neutral” mutations and, by the parameter choice of

the proposition, will be recognized as such, which guarantees that this procedure will
operate as claimed.

While it is fairly immediate that our notion of evolvability itself is indeed a weak
optimization procedure, the surprising consequence of this theorem is the converse:
that any optimization technique that is “noise-tolerant”—or in the terminology we use
from Lovász [1986], “weak”—may be leveraged by evolution.

We may thus immediately leap to what is perhaps the most powerful and robust
framework for optimization: the ellipsoid method. The ellipsoid method is famously
known to solve any (reasonably bounded) convex optimization problem, and in partic-
ular, its weak formulations [Lovász 1986]. (Specifically, both the domain and range of
the functions should be bounded.) We thus have that as long as we can arrange for
LPerf to be convex and bounded, the associated triple (C,D, L) is evolvable.
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As an immediate and important consequence, consider a degree-d polynomial
p: Rn → R

m, with D a distribution of bounded support. Then for a hypothesis h, perfor-
mance is evaluated by taking a sample x ← D and evaluating L(p(x), h(x)). As noted in
the proof of Lemma 3.4 of the previous section, if h is a degree-d polynomial, considered
as a vector of its m · (n+d

n

)
coefficients, then h(x) is a linear function of this coefficient

vector (though not linear in x!). Thus, if the loss function L is a convex function of its
arguments, L will be a convex function of the coefficients of h. In short, finding the
coefficients of h is a convex optimization problem when L is convex.

THEOREM 4.5. There is a single mutation algorithm under which for any con-
stant positive integer d and positive number r, and an arbitrary convex loss function L
bounded on the radius r ball, the class of degree ≤ d polynomials from R

n → R
m with

coefficients bounded by r is evolvable with respect to all distributions over the radius
r ball.

Implementing the ellipsoid algorithm of Lovász [1986] via Theorem 4.4 proves this
theorem.
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