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Quantifying unobserved protein-coding variants
in human populations provides a roadmap for
large-scale sequencing projects
James Zou1, Gregory Valiant2, Paul Valiant3, Konrad Karczewski4,5, Siu On Chan6, Kaitlin Samocha4,5,

Monkol Lek4,5, Shamil Sunyaev5,7, Mark Daly4,5,8 & Daniel G. MacArthur4,5,8

As new proposals aim to sequence ever larger collection of humans, it is critical to have a

quantitative framework to evaluate the statistical power of these projects. We developed a

new algorithm, UnseenEst, and applied it to the exomes of 60,706 individuals to estimate the

frequency distribution of all protein-coding variants, including rare variants that have not been

observed yet in the current cohorts. Our results quantified the number of new variants that

we expect to identify as sequencing cohorts reach hundreds of thousands of individuals. With

500K individuals, we find that we expect to capture 7.5% of all possible loss-of-function

variants and 12% of all possible missense variants. We also estimate that 2,900 genes

have loss-of-function frequency of o0.00001 in healthy humans, consistent with very strong

intolerance to gene inactivation.
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R
ecent efforts aggregating the genomes and exomes of tens
of thousands of individuals have provided unprecedented
insights into the landscape of rare human genetic

variation1,2 and generated critical resources for clinical and
population genetics. The recently announced U.S. Precision
Medicine Initiative raises the prospect of growing these databases
to encompass hundreds of thousands of human genomes. In
the context of these ambitious efforts, it is important to quantify
the power of large sequencing projects to discover rare functional
genetic variants3. In particular, we need to understand, as we
sequence ever larger cohorts of individuals, how many new
variants we can expect to identify and their expected allele
frequencies. Accurate estimates of these quantities will enable
better study design and quantitative evaluation of the potential
and limitations of these datasets for precision medicine.

Predicting the number of new variants, we expect to identify in
larger cohorts requires accurate estimates of allele frequencies
of all the genetic variation in the human population, including
the rare variants that have not been observed in the current
sequencing cohorts4–6. As common variants have already been
saturated in the current cohorts, the population frequencies of
the unobserved rare variants determine the discovery rate of
new variants as the cohort sizes increase. These rare variants also
include many variants with large effect sizes, which are targets of
disease-sequencing studies7. The frequency distribution of rare
variants thus reflects a confluence of several important processes
including the demographic history of the population8–10 and
the forces of selection acting on these variants11,12.

Estimating the frequency distribution of genetic variation is
closely related to the classic statistics problem of estimating
the number of unseen animal species from capture
experiments13,14. Leveraging this connection, previous methods
used Bayesian and jackknife approaches to estimate the discovery
rate of new variants4,5,15. The Bayesian methods estimate the
discovery rate by using specific prior distributions on the variant
frequencies, which enable tractable computation4. The parametric
forms of the prior typically correspond to the assumption that
the variants are selectively neutral, and this assumption could
lead to biased predictions especially on missense and truncation
variants. Unlike the Bayesian approach, which models the variant
frequency distribution, the jackknife approach directly models
the variant discovery rate using a parametric form derived
from consistency requirements (see ‘Methods’ section) that does
not need to assume neutrality. The jackknife is validated to
produce accurate 20-fold extrapolation on small cohorts, such as
the individuals from the 1,000 Genome populations16.

We developed a new method, UnseenEst, to estimate the
frequency distribution of all genetic variants in the population
based on the observed site-frequency spectrum (SFS) of the current
cohort. UnseenEst does not assume a prior distribution of
variant frequencies and is applicable across different demographic
and selection models. We validated and applied UnseenEst on a
significantly larger dataset than was previously explored—the exome
sequencing data of 60,706 individuals assembled by the Exome
Aggregation Consortium (ExAC)17. For several classes of variants,
we systematically estimated how many distinct new variants
would be discovered as we further scale up the sequencing effort.
We also provide estimates for more complex statistics of biomedical
interest, such as the expected number of genes harbouring multiple
loss-of-function (LoF) variants in expanded cohorts.

Results
Quantifying unobserved protein-coding variants. UnseenEst
uses a linear programme to identify the variant frequency
distribution whose expected SFS most closely matches the

empirically observed SFS. Recent works have successfully explored
using different linear programs for related tasks such as estimating
entropy18 and estimating the upper and lower bounds on the
number of distinct genetic features5. In comparison, UnseenEst
directly aims to estimate the frequency distribution itself. Because
the objectives functions are different, the previous linear programs
differ from UnseenEst in their formulations and modelling
assumptions—for example, the infinite genome assumption in
Gravel5 is not needed for UnseenEst. More detailed discussions of
these methods are included in the ‘Methods’ section and the
Supplementary Information. Our empirical and mathematical
analysis shows that UnseenEst provides accurate extrapolation of
the SFS from current data to cohort sizes more than an order of
magnitude larger (Supplementary Notes 1–6).

Protein-coding variants represent the most readily
interpretable and medically relevant slice of human genetic
variation, and have been assessed in large sample sizes through
the widespread application of exome sequencing approaches2.
We leveraged data from the ExAC to estimate the discovery rates
of different classes of protein-coding variants in larger cohorts.
We validated UnseenEst by training it on random 10% of the
alleles in ExAC and then used the estimated frequency
distribution to predict the number of distinct variants that we
can identify in the entire ExAC cohort. For every variant type
(Supplementary Fig. 1) and every population (Supplementary
Fig. 2), UnseenEst accurately predicted the number of unique
variants that were identified in the entire ExAC cohort as well as
the empirical SFS of ExAC (Supplementary Table 1). UnseenEst
does not make parametric assumptions about the shape of the
variant frequency distributions. This important feature enables it
to accurately estimate the frequency distribution of variants that
have evolved under different selection pressures (for example,
synonymous and missense variants) as well as under different
demographic histories. Commonly used methods for predicting
variant discovery rates, such as the jackknife estimator5, assume
that the discovery rate has a particular parametric form, which
can lead to biases when there is a model mismatch. On the same
validation experiments using random 10% of ExAC alleles,
jackknife consistently underestimated the true number of distinct
variants in all populations (Supplementary Fig. 3).

From the full ExAC dataset, we generated a cohort of 33,778
healthy individuals that matched the ancestral population
breakdown of the 2010 U.S. Census (Supplementary Table 2).
We trained UnseenEst on this U.S. Census-matched cohort and
predicted the frequency distributions of variants in the entire
population (Supplementary Fig. 4). In particular, we estimated
the number of distinct variants we expect to identify in cohorts of
up to 500K individuals. These results provide a quantitative
framework to evaluate the power and limitations of precision
medicine initiatives in discovering rare coding variants.

We categorized the variants by their predicted functional
consequence—synonymous, missense and LoF, which is defined
as point substitutions that introduce stop codons or disrupt splice
donor/acceptor sites (Fig. 1a; Supplementary Table 3).
The discovery rate of LoF variants is the lowest, reflecting the
fact that LoFs are likely to be deleterious and hence tend to
occur comparatively rarely in the healthy population. With 500K
individuals, we expect to identify 400K distinct LoF variants or
7.5% of all possible LoF point mutations in the human exome.
In the same cohort, we expect to identify 3.4 million synonymous
and 7.5 million missense variants, corresponding to 18 and 12%
of possible synonymous and missense variants, respectively.
These estimates indicate that the discovery rates of rare
LoF, missense and synonymous variants are far from saturation,
even with 500K individuals. We note that slightly higher
numbers of distinct synonymous and missense variants
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(Supplementary Fig. 5) would be discovered if the 500K
individuals were instead sampled from the same ancestral
composition as the current ExAC cohort, which contains higher
fractions of South and East Asian individuals than the United
States, confirming that the overall discovery rate of rare variants
can be boosted by optimizing the population composition of the
sequencing cohort19.

We additionally classified the variants by their biochemical
properties (Fig. 1b). With the 34K individuals of the current
cohort, we can already identify close to 50% of all possible
variants at CpG sites (the most highly mutable substitution class),
and the discovery rate for this class of variant quickly saturates as
cohorts grow larger. Transversions, in contrast, are discovered
much more slowly—attaining 7.6% of all possible transversions
with 500K individuals—which is consistent with their much
lower mutation rate. We further applied UnseenEst to quantify
the number of distinct missense variants we expect to discover
in specific gene families of interest, for example genes near
genome-wide association study (GWAS) hits and known drug
target genes (Supplementary Fig. 6). Missense mutations in drug
target genes are particularly suppressed, suggesting that these
genes are more likely to be essential to humans.

LoF variants likely disrupt the normal function of genes and by
studying individuals carrying such variants, we can quantify
the phenotypic consequence of disrupting particular genes.
Therefore, a catalogue of the number of human alleles harbouring
candidate LoF variants for each gene is an important resource for
drug development and disease diagnosis. We applied UnseenEst
to estimate the LoF frequency of genes in the U.S. population
(Fig. 1c; Supplementary Fig. 7). About 2,900 genes have LoF allele
frequency lower than 10� 5, consistent with strong intolerance
to inactivation, whereas 1,700 genes are expected to harbour LoF

variants in at least 0.1% of the population. With 250K individuals,
we expect to identify 14K genes that harbour LoFs in at least 10
individuals, substantially expanding the current catalogue of
10K such genes in ExAC (Fig. 1d; Supplementary Fig. 8). We
estimate that the discovery rate of these genes with multiple
LoF occurrences will saturate around 16 K, providing an upper
bound on the number of genes that can tolerate LoF variants on
one allele.

Discussion
We describe a framework for estimating the power of sequencing
cohorts to discover protein-coding variants. We apply it to the
largest available collection of sequenced individuals to estimate the
discovery power of much larger cohorts such as the ones proposed
by the Precision Medicine Initiative. While our predictions
here assumed that the samples are representative of the U.S.
demography, UnseenEst can be directly applied to estimate the
discovery rate of cohorts with different ancestral composition.

A key assumption of UnseenEst and of all the methods for
estimating unseen variants is that the alleles in the cohort are
random samples of alleles from the population5. Here, we used
weighted sampling of individuals in the ExAC data to match the
U.S. census demography. Because the census relies on self-reported
ethnicity, the match based on genetic ancestry may not be perfect.
Moreover, the actual cohort assembled for the Precision Medicine
Initiative and other large-scale projects will likely deviate from the
U.S. census demography due to study designs and practical
constraints. The discovery rates estimated here can be viewed as a
baseline. Adjustment will need to be made for each specific cohort,
for example by using a different weighted sampling of the ExAC
data. Using training data from the current ExAC cohort, the
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Figure 1 | Predictions for the number of unique variants in 500K individuals. We trained UnseenEst on the U.S. Census-matched ExAC cohort (‘current’)

and predicted the number of unique variants we expect to find in up to 500K individuals. The number of unique variants in the cohort were estimated for

synonymous, missense and LoF variants in (a), and for CpGs, transitions and transversions in (b). The shaded regions correspond to one standard deviation

around the estimates. (c) A gene is classified as LoF on a given allele if that allele contains at least one variant that introduces a stop codon, disrupts a

splice donor/receptor site or disrupts the reading frame. Genes are partitioned into bins based on their LoF allele frequencies: o10� 5, 10� 5–10�4,

10�4–10� 3 and 410� 3. The y axis indicates the number of genes with LoF allele frequency belonging to each bin. Error bars correspond to one standard

deviation. (d) Estimated number of genes with at least 10 and 20 LoF alleles.
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UnseenEst predicted discovery rates have wide confidence intervals
for study sizes 4500,000 participants. This uncertainty stems
from the uncertainty in the frequency distribution of very rare
variants, most of which have not been observed in ExAC.
Reducing this uncertainty without introducing too much bias
would be a useful advance. This paper focuses on the discovery
rate of single-nucleotide variants. Another important question of
future work is to develop methods to estimate the discovery
power of more complex types of genetic variation such as
insertion/deletions.

Naturally occurring LoF variants provide a powerful model for
understanding the impact of gene inactivation on human
phenotype, as illustrated by the development of PCSK9 inhibitors
(guided by the discovery of LoF variants in this gene that reduce
LDL cholesterol)20. For researchers interested in leveraging
‘human knockout’ data in drug development and disease
diagnosis, the UnseenEst predictions rigorously quantify the
statistical powers of the future cohort-sequencing projects.
This can inform both cohort designs as well as downstream
analysis. For example, UnseenEst predicts that in a cohort of
250 K individuals, we would find around 14K genes with at least
10 individuals carrying protein-truncating variants (Fig. 1d), who
could then be followed up to understand the impact of
heterozygous LoF of that gene on human phenotypes. Overall,
our results show that sequencing a cohort of 500K randomly
selected U.S. individuals would provide access to over 12% of all
possible missense variants and 7.5% of all possible LoF variants,
thereby permitting exploration of a substantial fraction of human
biological diversity.

Methods
UnseenEst algorithm. UnseenEst uses the empirical SFS of a given class of var-
iants in a cohort to estimate its frequency distribution in the population. The inputs
into the algorithm are the number of alleles in the sample cohort, k, and the SFS,
which is a set of counts, {Fi}, where Fi is the number of variants that are observed in
exactly i out of the k alleles. A key challenge for the method is to accurately
estimate the frequency distribution of variants that have empirical count of 0
(that is, they are not observed) in the cohort but are likely to have some small,
non-zero frequency in the population.

More concretely, let X denote a discrete set of frequencies x in [0, 1] and
let h(x) denote the fraction of all the variants with frequency x. UnseenEst
estimates h(x) by finding the set of h(x) that jointly minimizes the value of the
expression:

X

i

1ffiffiffiffiffiffiffiffiffiffiffiffi
Fi þ 1
p Fi �

X

x

h xð Þbin x; k; ið Þ
�����

�����

where bin(x, k, i) is the binomial probability of observing i heads in k independent
flips of a coin with bias x. The intuition for minimizing this objective is as follows:P

x h xð Þbin x; k; ið Þ is the number of variants that we expect to find in i out of k
alleles in the cohort and Fiis the empirical number of variants observed in i alleles.
If h(x) is the true frequency distribution, then the expectation should be close to the
empirical, which is why we want to find h(x) that minimizes the objective above.
Given an estimate of the frequency distribution h(x), the expected number of
unique variants in N alleles can be calculated by the formulaP

x h xð Þ 1� 1� xð ÞN
� �

.
The standard 3rd order jackknife estimator does not estimate the frequency

distribution h(x). Instead, it directly estimates that the number of unique variants
in N alleles is g1(N, k)F1þ g2(N, k)F2þ g3(N, k)F3, where F1, F2, F3 are the number
of variants observed once, twice and three times in k alleles, and g1, g2, g3 are
specific functions of N and k derived from self-consistency requirements5. Note
that the confidence intervals of the jackknife in Supplementary Fig. 3 are very
narrow because there is relatively little variation in the counts F1, F2, F3,when the
sample size is large.

To calculate the gene-level frequency distribution of LoF variants,
we let Fi be the number of genes that are observed to have at least one LoF
variant in i out of k alleles. Then the h(x) produced by UnseenEst can be
interpreted as the number of genes with at least one LoF variant in x fraction of the
population. Supplementary Information contains detailed discussion of the
UnseenEst algorithm, analysis of its theoretical properties and relations to other
methods.

Datasets. We used the exome sequencing data from the ExAC17. This dataset
consists of high-quality sequencing of the protein-coding regions in the genome
(exomes) from 60,706 healthy individuals. Consistent with the ExAC analysis, we
considered only regions of the exome with sufficient sequencing depth: each
nucleotide must be covered by at least 10 reads in at least 80% of all ExAC
individuals. Variant annotation was performed using the Variant Effect Predictor21

(VEP) v81 on Gencode v19 and genome build GRch37. We define LoF variants to
be single-nucleotide substitutions that introduce a stop codon in the reading frame
or disrupts a splice donor or receptor site. LoF annotation was performed using
LOFTEE (version 0.2) plugin to VEP.

Validation. To validate UnseenEst, we randomly partitioned all the ExAC
alleles into 10 groups. For each class of variant (synonymous, missense,
LoF, CpG), we trained UnseenEst on the SFS of one partition (that is, 10%
of the alleles) and used the model to predict the allele frequency distribution
as well as the discovery rates of the entire ExAC cohort. The confidence
intervals correspond to the standard deviation of the predictions across different
partitions.

Data availability. The ExAC data used in the paper is publicly available and
can be downloaded at http://exac.broadinstitute.org/. The UnseenEst software
is implemented in Python and can be downloaded from https://github.com/
jameszou/unseenest.
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