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Abstract

We revisit the problem of estimating the mean of a real-valued distribution, presenting a novel
estimator with sub-Gaussian convergence: intuitively, “our estimator, on any distribution, is as
accurate as the sample mean is for the Gaussian distribution of matching variance.” Crucially,
in contrast to prior works, our estimator does not require prior knowledge of the variance, and
works across the entire gamut of distributions with finite variance, including those without any
higher moments. Parameterized by the sample size n, the failure probability δ, and the variance

σ2, our estimator is accurate to within σ · (1+o(1))
√

2 log 1

δ

n
, tight up to the 1+o(1) factor. Our

estimator construction and analysis gives a framework generalizable to other problems, tightly
analyzing a sum of dependent random variables by viewing the sum implicitly as a 2-parameter
ψ-estimator, and constructing bounds using mathematical programming and duality techniques.

1 Introduction

We revisit one of the most fundamental problems in statistics: estimating the mean of a real-valued
distribution, using as few independent samples from it as possible. Our proposed estimator has
convergence that is optimal not only in a big-O sense (i.e. “up to multiplicative constants”), but
tight to a 1 + o(1) factor, under the minimal (and essentially necessary, see below) assumption of
the finiteness of the variance. Previous works, discussed further in Section 2, are either only big-O
tight [12, 20, 1], or require additional strong assumptions such as the variance being known to the
estimator [4] or assumptions that allow for accurate estimates of the variance, such as the kurtosis
(fourth moment) being finite [4, 7].

1.1 The Model and Main Result

Given a set of i.i.d. samples from a real-valued distribution, the goal is to return, with extremely
high probability, an accurate estimate of the distribution’s mean. Specifically, given a sample set
X of size n consisting of independent draws from a real-value distribution D, an (ǫ, δ)-estimator
of the mean is a function µ̂ : Rn → R such that, except with failure probability ≤ δ, the estimate
µ̂(X) is within ǫ of the true mean µ(D). Namely,

P(|µ̂(X)− µ(D)| ≤ ǫ) ≥ 1− δ (1)

The goal is to find the optimal tradeoff between the sample size n, and the error parameters
ǫ and δ, for the distribution D. Fixing any two of the three parameters and minimizing the third
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yields essentially equivalent reformulations of the problem: we can fix ǫ, δ and minimize the sample
complexity n; we can fix δ, n and minimize error ǫ; or we can fix ǫ, n and minimize the failure
probability δ (maximizing the robustness 1− δ).

Perhaps the most standard and well-behaved setting for mean estimation is when the distribu-
tion D is a Gaussian. The sample mean (the empirical mean) is a provably optimal estimator in
our sense when D is Gaussian: for any ǫ, δ > 0, the sample mean µ(X) is an (ǫ, δ)-estimator when

given a sample set of size n = (2 + o(1))
σ2(D)·log 1

δ
ǫ2

(all logarithms will be base e); and there is no
(ǫ, δ)- estimator for Gaussians if the constant 2 in the previous expression for the sample size is
changed to any smaller number.

The main result of this paper is an estimator that performs as well, on any distribution with
finite variance, as the sample mean does on a Gaussian, without knowledge of the distribution or
its variance:

Theorem 1. Estimator 1, given δ, n > 0, defines a function µ̂ such that with probability at least
1− δ, given a sample set X of size n, yields an estimate with error

|µ̂(X)− µ(D)| ≤ σ(D) · (1 + o(1))

√

2 log 1
δ

n

Here, the o(1) term tends to 0 as
(

log 1
δ

n , δ
)

→ (0, 0). Furthermore, as evidenced by the Gaussian

case, there is no estimator which, under the same settings, produces an error that improves on our
guarantees by more than a 1 + o(1) multiplicative factor.

We have parameterized the above theorem in terms of fixing the sample size n and the robust-
ness parameter δ and asking for the minimum error ǫ; however, because of the simple functional
form of the bounds of Theorem 1, we can equivalently rephrase it as saying that, for any ǫ, δ,

(a reparameterized) Algorithm 1 is an (ǫ, δ) estimator using (2 + o(1))σ(D)2

ǫ2
log 1

δ samples; or for

any n, ǫ, Algorithm 1 gives an estimate that is δ = exp(− nǫ2

(2+o(1))·σ2(D)
)-robust. For each of these

formulations, the performance is optimal up to the 1+ o(1) factor, as evidenced by the well-known
Gaussian case, as explained above.

We make the following observations regarding the main (minimal) assumption in the theorem,
namely the finiteness of the variance of the unknown distribution. First, imposing further assump-
tions about the finiteness of higher moments will not yield any improvements to the result, since
matching lower bounds are provided by Gaussians, for which all moments are finite. Second, as
shown by Devroye et al. [7], relaxing the finite variance assumption by only assuming, say, the
finiteness of the (1 + β)th moment for some β < 1 will yield strictly worse sample complexity. In
particular, the sample complexity will have an ǫ-dependence that is ω(1/ǫ2). Thus, our result shows
that mean estimation can be performed at a sub-Gaussian rate, with the optimal multiplicative
constant of 2 in the sample complexity, if and only if the variance of the underlying distribution is
finite.

We also contrast with previous works that attain optimal sub-Gaussian convergence but make
additional assumptions such as the finiteness of the kurtosis (4th moment) [4, 7]. The gap in
assumptions between those works and this work is not only theoretical, but also of practical con-
sequence: power law distributions are known to be good models of certain real-world phenomena,
and for exponents in the range (3, 5], the variance exists, but not the kurtosis.
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1.2 Our Approach

We briefly describe the main features of our estimator, as a setting for what follows, and to dis-
tinguish it from prior work. At the highest level: in order to return a δ-robust estimate of the
mean, our estimator “throws out the 1

3 log
1
δ most extreme points in the samples”, and returns the

mean of what remains. More specifically, outliers are thrown out in a weighted manner, where we
throw out a fraction of each data point, with the fraction proportional to the square of its distance
from a median-of-means initial guess for the mean, where the fraction is capped at 1, and the
proportionality constant is chosen so that the total weight thrown out equals exactly 1

3 log
1
δ . See

Estimator 1 for full details, but we stress here that the estimator is simple to implement—it may
be computed in linear time—and therefore applicable in practice.

The above description is rather different from the typical M-estimator/ψ-estimator approach
of Catoni [4] and other works in this area. However, as we see in Section 3, our estimator can be
reinterpreted as a 2-parameter ψ-estimator, and the proof of our main result will crucially rely on
this reformulation.

1.3 Motivation: 3rd-order corrections of the empirical mean

Perhaps the most non-obvious part of our estimator is throwing out exactly 1
3 log

1
δ many samples.

We motivate this quantity in this section, by considering the special case of estimating the mean
of asymmetric—very biased—Bernoulli distributions, which is in some sense an extremal case for
our setting.

Example 1. Consider the mean estimation problem, given n samples from a Bernoulli distribution
supported on 0 and 1, where the probability of drawing 1 equals some parameter p. Thus the
number of 1s observed is distributed as the Binomial distribution Bin(n, p), of mean np and variance
np(1−p). The interesting regime for us is when p is very small, and thus 1−p ≈ 1, and the Binomial
distribution is essentially the Poisson distribution Poi(np) of mean and variance λ = np. In this
setting, the mean estimation problem becomes: given a sample k from Poi(np), and the parameters
n and δ, return an estimate that, except with failure probability δ, is as close as possible to p (or
equivalently np). Given a Poisson sample k ← Poi(np), returning simply k is a natural estimate
of np; however, since Poisson distributions are slightly skewed, it turns out that one should instead
return the correction k − 1

3 log
1
δ .

Explicitly, the Poisson distribution has pmf poi(λ, k) = λke−λ

k! , whose logarithm, using Stirling’s
approximation for the factorial, expanding to 3rd order in k, and dropping lower-order terms in

λ is − (k−λ)2

2λ + (k−λ)3

6λ . The 2nd-order term here corresponds to a Gaussian centered at k = λ of
variance λ, which is a standard approximation for the Poisson distribution. However, crucially,
the 3rd order term, corresponding to the positive skewness of the Poisson distribution, increases the
pmf to the right of k = λ and decreases it by an essentially symmetric factor to the left.

Seeking a δ-robust estimation of λ from a single sample of k, we are concerned, essentially,
with the interval where the Poisson pmf is greater than δ, or equivalently, where the log pmf is

greater than log δ. The quadratic − (k−λ)2

2λ in the first term of the above approximation equals log δ

when k = λ ±
√

2λ log 1
δ , and this interval is centered at the λ. However, crucially, when we

take into account the 3rd-order term, the interval where poi(λ, k) ≥ δ essentially shifts to become

k = 1
3 log

1
δ + λ±

√

2λ log 1
δ . Thus, given a single sample, one can δ-robustly estimate the mean of

a Poisson distribution similarly well as the Gaussian of same mean and variance, but only if one
returns the sample minus 1

3 log
1
δ .
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Thus, the 1
3 log

1
δ term in our estimator arises essentially from a 3rd order correction to the

sample mean, at least in the special case of Bernoulli distributions. For additional intuition and
motivation about the “3rd order correction” in our estimator, please refer to Appendix A.

1.4 Key Contributions in Our Construction and Analysis

In addition to settling the fundamental sample complexity question of mean estimation, we point out
that the estimator construction and analysis may also be of independent interest. In particular, the
analysis framework—as described below—is generalizable to other problem settings and estimator
constructions.

Our overall analysis framework may be viewed as a Chernoff bound—showing exponentially
small probability of estimation error via bounds on a moment generation function (expectation of
an exponentiated real-valued random variable). However, since we seek to analyze our estimator to
sub-constant accuracy, many standard approaches fail to yield the required resolution. We point
out three crucial components of our approach.

First, our estimator (Estimator 1) is not a sum of independent terms, which is fundamental
to standard Chernoff bound approaches, and thus we instead reformulate our estimator as a 2-
parameter ψ-estimator (see Definition 2). This technique rewrites our estimate µ̂ as the first
coordinate of the root (µ̂, α̂) of a system of 2 equations ψµ(µ̂, α̂) = 0 and ψα(µ̂, α̂) = 0, where
the functions ψµ(µ̂, α̂) =

∑

i ψµ(xi, µ̂, α̂) and ψα(µ̂, α̂) =
∑

i ψα(xi, µ̂, α̂) are explicitly sums of a
corresponding function applied to each of the n independent data points in the sample set. Thus we
have bought independence at the price of making the estimator an implicit function, introducing
two new variables. One-dimensional estimators of this form are standard: for example, Catoni’s [4]
mean estimator in the case of known variance is a (1 parameter) ψ-estimator for which he proves
finite sample concentration. However, adding another dimension—α̂, a new implicit variable whose
value the estimator will ultimately discard—is less standard, without standard analysis techniques,
yet significantly increases the expressive power of such estimators [24]. Our high-level approach is
to find carefully chosen linear combinations of the functions ψµ and ψα, each of which is now a sum
of independent terms, and prove Chernoff bounds about these linear combinations.

Second, even after identifying these linear combinations of ψ functions, the corresponding Cher-
noff bound analysis is difficult to directly tackle. The Chernoff bound analysis, as it turns out,
is essentially equivalent to bounding a max-min optimization problem where the maximization is
over the set of real-valued probability measures with mean 0 and variance 1. In other words, the
max-min optimization problem can be interpreted as having uncountably infinitely many variables.
In order to drastically simplify the problem and make it amenable to analysis, we use convex-
concave programming and linear programming duality techniques to reduce the problem to a pure
minimization problem with a small finite number of variables, which we can analyze tightly.

We believe that the above two ideas—1) reformulating an estimator as a multi-parameter ψ-
estimator, so as to find a proxy of the estimator that is a sum of independent variables, and
2) viewing the corresponding Chernoff bound analysis as an optimization problems and applying
relevant duality techniques—form a general analysis framework which expands the space of possible
estimators that are amenable to tight analysis.

2 Related Work

There is a long history of work on real-valued mean estimation in a variety of models. In the
problem setting we adopt, where the sole assumption is on the finiteness of the second moment,
the median-of-means algorithm [12, 20, 1] has long been known to have sample complexity tight
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to within constant multiplicative factors, albeit with a sub-optimal constant. Catoni [4] improved
this sample complexity to essentially optimal (tight up to a 1 + o(1) factor), by focusing on the
special cases where the variance of the underlying distribution is known or the 4th moment is finite
and bounded (in which case the second moment can be accurately estimated). We stress however
that the finiteness of the 4th moment is nonetheless a much stronger assumption than our minimal
assumption on the finiteness of the variance (see the discussion at the end of Section 1.1).

Moving beyond the original problem formulation, Devroye et al. [7] drew the distinction be-
tween a single-δ estimator, which takes in the robustness parameter δ as input, versus a multiple-δ
estimator, which does not take any δ as input, but still provides guarantees across a wide range
of δ values. In their work, making the same finite kurtosis assumption as Catoni, they achieved a
multiple-δ estimator with essentially optimal sample complexity, for a wide range of δ values. It
is thus natural and prudent to ask whether a multiple-δ estimator can exist for the entire class of
distributions with finite variance, for a meaningful range of δ values. Unfortunately, Devroye et
al. [7] showed strong lower bounds answering the question in the negative. Hence, in this work, our
proposed estimator is (and must be) a single-δ estimator, taking δ as input.

Many applications have arisen from the success of sub-Gaussian mean estimation, showing how
to leverage or extend Catoni-style estimators to new settings, achieving sub-Gaussian performance
on problems such as regression, empirical risk minimization, and online learning (bandit settings):
for example see [18, 2, 5, 3].

A separate but closely related line of work is on high dimensional mean estimation. While
estimators generalizing the “median-of-means” construction were found to have statistical con-
vergence tight to multiplicative constants, until recently, such estimators took super-polynomial
time to compute [17]. A recent line of work [10, 6, 15], started by Hopkins [10], thus focuses on
the computational aspect, and brought the computation time first down to polynomial time, with
subsequent work bringing it further down to quadratic time using spectral methods.

A recent comprehensive survey by Lugosi and Mendelson [16] explains much of the above works
in greater detail.

Other works have focused on mean estimation in restrictive settings, for example, with differ-
ential privacy constraints. For example, Kamath et al. [14] studied the differentially private mean
estimation problem in the constant probability regime, and showed strong sample complexity sepa-
rations from our unrestricted setting. Duchi, Jordan and Wainright [8, 9] also studied the problem
under the stricter constraint of local differential privacy. See the work of Kamath et al. [14] for a
more comprehensive literature review on differentially private mean estimation.

Part of our tight analysis relies on insights from mathematical programming and duality; see [22]
for a detailed discussion of prior works that use such mathematical programming and duality tools
to either design or analyze statistical estimators [21, 19, 26, 27, 13, 25].

3 Our Estimator

In this section, we present our estimator (Estimator 1), as well as its reformulation as a 2-parameter
ψ-estimator. We then present some perspective and basic structural properties of the estimator
that will serve as a foundation for the analysis to follow.

3.1 Meaning of the Estimator

Consider the expression in Step 3 for the final returned value of the estimator, µ̂ = κ+ 1
n

∑

i(xi −
κ)(1 −min(α(xi − κ)2, 1)). Without the final min expression, the expression κ + 1

n

∑

i(xi − κ) · 1
computes exactly the sample mean. The factor (1−min(α(xi−κ)2, 1)) may be thought of as a weight
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Estimator 1 The Main Estimator

Inputs:

• n independent samples {xi} from the unknown underlying distribution D (guaranteed to have
finite variance)

• Confidence parameter δ

1. Compute the median-of-means estimate κ: evenly partition the data into log 1
δ groups and

let κ be the median of the set of means of the groups.

2. Find the solution α to the monotonic, piecewise-linear equation
∑

imin(α(xi−κ)2, 1) = 1
3 log

1
δ

3. Output: µ̂ = κ+ 1
n

∑

i(xi − κ)(1 −min(α(xi − κ)2, 1))

on the ith element, between 0 and 1, where a weight of 1 leaves that element as is, but a weight
towards 0 essentially throws out part of the sample xi and instead defaults to the median-of-means
estimate κ. Thus, rather than either keeping or discarding each entry, the weight min(α(xi−κ)2, 1)
specifies what fraction of the ith sample to discard.

The condition in Step 2 of Estimator 1 picks α so that the total, weighted, number of discarded
samples equals 1

3 log
1
δ . The expression min(α(xi − κ)2, 1) specifying what fraction of each xi to

discard says, essentially, that this fraction should be proportional to the square of the deviation
of xi from the mean estimate κ, capped at 1 so that we do not discard “more than 100% of” any
sample xi.

3.2 Structural Properties of the Estimator

We point out three basic structural properties of Estimator 1 that both shed light on the estimator
itself, and will be crucial to its analysis. We formally state and prove these properties in Appendix B.

First, the estimator is “affine invariant” in the sense that, if its input samples {xi} undergo an
affine map x→ ax+b then its output will be mapped correspondingly. Second, as is well known, the
median-of-means estimate κ of Step 1, while not as accurate as what we will eventually return, is
robust in the sense that, with probability at least 1−δ/2, the median-of-means estimate has additive

error from the true mean that is at most O(σ ·
√

log 1
δ

n )—proportional to the eventual guarantees of
our estimator, but with somewhat worse proportionality constant. Third, if we temporarily ignore
Step 1, treating κ as a free parameter, we show that the final output of the algorithm, µ̂, varies
very little with κ. Combined with the accuracy guarantees of the median-of-means estimate, the
difference in the final estimate between using the median-of-means as κ versus using the true mean
as κ is inconsequential (a o(1) factor) compared to the total additive error we aim for. Therefore,
for the purposes of analysis, it suffices to assume that κ takes the value of the true mean (though
an algorithm could not do this in practice, as the true mean is unknown).

These structural properties allow us to drastically simplify the analysis: the affine invariance
means it is sufficient to show our estimator works for the special case of distributions with mean
0 and variance 1; the second and third properties mean that errors in κ effectively do not matter,
and, for distributions with mean 0, it is sufficient to omit Step 1 and instead just analyze the case
where κ = 0.

We point out that Estimator 1 when modified to set κ = 0 (independently of the samples) is
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no longer affine invariant, nor is its reformulation as a ψ-estimator in Section 3.3. The structural
properties in this section show that, instead of analyzing the actual estimator (Estimator 1 which is
affine invariant), it suffices to analyze this artificially simplified, although no longer affine invariant,
estimator which sets κ = 0, on distributions with mean 0 and variance 1. Explicitly, in the rest
of the paper we will show Proposition 3 (Section 4), which analyzes the mean-0 variance-1 case
of the ψ-estimator defined below in Definition 2; the discussion of this section—made formal in
Appendix B—shows that this proposition implies our main result, Theorem 1.

3.3 Representing a Special Case of Estimator 1 as a ψ-Estimator

As discussed in Section 1.4, our estimator, even its simplified version with κ = 0, is not a sum
of independent terms, making it difficult to tightly bound its moment generating function, and
hence also difficult to prove its concentration around the true mean using a Chernoff-style bound.
Our solution is to reformulate Estimator 1, with the simplifying assumption that κ = 0, as a
2-parameter ψ-estimator, as defined in Definition 2. This reformulation defines our estimate µ̂
implicitly in terms of two new functions ψµ and ψα that are indeed sums of n independent terms,
each term depending on a single xi. We will use this representation crucially for the concentration
analysis of the estimator.

Definition 2. Consider Estimator 1 but with Step 1 replaced with “κ = 0”. The estimator can
be equivalently expressed as follows:

1. Input: n independent samples X = x1, . . . , xn

2. Solve for the (unique) pair (µ̂, α̂) satisfying ψµ = 0 and ψα = 0, where the functions are
defined as follows:

ψµ(X, µ̂, α̂) =

n
∑

i=1

(

µ̂− xi
(

1−min
(

α̂x2i , 1
)))

ψα(X, µ̂, α̂) =

n
∑

i=1

(

min
(

α̂x2i , 1
)

− 1

3n
log

1

δ

)

(Note that α̂ > 0 always)

3. Output: µ̂ from the previous step

We will sometimes omit µ̂ from the arguments of ψα since µ̂ is not used in the definition of the
function. We will often refer to the pair (ψµ, ψα) as a 2-element vector ψ.

For convenience in the rest of the paper, we define v̂ ≡ log(1/δ)
3nα̂ , which we refer to as the

“truncated empirical variance”; this is because, if we modify the ψα = 0 condition by removing
the “truncation” of taking the min with 1, then the resulting condition, when expressed in terms
of v̂ = log(1/δ)

3nα̂ and rearranged, is exactly the condition that v̂ is the empirical variance: 1
n

∑n
i=1 x

2
i .

Thus α̂ may be thought of as a proxy for the empirical variance, as v̂ = log(1/δ)
3nα̂ equals the empirical

variance, except in cases when samples are far enough from 0 that they are “truncated” by the
“min”.

Interestingly, in the case that none of the samples are “truncated”, (and κ = 0), the overall

output of the estimator becomes 1
n

∑

i xi − αx3i = 1
n

∑

i xi −
log(1/δ)

3nv̂ x3i , namely, µ̂ is “the empirical
mean, corrected by subtracting 1

3n log 1
δ times the ratio of the empirical 3rd moment over the

empirical 2nd moment.”
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Proof that Definition 2 is equivalent to Estimator 1 when κ is set to 0. Fix a set of samples X =
{xi}. We observe that Estimator 1, with the additional simplifying assumption that κ = 0, can be
represented by the following 2 equations.

∑

i

min(αx2i , 1) =
1

3
log

1

δ

µ̂ =
1

n

∑

i

xi(1−min(αx2i , 1))

(2)

Estimator 1 solves for α in the first line, and uses this α value to compute the estimate µ̂ in the
second line. The two conditions of Equation 2 are equivalent to the two conditions ψα = 0, ψµ = 0
respectively, and thus the two estimators are equivalent.

4 Analyzing our estimator

In this section, we outline the proof of our main theorem, restated as follows.

Theorem 1. Estimator 1, given δ, n > 0, and a sample set X of n independent samples from
distribution D, will, with probability at least 1 − δ over the sampling process, yield an estimate µ̂

with error at most |µ̂(X) − µ(D)| ≤ σ(D) · (1 + o(1))

√

2 log 1
δ

n . Here, the o(1) term tends to 0 as
(

log 1
δ

n , δ
)

→ (0, 0).

The discussion of the structural properties of Estimator 1 in Section 3.2 shows that it is sufficient
to instead show that, for any distribution of mean 0 and variance 1, the ψ-estimator of Definition 2
will return an estimate µ̂ that is close to 0, except with tiny probability. (See Appendix B for
the formal statements of the claims of Section 3.2.) Recall also that, since the ψ-estimator solves
for (µ̂, α̂) such that ψ(X, µ̂, α̂) = 0 (where X is the sample set) and returns µ̂, the claim that
the returned estimate will be close to 0 is equivalent to saying that every (µ̂, α̂) pair with µ̂ far
from 0 must violate the equation, namely ψ(X, µ̂, α̂) 6= 0. We thus prove the following proposition
(Proposition 3), to yield Theorem 1. Note that the failure probability in Proposition 3 is δ/2
(instead of δ, as in Theorem 1), accounting for an additional δ/2 probability that the median-of-
means estimate in Step 1 of Estimator 1 fails.

Proposition 3. There exists a universal constant c > 0 such that, fixing ǫ′ =
(

1 +
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n ,

we have that for all distributions D with mean 0 and variance 1, with probability at least 1− δ
2 over

the set of samples X, for all µ̂, α̂ where |µ̂| > ǫ′ and α̂ > 0, the vector ψ(X, µ̂, α̂) 6= 0.

Proposition 3 asks us to show that, with high probability, ψ(X, µ̂, α̂) is not at the origin for
any choice of |µ̂| > ǫ′, α̂; instead, as a proof strategy, we choose a finite bounded mesh of µ̂, α̂ and
show that the function ψ(X, µ̂, α̂) is 1) not just nonzero, but far from the origin on this set, 2)
Lipschitz in between mesh elements, and 3) monotonic (in an appropriate sense) outside the mesh
bounds. Step 1), discussed below, contains the most noteworthy part of the proof, a mathematical
programming-inspired bound to help complete a delicate Chernoff bound argument.

For simplicity, we reparameterize to work with v̂ ≡ log(1/δ)
3nα̂ (the “truncated empirical variance”)

instead of α̂: the mesh we analyze, covering the most delicate region for analysis, will span the
interval v̂ ∈ [0.05, 55.5], namely, where the truncated empirical variance v̂ is within a constant factor
of the true variance of 1. Note that this should not be taken to imply that v̂ ∈ [0.05, 55.5] with high
probability—the truncated empirical variance is not designed to be a good estimate of the variance,
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merely as a step in robustly estimating the mean; and further, accurate estimates of the variance
are simply impossible in general without further assumptions such as bounds on the distribution’s
3rd or 4th moments. We also want to distinguish our estimator from Catoni’s [4]: Catoni’s estimator
relies on having a high-precision estimate of the variance (to within a 1 + o(1) factor) in order to
achieve the desired performance. By contrast, our estimator is robust against wild inaccuracies of
the (truncated) empirical variance v̂ compared to the true variance of 1. In short, the approach of
our estimator should be viewed as distinct from Catoni’s, since, while Catoni’s estimator relies on
an initial good guess at the variance, ours thrives in the inevitable situations where v̂ is far from 1.

We return to describing our strategy for analyzing the performance of our estimator. For each
µ̂, v̂ = log(1/δ)

3nα̂ that we analyze (from the finite mesh): instead of directly showing that, with

≥ 1 − δ
2 probability, ψ(X, µ̂, α̂) is far from the origin in some direction, we instead linearize this

claim; we prove the stronger claim that there exists a specific direction d(v̂) such that with ≥ 1− δ
2

probability, ψ(X, µ̂, α̂) is more than 1
log(1/δ) distance from the origin in direction d (specifically we

lower bound the dot product d(v̂) · ψ(µ̂, α̂), while we upper bound each coordinate of d inversely
with the Lipschitz coefficients of ψ). The crucial advantage of this reformulation is that, since each
of ψµ, ψα is a sum of n terms, that are each a function of an independent sample xi from D, the
dot product d(v̂) · ψ(X, µ̂, α̂) is thus also a sum of n independent terms, and thus we finish the
proof with a Chernoff bound, Lemma 4. The Chernoff bound argument itself is standard; however,
to bound the resulting expression requires an extremely delicate analysis that we pull out into a
separate 4-variable inequality expressed as Lemma 7—see the discussion around the lemma for
more details and for motivation of the analysis from a mathematical programming perspective.

We state the crucial Chernoff bound (Lemma 4) and the Lipschitz bounds (Lemma 5), and then
use them to prove Proposition 3. We prove Lemmas 4 and 5 in the next section, along with the
statement and proof of the delicate component that is Lemma 7.

Lemma 4. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ǫ′ =
(

1 +
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

(

d(v̂) · ψ
(

X, µ̂ = ǫ′, α̂ =
log(1/δ)

3nv̂

)

>
1

log 1
δ

)

≥ 1− δ

log4 1
δ

Furthermore, for v̂ = 0.05 we have dµ =

√

3.75 log(1/δ)
n , dα =

√
3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

Lemma 5. Consider an arbitrary set of n samples X. Consider the expressions ψµ(X, µ̂, α̂), ψα(X, α̂),

reparameterized in terms of v̂ ≡ log(1/δ)
3nα̂ in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a

solution in the range v̂ ∈ [0.05, 55.5]. Then the functions

√

log(1/δ)
n ψµ(X, µ̂, α̂) and ψα(X, α̂) are

Lipschitz with respect to v̂ on the entire interval v̂ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ for

some universal constant c.

We now prove Proposition 3, which per our previous discussion, implies our main result, The-
orem 1.

Proof of Proposition 3. As in Lemma 4, we fix ǫ′ = (1+
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n , where c is some universal

constant.

9



By symmetry, instead of considering positive and negative µ̂, it suffices to consider the case
µ̂ > ǫ′ (as opposed to µ̂ < −ǫ′) and show that this case succeeds with probability at least 1− δ

4 .
To prove the claim, we first prove a stronger statement on a restricted domain, that with

probability at least 1 − δ
4 over the randomness of the sample set X, for each v̂ ∈ [0.05, 55.5] there

exists a vector d = (dµ, dα) such that d · ψ(X, ǫ′, α̂ ≡ log(1/δ)
3nv̂ ) > 0, with dµ ≥ 0 throughout, and,

for v̂ = 0.05 we have dµ =

√

3.75 log(1/δ)
n , dα =

√
3; and for v̂ = 55.5 we have dµ = 0, dα < 0.

We will first apply Lemma 4 to each v̂ in a discrete mesh: let M consist of evenly spaced points
between 0.05 and 55.5 with spacing 1/ log3 1

δ (thus with Θ(log3 1
δ ) many points).

By Lemma 4 and a union bound over these Θ(log3 1
δ ) points, we have that with probability

at least 1 − δ
Θ(log 1

δ
)
(which is at least 1 − δ

4 for δ smaller than some universal constant) over the

set of n samples X, for all v̂ ∈ M , there exists a vector d(v̂) such that d(v̂) · ψ(X, µ̂ = ǫ′, α̂ ≡
log(1/δ)

3nv̂ ) > 1/ log 1
δ , where d further satisfies the desired positivity and boundary conditions, and

where both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant. For the rest of the proof, we

will only consider sets of samples X satisfying the above condition.
Now consider an arbitrary v̂′ ∈ [0.05, 55.5] \M and consider the vector ψ evaluated at α̂′ =

log(1/δ)
3nv̂′ . We wish to extend the dot product inequality to hold also for v̂′. If ψα 6= 0 then there is

nothing to prove: set dµ = 0 and dα = sign(ψα); otherwise, ψα = 0 means we may apply Lemma 5

to conclude that both

√

log(1/δ)
n ψµ(X, µ̂, α̂

′) and ψα(X, µ̂, α̂
′) are Lipschitz with respect to v̂′ on the

interval v̂′ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ for some universal constant c.

Consider the closest v̂ ∈ M to v̂′, which by definition of M is at most 1/ log3 1
δ away. By

assumption on X, there exists a vector d such that d · ψ(X, µ̂ = ǫ′, α̂ = log(1/δ)
3nv̂ ) > 1/ log 1

δ , with

dµ ≥ 0 and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant. Because of the Lipschitz

bounds on ψ, combined with the bounds on the size of the dµ, dα, we conclude that the Lipschitz
constant of the dot product (treating the vector d as fixed) is O(log 1

δ ). Thus, the large positive
dot product at v̂ implies at least a positive dot product nearby at v̂′: d · ψ(X, µ̂ = ǫ′, v̂′) >

1
log 1

δ

−O(log 1
δ )

1
log3 1

δ

> 0, for sufficiently small δ as given in the proposition statement.

Having shown the stronger version of the claim for the restriction µ̂ = ǫ′ and v̂ ∈ [0.05, 55.5]
we now extend to the entire domain via three monotonicity arguments. Explicitly, assume the set
of samples X satisfies the dot product inequality above with the vector function d(v̂), where d(v̂)
satisfies the boundary conditions at v̂ = 0.05 and 55.5 specified in Lemma 4. From this assumption,
we will show that ψ 6= 0 for any positive v̂ = log(1/δ)

3nα̂ , and for any µ̂ ≥ ǫ′.
First consider v̂ > 55.5 (still fixing µ̂ = ǫ′). The function ψα =

∑n
i=1

(

min
(

α̂x2i , 1
)

− 1
3n log 1

δ

)

is an increasing function of α̂, and thus a decreasing function of v̂ ≡ log(1/δ)
3nα̂ . Since for v̂ = 55.5,

the dot product d · ψ > 0 with dµ = 0, dα < 0, the dot product will thus remain positive for this
same choice of d as we increase v̂ from 55.5.

Next, for v̂ < 0.05 (again still fixing µ̂ = ǫ′), we analogously show that the dot product of

ψ(X, ǫ′, α̂ ≡ log(1/δ)
3nv̂ ) with the fixed vector d(0.05) will increase as we decrease v̂. The ith term in

the sums defining ψµ or ψα depends on α̂ (and thus v̂) only in the factor min(α̂x2i , 1). Further,
there is no dependence unless the first term attains the min, namely |xi| ≤

√

1/α̂, which in turn is

upper bounded by
√

0.15 n
log(1/δ) because of our assumption that v̂ < 0.05. Thus, the only ith terms

in the dot product which have α̂ dependent are simply equal to dµα̂x
3
i + dαα̂x

2
i = α̂x2i (dα + xidµ).

By our choice of dµ(0.05) =
√

3.75 log(1/δ)
n and dα(0.05) =

√
3 from Lemma 4, the expression

(dα + xidµ) ≥
√
3 −
√
0.15
√
3.75 is thus always non-negative, and thus the overall dot product

10



cannot decrease as we send α̂ to ∞—equivalently, sending v̂ to 0—as desired.
We have thus shown that, for all non-negative α̂ = log(1/δ)

3nv̂ , there is a vector d with dµ ≥ 0
whose dot product with ψ(X, ǫ′, α̂) is greater than 0. We complete the proof by noting that the
only dependence on µ̂ in ψ is that ψµ is (trivially) increasing in µ̂. Since dµ ≥ 0, increasing µ̂
from ǫ′ will only increase the dot product, and thus the dot product remains strictly greater than
0, implying that ψ(X, µ̂, α̂) 6= 0 as desired.

5 Proofs of Lemmas 4 and 5

The main purpose of this section is to present and motivate the proof of Lemma 4—since our results
are tight across such a wide parameter space, the resulting inequalities are somewhat subtle. After,
we also present the short proof of Lemma 5.

Lemma 4. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ǫ′ =
(

1 +
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

(

d(v̂) · ψ
(

X, µ̂ = ǫ′, α̂ =
log(1/δ)

3nv̂

)

>
1

log 1
δ

)

≥ 1− δ

log4 1
δ

(3)

Furthermore, for v̂ = 0.05 we have dµ =

√

3.75 log(1/δ)
n , dα =

√
3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.

We start the analysis via standard Chernoff bounds on the complement of the probability in
Equation 3 via Lemma 6, before pausing to discuss how mathematical programming and duality
insights lead to the formulation of the crucial Lemma 7; we then complete the proof.

Lemma 6. Consider an arbitrary distribution D with mean 0 and variance 1. For all sufficiently
small δ, for any µ̂, α̂ and vector d = (dµ, dα), we have

P
X←Dn

(

d ·ψ (X, µ̂, α̂) ≤ 1

log 1
δ

)

≤ 2

(

e−dµµ̂+dα
1
3n

log 1
δ E
x←D

(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n

Proof. We upper-bound the probability by exponentiating the negation of both sides of the expres-
sion inside the probability, and then using Markov’s inequality:

P
X←Dn

(

d(v̂) · ψ(X, µ̂, α̂) ≤ 1

log 1
δ

)

= P
X←Dn

(

e−d(v̂)·ψ(X,µ̂,α̂) ≥ e
− 1

log 1
δ

)

≤ 2 E
X←Dn

(

e−d(v̂)·ψ(X,µ̂,α̂)
)

by Markov’s inequality; and e
1

log(1/δ) ≤ 2 for sufficiently small δ

= 2 E
x←D

(e−d(v̂)·ψ(x,µ̂,α̂))n by independence

= 2

(

e−dµµ̂+dα
1
3n

log 1
δ E
x←D

(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n

substituting the definition of ψ

(4)
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5.1 Mathematical Programming and Duality Analysis

In order to show Lemma 4, we aim to find bounds on the failure probability that are as strong
as possible. Appealing to Lemma 6 that we have just proven, recall that, as in the standard
Chernoff bound methodology, we are still free to choose the parameters dµ, dα, which we do so as
to minimize the resulting bound on the failure probability. Phrased abstractly, the goal is, for the
µ̂, α̂ of Lemma 4, to show that, for any distribution D of mean 0 and variance 1, there is a choice
d = (dµ, dα) that makes Equation 4 sufficiently small. Phrased as an optimization problem, our
goal is to evaluate (or tightly bound):

max
D

min
d=(dµ,dα)

e−dµµ̂+dα
1
3n

log 1
δ E
x←D

(edµx(1−min(α̂x2,1))−dα min(α̂x2,1)) (5)

where D ranges over distributions of mean 0 and variance 1.
We will use convex-concave programming and linear programming duality to significantly sim-

plify the max-min program in Equation 5 before we dive into the part of analysis that is ad hoc
for this problem. We wish to emphasize here again that the steps of 1) writing an estimator
as a multi-parameter ψ-estimator and finding an analogous lemma to our Lemma 4, then 2) us-
ing mathematical programming duality to simplify the Chernoff bound analysis, are a framework
generalizable for tightly analyzing other estimators.

For simplicity of exposition, assume that we restrict the support of D to some sufficiently fine-
grained finite set, meaning that the maximization in Equation 5 is now finite-dimensional, albeit
an arbitrarily large finite number. For each support element x, let Dx be a variable representing
the probability of choosing x under distribution D. The expectation component of Equation 5 may
now be expressed as sum that is a linear function in the variables Dx:

max
D

min
d=(dµ,dα)

e−dµµ̂+dα
1
3n

log 1
δ

∑

x

Dx · edµx(1−min(α̂x2,1))−dα min(α̂x2,1) (6)

Using the standard max-min inequality (a form of weak duality in optimization), we have
that Equation 6 is upper bounded by swapping the maximization and minimization (Equation 7),
meaning that the vector d no longer depends on the distribution D.

min
d=(dµ,dα)

max
D

e−dµµ̂+dα
1
3n

log 1
δ

∑

x

Dx · edµx(1−min(α̂x2,1))−dα min(α̂x2,1) (7)

Crucially, however, Equation 7 is not just an upper bound on Equation 6, but is in fact equal to it,
due to Sion’s minimax theorem [23]. To apply Sion’s minimax theorem, it suffices to check that 1)
both d and D are constrained to be in convex sets, at least one of which is compact, 2) the objective
is convex in d and 3) concave in the variables Dx. For the first condition, we note that the set of
distributions on a finite domain is compact. The objective is convex in d since the objective is the
sum of exponentials that are each linear in d. And the objective is concave in Dx because it is in
fact a linear function of D.

The guarantee of Sion’s minimax theorem means that we may work with Equation 7 instead of
Equation 6 without sacrificing tightness in our analysis. This justifies why we are free to choose
d = (dµ, dα) in Lemma 4 that does not depend on the distribution D.

To further simplify the problem in Equation 7, we note again that both the objective and the
constraints on D are linear in the variables Dx, meaning that the inner maximization is in fact
a linear program. We can then apply linear programming (strong) duality to yield the following
equivalent optimization (Equation 8). We note that, as above, for the purposes of upper bounding

12



Equation 5, it suffices to only use weak duality. Strong duality however guarantees that this step
does not introduce slack into the analysis.

The three variables V,M,S in the inner minimization below are the dual variables corresponding
to the three constraints on distribution D originally: that D has variance 1, mean 0, and total
probability mass 1.

min
d=(dµ,dα)

min
V,M,S

V + S

for all x: V x2 +Mx+ S ≥ e−dµµ̂+dα
1
3n

log 1
δ
+dµx(1−min(α̂x2,1))−dα min(α̂x2,1)

(8)

We have thus reduced the infinite-dimensional optimization problem of Equation 5 to the five-
dimensional problem of Equation 8 (or six dimensions, if we include the universal quantification
for x ∈ R), a significant simplification. We bound Equation 8 by explicitly choosing values for
d = (dµ, dα), V,M, S as functions of α̂, n, log 1

δ , and showing that they jointly satisfy the constraint
of Equation 8, for all x. We factor out the terms in the exponential that do not depend on x; we
make the variable substitutions y ≡

√
α̂x and v̂ ≡ log(1/δ)

3nα̂ to replace dependence on α̂, n, log 1
δ with

dependence on the single variable v̂; taking the log of both sides (and swapping sides) yields an
expression that is recognizable in the following lemma, where the multipliers of 1, y, y2 respectively
on the right hand side are essentially our choices of S,M, V :

Lemma 7. For all v̂ ∈ [0.05, 55.5], there exist a > 0 and b such that

∀y ∈ R : ay
(

1−min
(

y2, 1
))

− b ·min
(

y2, 1
)

≤ log

(

1 + ay + y2v̂(−3 + a
√
6√
v̂
− b)

)

where a ∈ [C,C ′] and b ∈ [−C ′, C ′] for positive constants C,C ′. Further, for v̂ = 0.05, the pair
a = 0.75, b =

√
3 works.

We emphasize that the application of Lemma 7 in the proof of Lemma 4 below is straightforward,
though finding the particular form of Lemma 7 is not. Further, one would not seek a result of the
form of Lemma 7 without the guarantees of this section, derived via duality and mathematical
programming, showing that “results of the form of Lemma 7 encompass the full power of the
Chernoff bounds of Equation 4.” See the end of Section 5.2 for the proof of Lemma 7.

5.2 Proof of Lemma 4

We now prove Lemma 4 by combining the Chernoff bound analysis of Lemma 6 with the inequality
from Lemma 7. We point out that the proof below is direct, without any reference to duality or
mathematical programming; however, the discussion of Section 5.1 was crucial to discovering the
right formulation for Lemma 7. We prove Lemma 7 at the end of the section.

Lemma 4. Consider an arbitrary distribution D with mean 0 and variance 1. There exists a

universal constant c where the following claim is true. Fixing µ̂ = ǫ′ =
(

1 +
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n ,

then for all δ smaller than some universal constant, and for all v̂ ∈ [0.05, 55.5], there exists a vector

d(v̂) where dµ ≥ 0, and both
√

n
log(1/δ) |dµ|, |dα| are bounded by a universal constant, such that

P
X←Dn

(

d(v̂) · ψ
(

X, µ̂ = ǫ′, α̂ =
log(1/δ)

3nv̂

)

>
1

log 1
δ

)

≥ 1− δ

log4 1
δ

Furthermore, for v̂ = 0.05 we have dµ =

√

3.75 log(1/δ)
n , dα =

√
3; and for v̂ = 55.5 we have dµ = 0,

dα < 0.
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Proof. Start with the bound on the probability of failure given by Lemma 6:

2

(

e−dµµ̂+dα
1
3n

log 1
δ E
x←D

(edµx(1−min(α̂x2,1))−dα min(α̂x2,1))

)n

For v̂ ∈ [0.05, 55.5) we bound the exponential inside the expectation via the exponential of
Lemma 7; we also use Lemma 7 to choose dµ, dα for us (the v̂ = 55.5 case is covered at the end).

Namely, in Lemma 7 use v̂ as given, substitute x
√
α̂ ≡ y (where α̂ ≡ log(1/δ)

3nv̂ as always), and choose

dµ ≡ a
√
α̂, and dα ≡ b—in particular, for v̂ = 0.05 this gives dµ(0.05) = 0.75

√
α̂ = 0.75

√

log(1/δ)
3nv̂ =

√

3.75 log(1/δ)
n . Thus the failure probability is bounded by

2



e−dµµ̂+dα
1
3n

log 1
δ E

x←D
y=x
√
α̂

(

1 + ay + y2v̂

(

−3 + a
√
6√
v̂
− b
))





n

= 2

(

e−dµµ̂+dα
1
3n

log 1
δ

(

1 +
log 1

δ

3n

(

−3 + 3dµ

√

2n

log(1/δ)
− dα

)))n

since D has mean 0, variance 1

≤ 2

(

e
−dµµ̂+dα

1
3n

log 1
δ
+

log 1
δ

3n

(

−3+3dµ
√

2n
log(1/δ)

−dα
)

)n

since 1 + z ≤ ez for any z

≤ 2e
−dµ

√

2n
log(1/δ)

c log log 1
δ
−log 1

δ substituting µ̂ = ǫ′ =

(

1 +
c log log 1

δ

log 1
δ

)

√

2 log 1
δ

n

≤ δ

log4 1
δ

as desired, for large enough c, since dµ

√

n

log(1/δ)
=

a√
3v̂

is greater than some positive constant.

We prove the v̂ = 55.5 case now. We choose dµ = 0 and dα = −4, substituting into the bound
of Equation 4 to yield

2

(

e−
4
3n

log 1
δ E
x←D

(e4min(α̂x2,1))

)n

≤ 2δ4/3 E
x←D

(1 + 54α̂x2)n since for y ∈ [0, 1], e4y ≤ 1 + 54y

= 2δ4/3(1 + 55.5α̂)n since D has variance 1

≤ 2δ4/3en·54
log(1/δ)
3·55.5n since 1 + z ≤ ez, substituting def. of α̂

= 2δ4/3δ−
54

3·55.5 ≤ 2δ1.009

which is bounded as desired for small enough δ.

We now prove Lemma 7.

Lemma 7. For all v̂ ∈ [0.05, 55.5], there exist a > 0 and b such that

∀y ∈ R : ay
(

1−min
(

y2, 1
))

− b ·min
(

y2, 1
)

≤ log

(

1 + ay + y2v̂(−3 + a
√
6√
v̂
− b)

)

(9)

where a ∈ [C,C ′] and b ∈ [−C ′, C ′] for positive constants C,C ′. Further, for v̂ = 0.05, the pair
a = 0.75, b =

√
3 works.
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Proof. We first prove the special case of 1) v̂ = 0.05, before moving to the general case of 2)
v̂ ∈ (0.05, 55.5]. We note that our choice of a(v̂), b(v̂) is not continuous in v̂ at 0.05, but the
usage of the lemma does not require any continuity. We choose a, b at the edge case v̂ = 0.05 for
convenience.

1) For v̂ = 0.05, we choose a = 0.75, b =
√
3. This special case of Equation 9 simplifies to:

∀y ∈ R : 0.75y
(

1−min
(

y2, 1
))

−
√
3 ·min

(

y2, 1
)

≤ log
(

1 + 0.75y + 0.174y2
)

(where 0.174 is a lower bound on v̂(−3+ a
√
6√
v̂
−b) ). This is a 1-dimensional bound and can be easily

analyzed in many ways. For the range y ∈ [−1, 1] : the right hand side is at least log(1 + 0.75y),
which in this range is at least .75y− .75y2, which is easily shown to be greater than the polynomial
expression that the left hand side reduces to in this range, 0.75y−

√
3y2−0.75y3. For the remaining

range, y /∈ [−1, 1], the left hand side is the constant −
√
3, and it is easy to check that the quadratic

in the argument of the right hand side, 1 + 0.75y + 0.174y2, always exceeds e−
√
3.

2) To show Equation 9 for the rest of the range of v̂ ∈ (0.05, 55.5], we choose a to be the
positive root of the quadratic equation

√
v̂(a2 − 12) +

√
6a = 0 and let b = 3 − a2/2—we will see

the motivation for this choice shortly. For now, note that the definition of a implies a ≤
√
12, for

otherwise
√
v̂(a2 − 12) +

√
6a would be greater than 0.

Our proof will analyze the sign of the derivative with respect to y of the difference between the
right and left hand sides of Equation 9. For the critical region |y| ≤ 1 this derivative equals:

a+ 2yv̂(−3 + a
√
6√
v̂
− b)

1 + ay + y2v̂(−3 + a
√
6√
v̂
− b)

− a+ 3ay2 + 2by (10)

The crucial step is to choose a to be the positive root of the quadratic equation
√
v̂(a2 − 12) +√

6a = 0 and let b = 3− a2/2, after which Equation 10 miraculously factors as

1

3a2
· y(y + 2

a)(y +
2
a − a

3 )
2

y2 + ( 4a − a
3 )y + ( 4

a2
− 1

3)

From this expression for the derivative, it is straightforward to read off its sign. The discriminant
of the quadratic in the denominator is 1

9(a
2− 12) > 0, meaning the denominator is always positive.

The squared term in the numerator cannot affect the overall sign. Thus the sign of the derivative
equals the sign of y(y+ 2

a), meaning that the difference between the right and left side of Equation 9
is monotonically increasing for y > 0, and unimodal for y < 0, having non-positive derivative for
y ∈ [ 2a , 0] and nonnegative derivative for smaller y. Thus to show the inequality holds for all
y ∈ [−1, 1] it suffices to check it at y = 0 and y = −1.

The y = 0 case is trivial as both sides of Equation 9 equal 0.
For y = −1, Equation 9, after expressing both

√
v̂ and b in terms of a becomes

a2

2
− 3 ≤ log

(

−2 + a− 36

a2 − 12

)

(11)

For a ∈ [0,
√
12), the inverse of the rational expression inside the log is bounded by its linear

approximation,
√
12−a√
12

. Calling this a new variable z =
√
12−a√
12

, which is between 0 and 1, Equation 11

becomes the claim that 6(1− z)2 − 3 ≤ − log z, which is easily verified for z ∈ (0, 1].
Lastly, we show Equation 9 for |y| > 1. Reexpressing b and

√
v̂ in terms of a, the left hand side

of the inequality is the constant value −b = −3 + a2

2 (independent of y), while the right hand side
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is log(1+ ay+ 3a2

12−a2 y
2). Analyzing the quadratic inside the log shows that the right hand side has

a minimum of a2

12 , attained at y = −12−a2
6a .

When the location of this minimum, y = −12−a2
6a , is inside the interval [−1, 1], then because

this quadratic is monotonic to either side of the minimum, the fact that we have already proven
Equation 9 for y = ±1 implies the inequality holds for all y further from 0.

The remaining case is when the minimum is not in [−1, 1], namely, −12−a2
6a < −1, meaning

a < 1.59; since a is monotonic in v̂, a is at least its value when v̂ = 0.05, namely a ≥ 1.003.
Equation 9 thus reduces to showing that, for a ∈ [1.003, 1.59] we have a2

2 − 3 ≤ log a2

12 , which is

trivially implied, substituting z = a2

12 , by the inequality 6z − 3 ≤ log z for z ∈ [0.083, 0.22], yielding
the claim.

5.3 Proof of Lemma 5

Lemma 5. Consider an arbitrary set of n samples X. Consider the expressions ψµ(X, µ̂, α̂), ψα(X, α̂),

reparameterized in terms of v̂ ≡ log(1/δ)
3nα̂ in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a

solution in the range v̂ ∈ [0.05, 55.5]. Then the functions

√

log(1/δ)
n ψµ(X, µ̂, α̂) and ψα(X, α̂) are

Lipschitz with respect to v̂ on the entire interval v̂ ∈ [0.05, 55.5], with Lipschitz constant c log 1
δ for

some universal constant c.

Proof. Consider the v̂ derivative of ψα(X, µ̂, α̂ ≡ log(1/δ)
3nv̂ ) =

∑n
i=1

(

min
(

log(1/δ)
3nv̂ x2i , 1

)

− 1
3n log 1

δ

)

.

The v̂ derivative of min
(

log(1/δ)
3nv̂ x2i , 1

)

is either − log(1/δ)
3nv̂2 x2i = − 1

v̂ α̂x
2
i or 0, depending on which term

in the min is the smallest, and in either case has magnitude at most 1
v̂ min(α̂x2i , 1). Thus the overall

v̂ derivative of ψα(X, µ̂, α̂) has magnitude at most 1
v̂

∑

imin(α̂x2i , 1). Since, we are guaranteed that
∑n

i=1min
(

α̂x2i , 1
)

= 1
3 log

1
δ for some v̂ ∈ [0.05, 55.5], we thus have that the derivative is within a

constant factor of this across the entire range, as desired.
Similarly, consider the v̂ derivative of ψµ(X, µ̂, α̂) =

∑n
i=1

(

µ̂− xi
(

1−min
(

α̂x2i , 1
)))

. The ith

term of this is the v̂ derivative of min(α̂x3i , xi), which is either − 1
v̂ α̂x

3
i or 0 depending on whether

xi ≤
√

1/α̂, and thus the magnitude of this derivative may be bounded by 1
v̂
√
α̂

∑n
i=1min

(

α̂x2i , 1
)

.

Since
∑n

i=1 min
(

α̂x2i , 1
)

is bounded by a constant times log 1
δ (as in the last paragraph), and 1

v̂
√
α̂
is

bounded by a constant times 1√
v̂α̂

=
√

3n
log(1/δ) , the magnitude of the derivative of

√

log(1/δ)
n ψµ(X, µ̂, α̂)

is bounded by a constant times log 1
δ , as desired.
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A Additional “3rd Order” Motivation for Our Estimator

In this appendix, we give additional motivation of our estimator as a “3rd order correction” to the
sample mean.

Suppose (for this section only), as in [4], that one knows the variance σ2(D) of the distribution
in question, or has a good estimate of it.

Example 2. Given samples x1, . . . , xn from a distribution of mean 0 and variance 1 and bounded
higher moments, suppose our goal is to construct a slight variant of the empirical mean that will
robustly return an estimate that is close to 0, the true mean; we consider estimates of the form
1
n

∑n
i=1(xi+c(xi)) for some function c : R→ R. Explicitly, given a bound b, we want our estimate to

be between ±b, with as high probability as possible. For simplicity we will consider the positive case,
namely, bounding Px1,...,xn(

1
n

∑

i(xi + c(xi)) ≥ b). With a view towards deriving a Chernoff bound,
we rearrange, multiply by an arbitrary positive constant α, and exponente inside the probability to
yield that this probability equals Px1,...,xn(exp(α

∑

i(xi + c(xi) − b)) ≥ 1); by Markov’s inequality,
this probability is at most Ex1,...,xn(exp(α

∑

i(xi + c(xi) − b))), for our choice of α > 0. We set
α = b. Since each xi is independent, this probability becomes Ex(exp(b(x+ c(x)− b)))n.

Considering the empirical estimator, where c(xi) = 0, we thus have that the probability the
empirical mean estimate exceeds b is at most the nth power of Ex(exp(bx−b2)), where this expression
can be expanded to 3rd order as

e−b
2

(

1 + bE(x) +
1

2
b2 E(x2) +

1

6
b3 E(x3) +O(x4)

)

As we assumed the data distribution has mean 0 and variance 1, we can simplify the above expression
to

e−b
2

(

1 +
1

2
b2 +

1

6
b3 E(x3) +O(b4)

)

Ignoring, for the moment, the 3rd or higher-order terms, this expression is e−b
2
(1 + 1

2b
2) ≈

e−b
2/2, whose nth power equals e−b

2n/2, which is exactly the bound one would expect for the standard
Gaussian case, of the probability that the empirical mean of n samples is more than b from the true
value. However, the 3rd order term is a crucial obstacle here, as the third moment E(x3) could be
of either sign, skewing either the left tail or right tail to have substantially more mass than in our
benchmark of the Gaussian case.

We thus choose a correction function c(xi) so as to cancel out this 3rd-order term and improve
the estimate in this regime: to cancel out the term 1

6b
3
E(x3) in the 3rd-order expansion of our

Chernoff bound Ex(exp(b(x − b))), we replace x by x − 1
6x

3b2, yielding a bound on the failure
probability of the nth power of

e−b
2

(

1 +
1

2
b2 +O(b4)

)

= e−b
2/2+O(b4)

as desired.
For the sake of clarity, we can change variables, letting the leading term of our probability

bound e−b
2n/2 equal δ, and thus the correction −1

6x
3b2 becomes c(x) ≡ − 1

nx
3 1
3 log

1
δ , meaning the

correction amounts essentially to a 3rd moment correction, split n ways and scaled by the same
1
3 log

1
δ of our main algorithm.

We explicitly relate this estimator to Estimator 1 by pointing out that, when none of the samples
xi are “truncated” by Estimator 1 (namely, α̂x2i ≤ 1 always), then α̂ ≡ log(1/δ)

3nv̂ may be expressed in
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terms of the empirical variance v̂; taking κ = 0 for simplicity, the returned estimate will be 1
n

∑

i xi−
αx3i = 1

n

∑

i xi − 1
v̂nx

3
i
1
3 log

1
δ , which equals the above-derived “3rd-order corrected estimator” when

the empirical variance is the true variance, 1.

In the above example we showed that Chernoff bounds for the empirical mean deteriorate for
distributions with large 3rd moments (skew), and that adding a 3rd-order correction to the empirical
mean corrects for this, leaving essentially “Gaussian-like” performance. These calculations motivate
several features of Estimator 1—including the 1

3 log
1
δ parameter, and the 3rd-order terms in the

expression for µ̂—even though the overall form of Estimator 1 is rather different, as it must work
in all regimes and not just in the cartoon asymptotic regime considered in this example.

B Proposition 3 implies Theorem 1

For completeness’ sake, we explicitly state and prove the properties described in Section 3.2, which
combine to show that Proposition 3 implies Theorem 1.

Lemma 8. Suppose X is a set of samples in R. Then for any δ > 0 and any scale a > 0 and shift
b,

µ̂(aX + b, δ) = a µ̂(X, δ) + b

where µ̂ denotes the output of Estimator 1.

The above lemma follows trivially from the fact that the median-of-means estimate also respects
shift and scale in the input samples, and that α is chosen in Step 2 of Estimator 1 so that min(α(xi−
κ)2, 1) does not depend on the affine parameters a, b.

Fact 9 ([11]). For any distribution D with mean µ and standard deviation σ, the median-of-means
estimate κ, on input n samples, satisfies

P



|κ− µ| > O



σ

√

log 1
δ

n







 ≤ δ

Lemma 10. Consider a fixed sample set X of size n, and a confidence parameter δ. Let e(X, δ, κ)
denote Estimator 1 but where Step 1 is omitted and κ is instead considered as an input. Then,

∣

∣

∣

∣

d e(X, δ, κ)

dκ

∣

∣

∣

∣

= O





√

log 1
δ

n





Fact 9 shows that, except with δ probability, the median-of-means estimate is withinO

(

σ

√

log 1
δ

n

)

of the true mean, and multiplying this by the Lipschitz constant O

(
√

log 1
δ

n

)

from Lemma 10 shows

that the change in output of Algorithm 1, between using the median-of-means versus setting κ = 0,

has magnitude O

(

σ

√

log 1
δ

n

2
)

= o

(

σ

√

log 1
δ

n

)

. This discrepancy is therefore a o(1) fraction of the

additive error guaranteed by Theorem 1.
We now prove Lemma 10.
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Proof. We compute the derivatives with respect to α and κ of the µ̂ (computed in Step 3 of
Estimator 1), and the expression on the left hand side of Step 2, which we denote ν ≡∑imin(α(xi−
κ)2, 1). We note that for terms where min(α(xi − κ)2, 1) = 1, all derivatives are 0, so we adopt
the notation “Σ<” to denote summing only over those indices i for which α(xi − κ)2 < 1. Thus we
have

dν

dκ
= 2

∑

<

α(xi − κ)

dν

dα
=
∑

<

(xi − κ)2

dµ̂

dκ
= 1 +

1

n

∑

<

(−1 + 3α(xi − κ)2)

dµ̂

dα
= − 1

n

∑

<

(xi − κ)3

Recall that α is defined implicitly so as to make the expression ν = 1
3 log

1
δ ; thus in Estimator 1,

if we change κ at a rate of 1, then α also changes at rate − dν
dκ

/

dν
dα to keep ν unchanged. Thus, the

overall derivative of the estimate with respect to changing κ equals dµ̂
dκ −

dµ̂
dα

dν
dκ

/

dν
dα . We bound this

from the derivatives computed above.
To bound dµ̂

dκ , we note that the number of indices not in the sum “
∑

<” is at most 1
3 log

1
δ because

each such i contributes 1 to the left hand side of the condition in Step 2 of Estimator 1 and the right
hand side equals 1

3 log
1
δ . Thus the initial terms of dµ̂

dκ are bounded as 1+ 1
n

∑

<(−1) ≤ 1
3n log 1

δ . The

remaining part of dµ̂
dκ , namely 1

n

∑

< 3α(xi − κ)2 is 3
n times the corresponding terms in ν ≤ 1

3 log
1
δ

itself, and thus is at most 1
n log 1

δ . Thus
dµ̂
dκ = O( 1n log 1

δ ).

We now bound the remaining term − dµ̂
dα

dν
dκ

/

dν
dα . Since for each index i in “

∑

<” we have

|xi − κ| ≤ 1√
α
, we may bound dµ̂

dα , involving a 3rd moment term, by the simpler |dµ̂dα | ≤ 1
n

∑

< |xi −
κ|2/√α. Combining this, with the other derivatives and the bound α ≤ 1

3 log 1
δ

/
∑

<(xi−κ)2 from
the previous paragraph yields:

∣

∣

∣

∣

dµ̂

dα

dν

dκ

/

dν

dα

∣

∣

∣

∣

≤ 2
√
α

n

∣

∣

∣

∣

∑

<(xi − κ)
∑

<(xi − κ)2
∑

<(xi − κ)2
∣

∣

∣

∣

≤
2
√

1
3 log

1
δ

n

∣

∣

∣

∣

∣

∑

<(xi − κ)
√
∑

<(xi − κ)2

∣

∣

∣

∣

∣

≤

√

4 log 1
δ

3n

where the last inequality is Cauchy-Schwarz applied to the sequence (xi−κ) and the all-1s sequence.
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