POLYNOMIAL REPRESENTATIONS OF SYMMETRIC PARTIAL
BOOLEAN FUNCTIONS
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Abstract. For Boolean polynomials in Z of sufficiently low degree we derive a relation express-
ing their values on one level set in terms of their values on another level set. We use this relation
to derive linear upper and lower bounds, tight to within constant factor, on the degrees of various
approzimate majority functions, namely functions that take the value 0 on one level set, the value 1
on a different level set, and arbitrary 0-1 values on other Boolean inputs. We show sub-linear upper
bounds in the case of moduli that are not prime powers.
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1. Introduction. Methods bounding the degree of polynomials that represent
Boolean functions have been important tools in complexity theory. These techniques
have been used to obtain several results that shed light on the complexity of Boolean
functions. In particular, such polynomial degree lower bounds have consequences for
the constant-depth circuit complexity of the associated Boolean functions.

We say that a polynomial represents a Boolean function if the polynomial is non-
zero when the Boolean function is TRUE and zero when it is FALSE. The functions
AND, OR, and Majority have been studied extensively in this framework and are
examples of the more general class of threshold functions. Specifically, a threshold
function is one which has value TRUE iff the number of non-zero inputs is at least
a certain threshold. For AND, OR, and Majority, the respective thresholds are the
number of inputs n, one, and n/2 respectively. Most of the work in this area concerns
polynomials that either represent these functions exactly, or at a large fraction of the
points. Our results instead bound the degree of a large class of Boolean functions
with values fixed at only a small subset of the domain. In particular, we study the
approximate majority function, which is defined for fixed A, B with A < B as any
function that is TRUE if exactly B of the inputs are TRUE, and FALSE if exactly
A are TRUE. Using properties of the binomial coefficients, we provide a linear lower
bound on the degree of polynomials representing such approximate majority functions.
For example, if for some prime p,n = 4p*, A = n/4, and B = 3n/4 we prove a lower
bound linear in n/p on the degree of a polynomial representing this approximate
majority function over Z,. Our general linear lower bounds, however, hold only
modulo powers of primes. For composite moduli with multiple prime factors, we
prove sublinear upper bounds.

Degree lower bounds for Boolean polynomials were first used by Razborov [Raz87]
and Smolensky [Smo87] in the context of proving lower bounds on the size of constant-
depth Boolean circuits. These results inspired much work on the degree of threshold
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and other functions over various rings. Beigel [Bei93] gives an overview of much
of the earlier work in this area. For example, Barrington, Straubing, and Thérien
[BST90] proved linear upper bounds on the degree of a polynomial representing the
OR function over Z,,, and showed that they are tight for prime m. These upper
bounds were improved by Barrington, Beigel, and Rudich [BBR92] to be sublinear for
the case of composite m. In the case of majority, Tsai [Tsai96] proves a lower bound
for all m of n/2 on the degree of the majority function over Z,,. The approximate
majority function with A = n/4 and B = 3n/4 arises naturally in the context of
quantum complexity [GP01]. We show that the degree of this function is within a
constant factor of that of the majority function for prime powers, but significantly
lower otherwise.

2. Preliminaries.

2.1. Combinatorics. For natural numbers n and k, we denote by (n)y the k-ary
representation of n, i.e. the string ...asa1a0, with 0 < a; < k, such that n =), a;k’.
Note that the first (from the right) nonzero digit of (n)y is given by the least i such
that k! { n, an observation to which we shall frequently refer.

In 1878 Lucas [Luc78] gave a method for easily determining the value of (}) mod
p, for prime p. This result is now known as Lucas’s Theorem. It is one of the main
ingredients in the proofs of our results. By z[i] we denote the symbol at the ith
position from the right of string z.

THEOREM 1 (Lucas). Let p be a prime number, and n,k positive integers. Then

(1) =1L (fo) oo

where m is the mazimal indez i such that (n),[i] # 0 or (k),[i] # 0, and where we use
the convention that (i) = 0 whenever x > a.

2.2. Representation of Boolean Functions over Z,,. We now define what
it means for a polynomial over Z,, to represent a Boolean function. We should note
that there are several ways of representing a Boolean function by a polynomial over
Z p, as discussed, for instance in Tardos and Barrington [TB95]. The definition we
use here is what is sometimes called one-sided representation.

DEFINITION 1. Let g : {0,1}" — {0,1} be a Boolean function, and P : Z?, = Zm,
a multilinear polynomial. We say that P represents g over L, iff for all z € {0,1}",
P(z) =0 < g(z) = 0. By the degree deg(P) of a polynomial P : ", — Z,, we mean
the degree of its largest monomial. The degree of a Boolean function g : {0,1}" —
{0,1} over Z., is then defined as deg(g,m) = min{deg(P) | P represents g over Z.,}.

Note that since for all z € {0,1} and £ > 0, we have that z‘ = =, the restriction
to multilinear polynomials is without loss of generality.

We will sometimes restrict ourselves to polynomials with outputs in {0, 1}, which
thus strictly represent Boolean functions. When the modulus is a prime power p*,
the following lemmas relate the degrees of the strict and one-sided representations to
be within a factor of (p — 1)(2p*~! — 1). Both are usually stated as being folklore
results. See [Bei93] for an overview of these and other similar results. The proof of
Lemma 3 is due to Richard Beigel (personal communication, October 2002) correcting
a misstatement in [Bei93].
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LEMMA 2. Let p be a prime, and g : Zj; — Zj be a polynomial of degree d; then
there is a polynomial h : Zy — Z,, of degree (p — 1)d such that for all x € {0,1}",
h(z) € {0,1}, and h(z) =0 iff g(z) = 0.

Proof Take h = g?~1. By Fermat’s little theorem, h(z) =1 (mod p) iff g(z) # 0.0

LEMMA 3. Let k be a positive integer, and p a prime. If g : ZZ’“ — ZLpr i85 @

polynomial of degree d, then there exists a degree d(2p*—' —1) polynomial h : Ly = Ly,
such that for all x € {0,1}", h(z) = 0 iff g(z) = 0.

Proof By Theorem 1, we have that for every prime p, and positive integer m,

() = (") = @t (mod ).

pl

Thus we have that for every such p, m

(2.1) m=0 (mod p*) & Vi<k [(Z:) =0 (mod p)] .
Define the ith elementary symmetric function of the n variables y1,...,Yn, ¢ < n, as

> ﬁyl:"

1<t << <n j=1

Note that if each y; € {0, 1}, and exactly |y| of them are 1, then the value of the above
expression is (lg‘). Now write g as a sum of monomials of coefficient 1, i.e., replace for
example 3122 by z172 + T122 + z122. Let (¢ (f)) be the i-th elementary symmetric
function of the monomials in g. Define h(x) as

=3 (I (5) )

Jj=

We have that the degree of (gz()f)) is dp' < dp*~'. Also, the degree of the product
is at most Zf;g d(p—1)p? = d(p*~' — 1). Thus the degree of h(z) is d(2p*~' —1).
If g() = 0 (mod p*), then by Equation 2.1, (gz()f)) =0 (mod p) for all 0 < i < k,
hence h(z) = 0 (mod p). On the other hand, if g(z) Z 0 (mod p*), then using
Equation 2.1, let r be the least value such that (gl()f)) Z0 (mod p). Note that the rth
term in h(x) is nonzero modulo p, but all the others are zero modulo p, since all terms
after the rth contain the factor (1 - (91()3?))1)71) = 0, and hence h(z) Z 0 (mod p).

O

3. Level Set Relations. In this section we restrict ourselves to the field Z,
where p is a prime. For a binary string z, let || denote its Hamming weight, the
number of 1s. Note that in the following, we often identify an input z € {0,1}" with
the set S = {=; | ; = 1}. By definition |z| = |S]|.

The following theorem relates the value of a polynomial at a set U with the sum
of its values on subsets of U of a fixed cardinality, provided the polynomial is of
sufficiently low degree.
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THEOREM 4. Let p be prime, and let g : Zj; — Z; be a polynomial of degree

at most p". Let a < b be integers satisfying (Zj) Z 0 (mod p) . Then for any
assignment U C [n] with |U| = bp",

s0)=1=v/ag®+ (J 1) X o(8) (mod
|S|=ap"
ScuU

_1y—1
1)

unless a =0 (mod p) in which case b/a is replaced by (2)(

Proof Let c,(S) represent the coefficient in g of the term [[;,.g ;. Then since g has
degree at most p” we can evaluate it at some point S with the following expression

9(8) =D Y ().

I<pm |Z|=l
Zcs

Thus we have

Yo=Y D> D @

|S|=ap” |S|=ap I<p™ | Z|=l
scu ScU zZcs

-Y Y Yo

I<p™ |S|=ap™ | Z|=l

ScU ZcS
bp” —1
-y > (7 )ao.
I<p™|Z|=l
ZCcU

where the last equality holds since there are (21;::ll) ways to choose the remaining

ap” — I elements to form a set S with Z C S C U of size ap”.

From Lucas’s theorem we have that for 0 < [ < p”, (Zf;::lz) = (Zj) and for

1=0, (Z’;:) = (Z) Thus we may simplify the above as follows:

S ¥ (e =()e0+ (1) T T an

I<p™|Z|=1 I<p™ |Z]=1
ZcU ZcU
b b—1 b—1
()= G)Jom+ (020) 2 o
|Z|<p"
ZcU
b b—1 b—1
()= G)Jem (G21)e
Rearranging terms gives us the desired result. |

We would expect this theorem to be useful in proving degree lower bounds on
polynomials representing Boolean functions whose values are only specified on certain
level sets. We provide a few examples.

4. Lower Bounds. As a first application, consider a Boolean function g :
{0,1}™ — {0,1}, that has g(z) = 1if |z| = n/4 and g(z) = 0 if |z| = 3n/4, which can
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be thought of as the negation of an “approximate majority function.” We start with
the special case when n = 4p* and prove that deg(g,p) = Q(n).

THEOREM 5. Let p be a prime, n = 4p", and g : {0,1}"™ — {0,1} be such that
g(z) =0 if || =n/4, and g(z) =1 if |z| = 3n/4. Then

n
d —_.
eg(g,p) > -1

Proof Consider any degree d < ﬁ multilinear polynomial P over Z, that repre-
sents g. Using Lemma 2, transform P into a polynomial ¢ that represents g over Z,,
and that has g(z) € {0,1} for all z € {0,1}™. This will only increase the degree of ¢
by a multiplicative factor (p — 1). We now prove a lower bound of n/4 on the degree
of q.

Suppose for the sake of contradiction that we have such a polynomial of degree
n/4. From Theorem 4 with a = 1,b = 3,r = r we have

1=g(3n/4) = -20@) + > g(S)
sctomys

= —2g(0) + 0.

Thus for g(@) € {0,1} we have 2g(0)) = —1, which implies that p = 3 and g(@) = 1.
We now apply Theorem 4 again for a = 1,b = 2,r = r to yield

g(@2n/4) = -1g@) + Y 9(9)

|S|=ap"
SC[2n/4]
=-14+0=2,
contradicting the fact that ¢ is 0 — 1 valued. Hence ¢ must have degree greater than
n/4. O
Using Lemma 3 we have the following corollary.
COROLLARY 6. Let p be a prime, n = 4p”, and g : {0,1}" — {0,1} be such that
g9(z) =0 if |z| =n/4, and g(z) =1 if |z| = 3n/4. Then
n

42t =1)(p—-1)

deg(g, p*) >

We note that in the above applications the number of variables n may be any
integer n > 3p". We also note that the key to our proof is the fact that the degree
of any polynomial strictly representing g is greater than n/4, which applies equally
to the negation of g. Thus the preceding and following theorems apply equally to the
approximate majority function as to its negation.

THEOREM 7. Let p be a prime, n € Z, A = ap”,B = bp", A < B < n with
neither b nor (Zj) a multiple of p, and g : {0,1}" — {0,1} be such that g(z) = 0
if |z| = A, and g(xz) = 1 if || = B. Then the degree of any polynomial over Z,
that strictly represents g is greater than p”, with the following bound for the one-sided
representation:

r

p
2pFt = 1)(p—-1)

deg(g,p*) > (
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Proof As above we prove the degree bound for the strict representation, and then
apply Lemmas 2 and 3.

Suppose for the sake of contradiction there exists a polynomial P of degree < p”
that strictly represents g over Z,. Note that the conditions of the theorem imply
that a £ 0, for if a = 0 and b # 0, then Lucas’s theorem would imply (Zj) =0, in
violation of our assumptions. Thus from Theorem 4 we have that

1=(1-b/a)g(®) +0=(1—0b/a)g(d) (mod p).

Since g(0) is either 0 or 1, g(#) must equal 1. Thus b = 0, contradicting our assump-
tion. Thus any strictly representing polynomial P must have degree greater than p",
as desired. Note that the condition that (Zj) #£ 0 (mod p) is required by Theorem
4. O

5. Upper Bounds. We now use Lucas’s theorem to produce symmetric polyno-
mials to represent approximate majority functions. In many cases, these polynomials
have degrees relatively close to the lower bounds proved above.

We now work over the ring Z,, where m is some integer greater than 1. Given an
approximate majority function g(z) defined to be 0 when |z| = A and 1 when |z| = B
for some A, B, we again wish to find a one-sided representing polynomial P such that
P =0 (mod m) iff g = 0. The strategy will be to find some number k such that

(1) # () tmoa m
r=(3)-(2)

This leads to the following theorem.

THEOREM 8. Given an approzimate majority function g : {0,1}"™ — {0,1} such
that g(x) = 0 if || = A and g(z) = 1 if |x| = B for some A,B < n then for
m > 1, deg(g,m) < p"~! where p"~! is the smallest power of a prime factor of m
such that AZ B (mod p"). Further, if m is squarefree, p" ! is the minimum degree
of a symmetric representing polynomial.

Proof Clearly if p" ! is the smallest such power of a factor of m then m contains
exactly r — 1 factors of p. Thus the rth digits (from the right) in the base p repre-
sentations of A and B must differ while the first » — 1 digits must be identical. From
Lucas’s theorem, these rth digits of A and B must equal (p:‘il) and (pﬁl) respectively
modulo p, which values must thus be different. Hence we may represent g as

P=(,0) - (%)

where the notation (pf_l) is taken to mean the elementary symmetric polynomial on
z of degree p"!. Clearly when |z| = A, P(z) = 0, and when |z| = B, P(z) #
0 (mod m) since P(z) Z0 (mod p).

Consider now the case where m is squarefree. Let k£ be the smallest degree of a
symmetric function (i) which differs on the levels A and B modulo m. Clearly any
symmetric representing polynomial must have degree at least k, for otherwise it would
have identical values on the levels A and B. We show k > p"!. Let ¢ be some prime

and then represent g as
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factor of m such that (£) # (¥) (mod g). Then for some 7' the r'th digits base ¢

of A and B must differ. Consider the smallest such 7. Since (£) #Z (¥) (mod q),

Lucas’s theorem implies ¢" ~! < k. Since the r'th digits base ¢ of A and B differ,

we have A # B (mod ¢"'). However, by hypothesis, p"! is the smallest power of a

factor of m with this property, so p" ! < ¢" 1. Thus p" ! < k as desired. O
We note that an alternate way of defining p™—! is as follows. Factor B — A as

B-A= p?...p;j.
Then p™—! as defined in Theorem 8 equals

(5.1) min p;*.
pilm
This leads to the following corollary.

COROLLARY 9. Given an approzimate majority function g : {0,1}"™ — {0,1}
such that g(z) = 0 if |z| = A and g(z) = 1 if |x| = B for some A, B < n then for
m > 1, deg(g,m) < (B — A)Y/9 where q is the number of distinct prime factors of m.
Proof Factor B — A as a product of powers of prime factors of m and some remaining
factor. Clearly one of the ¢ prime power factors must be at most (B — A)'/?, implying
the corollary by the above observation. |

We note that from equation 5.1, if a prime factor of m does not divide B — A
then the degree of the representing polynomial is 1!

Finally, we combine Theorems 7 and 8 to yield the following constant factor
bound. (Note that if p = 2 the conditions of the theorem will never hold.)

THEOREM 10. Let p be a prime, n € Z, A = ap”,B = bp", A < B < n with
neither b — a, b nor (Zj) a multiple of p, and g : {0,1}™ — {0,1} such that g(z) =1
if |z| = A, and g(z) =0 if |z| = B. Then

T

p
@t -1 -1

y < deg(g,p*) <p".

6. Discussion and Open Problems. We presented a relation between values
of a low degree polynomial on different level sets. We studied applications of this
relation towards providing degree lower bounds for polynomials representing approzi-
mate majority functions. Further, many of these bounds lie suprisingly close to upper
bounds given by symmetric functions. We note that an interesting consequence of the
lower bound is a construction of an oracle separating EQP from MOD P [GP01] that
is alternative to one implicit in [Bei91].

A number of open questions are left by this research. First of all, in Z,», Theorem
10 provides lower and upper bounds that differ by a factor of (2p*~! —1)(p—1). Tt
would be interesting to see how this constant size gap can be closed. Theorem 10
relies on several conditions on the relation between A, B, and p, and we are curious
to see which of these, if any, could be relaxed.

A possibly more fundamental open question raised by this paper is to find good
lower bounds on the degree of approximate majority functions over Z,, for composite
m. The techniques used in §4 seem to break down here, even for squarefree m.
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