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Abstract
We give highly efficient algorithms, and almost matching

lower bounds, for a range of basic statistical problems that in-

volve testing and estimating the L1 (total variation) distance

between two k-modal distributions p and q over the discrete

domain {1, . . . , n}. More precisely, we consider the follow-

ing four problems: given sample access to an unknown k-

modal distribution p,

TESTING IDENTITY TO A KNOWN OR UNKNOWN DISTRI-

BUTION:

1. Determine whether p = q (for an explicitly given k-

modal distribution q) versus p is ε-far from q;

2. Determine whether p = q (where q is available via

sample access) versus p is ε-far from q;

ESTIMATING L1 DISTANCE (“TOLERANT TESTING”)

AGAINST A KNOWN OR UNKNOWN DISTRIBUTION:

3. Approximate dTV (p, q) to within additive ε where q is

an explicitly given k-modal distribution q;

4. Approximate dTV (p, q) to within additive ε where q is

available via sample access.

For each of these four problems we give sub-logarithmic
sample algorithms, and show that our algorithms have opti-

mal sample complexity up to additive poly(k) and multiplica-

tive polylog log n+polylogk factors. Our algorithms signif-

icantly improve the previous results of [BKR04], which were

for testing identity of distributions (items (1) and (2) above)

in the special cases k = 0 (monotone distributions) and k = 1
(unimodal distributions) and required O((log n)3) samples.
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As our main conceptual contribution, we introduce a

new reduction-based approach for distribution-testing prob-

lems that lets us obtain all the above results in a unified

way. Roughly speaking, this approach enables us to trans-

form various distribution testing problems for k-modal dis-

tributions over {1, . . . , n} to the corresponding distribution

testing problems for unrestricted distributions over a much

smaller domain {1, . . . , �} where � = O(k log n).

1 Introduction
Given samples from a pair of unknown distributions, the

problem of “identity testing”—that is, distinguishing whether

the two distributions are the same versus significantly

different—and, more generally, the problem of estimating the

L1 distance between the distributions, is perhaps the most

fundamental statistical task. Despite a long history of study,

by both the statistics and computer science communities,

the sample complexities of these basic tasks were only re-

cently established. Identity testing, given samples from a pair

of distributions of support [n], can be done using Õ(n2/3)
samples [BFR+00], and this upper bound is optimal up to

polylog(n) factors [Val08a]. Estimating the L1 distance (“tol-

erant testing”) between distributions of support [n] requires

Θ(n/ log n) samples, and this is tight up to constant fac-

tors [VV11a, VV11b]. The variants of these problems when

one of the two distributions is explicitly given require Θ̃(
√
n)

samples for identity testing [BFF+01] and Θ(n/ log n) sam-

ples for L1 distance estimation [VV11a, VV11b] respectively.

While it is surprising that these tasks can be performed

using a sublinear number of samples, for many real-world ap-

plications using n
logn , n2/3 or even

√
n samples is still im-

practical. As these bounds characterize worst-case instances,

one might hope that drastically better performance may be

possible for many settings typically encountered in practice.

Thus, a natural research direction, which we pursue in this pa-

per, is to understand how structural properties of the distribu-

tions in question may be leveraged to yield improved sample

complexities.

In this work we consider monotone, unimodal, and more

generally k-modal distributions. Monotone, unimodal, and

bimodal distributions abound in the natural world, since the

distribution of many measurements—weights of members of
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a population, concentrations of various chemicals in cells, pa-

rameters of many atmospheric phenomena, etc.—often be-

long to these classes of distributions. Because of their ubiq-

uity, a huge amount of work in the natural sciences rests

on the analysis of such distributions (for example, on July

2, 2012 a Google Scholar search for the exact phrase “bi-

modal distribution” in the bodies of papers returned more

than 95,000 hits; a search for “multimodal distribution” re-

turned about 6,000 hits). Moreover, k-modal distributions for

larger values of k commonly arise as mixtures of unimodal

distributions and are natural objects of study. On the theo-

retical side, many works in probability and statistics study

various types of “shape restrictions” on densities; monotonic-

ity, unimodality, and k-modality are among the most com-

monly studied shape restrictions, with a rich literature span-

ning many decades, see e.g. [Gre56, Rao69, BBBB72, Sil81,

CKC83, Gro85, Kem91, HS95, Fou97, CT04, JW09].

1.1 Our results. Our main results are algorithms, and

nearly matching lower bounds, that give a complete picture

of the sample complexities of identity testing and estimating

L1 distance for monotone and k-modal distributions. We ob-

tain such results in both the setting where the two distribu-

tions are given via samples, and the setting where one of the

distributions is given via samples and the other is described

explicitly.

All our results have the nature of a reduction: perform-

ing these tasks on k-modal distributions over [n] turns out

to have almost exactly the same sample complexities as per-

forming the corresponding tasks on arbitrary distributions

over [k log n]. For any small constant k (or even k =
O((log n)1/3)) and arbitrarily small constant ε, all our results

are tight to within either polylog log n or polylog log log n
factors. See Table 1 for the new sample complexity upper

and lower bounds for the monotone and k-modal tasks; see

Section 2 for the (exponentially higher) sample complexities

of the general-distribution tasks. While our main focus is

on sample complexity rather than running time, we note that

all of our algorithms run in poly(log n, k, 1/ε) bit operations

(note that even reading a single sample from a distribution

over [n] takes log n bit operations).

We view the equivalence between the sample complexity

of each of the above tasks on a monotone or unimodal

distribution of domain [n] and the sample complexity of the

same task on an unrestricted distribution of domain [log n]
as a surprising result, because such an equivalence fails to

hold for related estimation tasks. For example, consider the

task of distinguishing whether a distribution on [n] is uniform

versus far from uniform. For general distributions this takes

Θ(
√
n) samples, so one might expect the corresponding

problem for monotone distributions to need
√
log n samples;

in fact, however, one can test this with a constant number

of samples, by simply comparing the empirically observed

probability masses of the left and right halves of the domain.

An example in the other direction is the problem of finding a

constant additive estimate for the entropy of a distribution. On

domains of size [n] this can be done in n
logn samples, and thus

one might expect to be able to estimate entropy for monotone

distributions on [n] using logn
log logn samples. Nevertheless, it is

not hard to see that Ω(log2 n) samples are required.

The reduction techniques which we use to establish both

our algorithmic results and our lower bounds (discussed

in more detail in Section 1.2 below) reveal an unexpected

relationship between the class of k-modal distributions of

support [n] and the class of general distributions of support

[k log n]. We hope that the reduction-based approach which

we initiate here may provide a framework for the discovery

of other relationships that will be useful in future work in

the extreme sublinear regime of statistical property estimation

and property testing.

Comparison with prior work. Our results significantly ex-

tend and improve upon the previous algorithmic results of

Batu et al [BKR04] for identity testing of monotone or uni-

modal (k = 1) distributions, which required O(log3 n) sam-

ples. More recently, [DDS12] gave an algorithm for learning
k-modal distributions using essentially k log(n)ε−3 + k3ε−3

samples. Such a learning algorithm easily yields a testing al-

gorithm with the same sample complexity for all four variants

of the testing problem (one can simply run the learner twice to

obtain hypotheses p̂ and q̂ that are sufficiently close to p and q
respectively, and output accordingly). Note that the [DDS12]

approach gives suboptimal results for all of the testing prob-

lems which we consider, both in terms of k and n.

We stress that the main ideas underlying this paper are

quite different from those of [DDS12]. The [DDS12] paper

learns a k-modal distribution by using any algorithm for

learning monotone distributions (several such algorithms are

known, see e.g. [Bir87] or the analysis of the Grenander

estimator given in [Bir97]) k times in a black-box manner.

The key idea of [DDS12] is to use a property tester (unrelated

to the testers of the current paper) in order to “decompose”

the k-modal learning problem into k monotone learning

problems; the notion of reducing the domain size—which

we view as central to the results and contributions of this

paper—plays no role in [DDS12]. In contrast, the key idea

in this paper is the use of reductions as a powerful tool for

algorithms for basic statistical tasks on distributions. Our

results show that surprisingly, this simple tool is capable of

giving essentially optimal upper and lower bounds for highly

natural classes of distributions.

1.2 Techniques. Our main conceptual contribution is a

new reduction-based approach that lets us obtain all our upper

and lower bounds in a clean and unified way. The approach

works by reducing the monotone and k-modal distribution

testing problems to general distribution testing and estima-

tion problems over a much smaller domain, and vice versa.

For the monotone case this smaller domain is essentially of

size log(n)/ε, and for the k-modal case the smaller domain

is essentially of size k log(n)/ε2. By solving the general dis-

tribution problems over the smaller domain using known al-

gorithms we get a valid answer for the original (monotone
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Testing problem Our upper bound Our lower bound
p, q are both monotone:

Testing identity, q is known: O
(
(log n)

1/2
(log log n) · ε−9/2

)
Ω
(
(log n)

1/2
)

Testing identity, q is unknown: O
(
(log n)

2/3 · (log log n) · ε−10/3
)

Ω

((
logn

log logn

)2/3
)

Estimating L1 distance, q is known: O
(

logn
log logn · ε−3

)
Ω
(

logn
log logn·log log logn

)
Estimating L1 distance, q is unknown: O

(
logn

log logn · ε−3
)

Ω
(

logn
log logn·log log logn

)
p, q are both k-modal:

Testing identity, q is known: O
(

k2

ε4 + (k logn)1/2

ε5 · log
(

k logn
ε

))
Ω
(
(k log n)

1/2
)

Testing identity, q is unknown: O
(

k2

ε4 + (k logn)2/3

ε10/3
· log

(
k logn

ε

))
Ω

((
k logn

log(k logn)

)2/3
)

Estimating L1 distance, q is known: O
(

k2

ε4 + k logn
log(k logn) · ε−4

)
Ω
(

k logn
log(k logn)·log log(k logn)

)
Estimating L1 distance, q is unknown: O

(
k2

ε4 + k logn
log(k logn) · ε−4

)
Ω
(

k logn
log(k logn)·log log(k logn)

)

Table 1: Our upper and lower bounds for identity testing and L1 estimation. In the table we omit a “log(1/δ)” term which is

present in all our upper bounds for algorithms which give the correct answer with probability 1− δ. For the “testing identity”

problems, our lower bounds are for distinguishing whether p = q versus dTV (p, q) > 1/2 with success probability 2/3. For

estimating L1 distance, our bounds are for estimating dTV (p, q) to within ±ε, for any k = O(n1/2), with the lower bounds

corresponding to success probability 2/3.

or k-modal) problems over domain [n]. More details on our

algorithmic reduction are given in Appendix A.

Conversely, our lower bound reduction lets us reexpress

arbitrary distributions over a small domain [�] by monotone

(or unimodal, or k-modal, as required) distributions over

an exponentially larger domain, while preserving many of

their features with respect to the L1 distance. Crucially,

this reduction allows one to simulate drawing samples from

the larger monotone distribution given access to samples

from the smaller distribution. This enables us to leverage a

known impossibility result for unrestricted distributions on [�]
to obtain a corresponding impossibility result for monotone

(or unimodal, or k-modal) distributions on the exponentially

larger domain.

The starting point of our results is an observation of Birgé

[Bir87] that given a monotone-decreasing probability distri-

bution over [n], if one subdivides [n] into an exponentially

increasing series of consecutive sub-intervals, the ith hav-

ing size (1 + ε)i, then if one replaces the probability mass

on each interval with a uniform distribution on that inter-

val, the distribution changes by only O(ε) in total variation

distance. Further, given such a subdivision of the support

into log1+ε(n) intervals, one may essentially treat the orig-

inal monotone distribution as essentially a distribution over

these intervals, namely a distribution of support log1+ε(n).
In this way, one may hope to reduce monotone distribution

testing or estimation on [n] to general distribution testing or

estimation on a domain of size log1+ε(n), and vice versa. See

Section 3 for details.

For the monotone testing problems the partition into

subintervals is constructed obliviously (without drawing any

samples or making any reference to p or q of any sort) – for a

given value of ε the partition is the same for all non-increasing

distributions. For the k-modal testing problems, constructing

the desired partition is significantly more involved. This is

done via a careful procedure which uses k2 · poly(1/ε) sam-

ples1 from p and q and uses the oblivious decomposition for

monotone distributions in a delicate way. This construction is

given in Section 4.

2 Notation and Preliminaries
2.1 Notation. We write [n] to denote the set {1, . . . , n},

and for integers i ≤ j we write [i, j] to denote the set

{i, i + 1, . . . , j}. We consider discrete probability distribu-

tions over [n], which are functions p : [n] → [0, 1] such

that
∑n

i=1 p(i) = 1. For S ⊆ [n] we write p(S) to denote∑
i∈S p(i). We use the notation P for the cumulative distri-

bution function (cdf) corresponding to p, i.e. P : [n] → [0, 1]

is defined by P (j) =
∑j

i=1 p(i).
A distribution p over [n] is non-increasing (resp. non-

decreasing) if p(i + 1) ≤ p(i) (resp. p(i + 1) ≥ p(i)),
for all i ∈ [n − 1]; p is monotone if it is either non-

increasing or non-decreasing. Thus the “orientation” of a

monotone distribution is either non-decreasing (denoted ↑) or

non-increasing (denoted ↓).

We call a nonempty interval I = [a, b] ⊆ [2, n − 1] a

max-interval of p if p(i) = c for all i ∈ I and max{p(a −
1), p(b + 1)} < c. Analogously, a min-interval of p is an

1Intuitively, the partition must be finer in regions of higher probability

density; for non-increasing distributions (for example) this region is at the

left side of the domain, but for general k-modal distributions, one must draw

samples to discover the high-probability regions.
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interval I = [a, b] ⊆ [2, n − 1] with p(i) = c for all i ∈ I
and min{p(a − 1), p(b + 1)} > c. We say that p is k-modal
if it has at most k max-intervals and min-intervals. We note

that according to our definition, what is usually referred to as

a bimodal distribution is a 3-modal distribution.

Let p, q be distributions over [n] with correspond-

ing cdfs P,Q. The total variation distance between

p and q is dTV (p, q) := maxS⊆[n] |p(S) − q(S)| =
(1/2)

∑
i∈[n] |p(i)−q(i)|. The Kolmogorov distance between

p and q is defined as dK(p, q) := maxj∈[n] |P (j)−Q(j)| .
Note that dK(p, q) ≤ dTV (p, q).

Finally, a sub-distribution is a function q : [n] → [0, 1]
which satisfies

∑n
i=1 q(i) ≤ 1. For p a distribution over [n]

and I ⊆ [n], the restriction of p to I is the sub-distribution

pI defined by pI(i) = p(i) if i ∈ I and pI(i) = 0 otherwise.

Likewise, we denote by pI the conditional distribution of p
on I , i.e. pI(i) = p(i)/p(I) if i ∈ I and pI(i) = 0 otherwise.

2.2 Basic tools from probability. We will require the

Dvoretzky-Kiefer-Wolfowitz (DKW) inequality ([DKW56])

from probability theory. This basic fact says that O(1/ε2)
samples suffice to learn any distribution within error ε with

respect to the Kolmogorov distance. More precisely, let p
be any distribution over [n]. Given m independent samples

s1, . . . , sm drawn from p : [n] → [0, 1], the empirical distri-
bution p̂m : [n] → [0, 1] is defined as follows: for all i ∈ [n],
p̂m(i) = |{j ∈ [m] | sj = i}|/m. The DKW inequality

states that for m = Ω((1/ε2) · ln(1/δ)), with probability

1 − δ the empirical distribution p̂m will be ε-close to p in

Kolmogorov distance. This sample bound is asymptotically

optimal and independent of the support size.

THEOREM 2.1. ([DKW56, MAS90]) For all ε > 0, it
holds: Pr[dK(p, p̂m) > ε] ≤ 2e−2mε2 .

Another simple result that we will need is the following,

which is easily verified from first principles:

OBSERVATION 2.1. Let I = [a, b] be an interval and let uI

denote the uniform distribution over I. Let pI denote a non-
increasing distribution over I . Then for every initial interval
I ′ = [a, b′] of I , we have uI(I

′) ≤ pI(I
′).

2.3 Testing and estimation for arbitrary distributions.
Our testing algorithms work by reducing to known algorithms

for testing arbitrary distributions over an �-element domain.

We will use the following well known results:

THEOREM 2.2. (TESTING IDENTITY, KNOWN DISTRIBU-

TION [BFF+01]) Let q be an explicitly given distribution
over [�]. Let p be an unknown distribution over [�] that
is accessible via samples. There is a testing algorithm
TEST-IDENTITY-KNOWN(p, q, ε, δ) that uses sIK(�, ε, δ) :=
O(�1/2 log(�)ε−4 log(1/δ)) samples from p and has the fol-
lowing properties:

• If p ≡ q then with probability at least 1−δ the algorithm
outputs “accept;” and

• If dTV (p, q) ≥ ε then with probability at least 1− δ the
algorithm outputs “reject.”

THEOREM 2.3. (TESTING IDENTITY, UNKNOWN DISTRI-

BUTION [BFR+00, BFR+10]]) Let p and q both
be unknown distributions over [�] that are accessible
via samples. There is a testing algorithm TEST-

IDENTITY-UNKNOWN(p, q, ε, δ) that uses sIU (�, ε, δ) :=
O(�2/3 log(�/δ)ε−8/3) samples from p and q and has the fol-
lowing properties:
• If p ≡ q then with probability at least 1−δ the algorithm

outputs “accept;” and
• If dTV (p, q) ≥ ε then with probability at least 1− δ the

algorithm outputs “reject.”

THEOREM 2.4. (L1 ESTIMATION [VV11B]) Let p be an
unknown distribution over [�] that is accessible via samples,
and let q be a distribution over [�] that is either explicitly
given, or accessible via samples. There is an estimator L1-

ESTIMATE(p, q, ε, δ) that, with probability at least 1−δ, out-
puts a value in the interval (dTV (p, q) − ε, dTV (p, q) + ε).

The algorithm uses sE(�, ε, δ) := O
(

�
log � · ε−2 log(1/δ)

)
samples.

3 Testing and Estimating Monotone Distributions
3.1 Oblivious decomposition of monotone distributions.
Our main tool for testing monotone distributions is an oblivi-
ous decomposition of monotone distributions that is a variant

of a construction of Birgé [Bir87]. As we will see it enables

us to reduce the problem of testing a monotone distribution to

the problem of testing an arbitrary distribution over a much

smaller domain.

Before stating the decomposition, some notation will be

helpful. Fix a distribution p over [n] and a partition of [n]
into disjoint intervals I := {Ii}�i=1. The flattened distribution
(pf )

I corresponding to p and I is the distribution over [n]
defined as follows: for j ∈ [�] and i ∈ Ij , (pf )

I(i) =∑
t∈Ij p(t)/|Ij |. That is, (pf )

I is obtained from p by

averaging the weight that p assigns to each interval over the

entire interval. The reduced distribution (pr)
I corresponding

to p and I is the distribution over [�] that assigns the ith point

the weight p assigns to the interval Ii; i.e., for i ∈ [�], we have

(pr)
I(i) = p(Ii). Note that if p is non-increasing then so is

(pf )
I , but this is not necessarily the case for (pr)

I .

The following simple lemma, proved in Appendix A,

shows why reduced distributions are useful for us:

DEFINITION 3.1. Let p be a distribution over [n] and let
I = {Ii}�i=1 be a partition of [n] into disjoint intervals.
We say that I is a (p, ε, �)-flat decomposition of [n] if
dTV (p, (pf )

I) ≤ ε.

LEMMA 3.2. Let I = {Ii}�i=1 be a partition of [n] into
disjoint intervals. Suppose that p and q are distributions
over [n] such that I is both a (p, ε, �)-flat decomposition of
[n] and is also a (q, ε, �)-flat decomposition of [n]. Then∣∣dTV (p, q)− dTV ((pr)

I , (qr)I)
∣∣ ≤ 2ε. Moreover, if p = q

then (pr)
I = (qr)

I .
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We now state our oblivious decomposition result for

monotone distributions:

THEOREM 3.1. (DISCRETE ANALOGUE OF [BIR87]) Fix
any n ∈ Z

+ and ε > 0. The partition I := {Ii}�i=1 of [n], in
which the jth interval has size �(1 + ε)j� has the following
properties: � = O ((1/ε) · log(ε · n+ 1)), and for any
non-increasing distribution p over [n], I is a (p,O(ε), �)-flat
decomposition of [n].

There is an analogous version of Theorem 3.1, asserting

the existence of an “oblivious” partition for non-decreasing

distributions (which is of course different from the “obliv-

ious” partition I for non-increasing distributions of Theo-

rem 3.1); this will be useful later.

While our construction is essentially that of Birgé, we

note that the version given in [Bir87] is for non-increasing

distributions over the continuous domain [0, n], and it is

phrased rather differently. Adapting the arguments of [Bir87]

to our discrete setting of distributions over [n] is not concep-

tually difficult but requires some care. For the sake of com-

pleteness we provide a self-contained proof of the discrete

version above in Appendix E.

3.2 Efficiently testing monotone distributions. Now we

are ready to establish our upper bounds on testing monotone

distributions (given in the first four rows of Table 1). All of

the algorithms are essentially the same: each works by reduc-

ing the given monotone distribution testing problem to the

same testing problem for arbitrary distributions over support

of size � = O(log n/ε) using the oblivious decomposition

from the previous subsection. For concreteness we explicitly

describe the tester for the “testing identity, q is known” case

below, and then indicate the small changes that are necessary

to get the testers for the other three cases.

TEST-IDENTITY-KNOWN-MONOTONE

Inputs: ε, δ > 0; sample access to non-increasing distribu-

tion p over [n]; explicit description of non-increasing distri-

bution q over [n]

1. Let I := {Ii}�i=1, with � = Θ(log(εn + 1)/ε), be

the partition of [n] given by Theorem 3.1, which is

a (p′, ε/8, �)-flat decomposition of [n] for any non-

increasing distribution p′.
2. Let (qr)

I denote the reduced distribution over [�]
obtained from q using I (as defined in Section 3.1).

3. Draw m = sIK(�, ε/2, δ) samples from (pr)
I , where

(pr)
I is the reduced distribution over [�] obtained from

p using I.

4. Output the result of TEST-IDENTITY-

KNOWN((pr)
I , (qr)I , ε

2 , δ) on the samples from

Step 3.

We now establish our claimed upper bound for the

“testing identity, q is known” case. We first observe that

in Step 3, the desired m = sIK(�, ε/2, δ) samples from

(pr)
I can easily be obtained by drawing m samples from

p and converting each one to the corresponding draw from

(pr)
I in the obvious way. If p = q then (pr)

I =
(qr)

I , and TEST-IDENTITY-KNOWN-MONOTONE outputs

“accept” with probability at least 1 − δ by Theorem 2.2. If

dTV (p, q) ≥ ε, then by Lemma 3.2, Theorem 3.1 and the

triangle inequality, we have that dTV ((pr)
I , (qr)I) ≥ 3ε/4,

so TEST-IDENTITY-KNOWN-MONOTONE outputs “reject”

with probability at least 1 − δ by Theorem 2.2. For the

“testing identity, q is unknown” case, the algorithm TEST-

IDENTITY-UNKNOWN-MONOTONE is very similar to TEST-

IDENTITY-KNOWN-MONOTONE. The differences are as

follows: instead of Step 2, in Step 3 we draw m =
sIU (�, ε/2, δ) samples from (pr)

I and the same number

of samples from (qr)
I ; and in Step 4, we run TEST-

IDENTITY-UNKNOWN((pr)
I , (qr)I , ε

2 , δ) using the samples

from Step 3. The analysis is exactly the same as above (using

Theorem 2.3 in place of Theorem 2.2).

We now describe the algorithm L1-ESTIMATE-KNOWN-

MONOTONE for the “tolerant testing, q is known” case.

This algorithm takes values ε and δ as input, so the

partition I defined in Step 1 is a (p′, ε/4, �)-flat de-

composition of [n] for any non-increasing p′. In Step 3

the algorithm draws m = sE(�, ε/2, δ) samples and

runs L1-ESTIMATE((pr)
I , (qr)I , ε/2, δ) in Step 4. If

dTV (p, q) = c then by the triangle inequality we have that

dTV ((pr)
I , (qr)I) ∈ [c− ε/2, c+ ε/2] and L1-ESTIMATE-

KNOWN-MONOTONE outputs a value within the prescribed

range with probability at least 1 − δ, by Theorem 2.4.

The algorithm L1-ESTIMATE-UNKNOWN-MONOTONE and

its analysis are entirely similar.

4 From Monotone to k-modal
In this section we establish our main positive testing results

for k-modal distributions, the upper bounds stated in the

final four rows of Table 1. In the previous section, the

oblivious decomposition gave us a partition of [n] into few

intervals such that the corresponding flattened distribution is

close to the true distribution. In contrast, it is easy to see

that no oblivious decomposition scheme can succeed for all

k-modal distributions. So in order to make the analogous

decomposition and extend our results to unimodal or k-modal

distributions, we now must determine — by taking samples

from the distribution — which regions are monotonically

increasing vs decreasing. Our algorithm CONSTRUCT-

FLAT-DECOMPOSITION(p, ε, δ) performs this task with the

following guarantee:

LEMMA 4.1. Let p be a k-modal distribution over [n]. Algo-
rithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) draws
O(k2ε−4 log(1/δ)) samples from p and outputs a (p, ε, �)-flat
decomposition of [n] with probability at least 1 − δ, where
� = O(k log(n)/ε2).

The bulk of our work in this section (see Ap-

pendix C for full details) is to describe CONSTRUCT-FLAT-
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DECOMPOSITION(p, ε, δ) and prove Lemma 4.1, but first we

show how Lemma 4.1 yields our claimed testing results for

k-modal distributions. As in the monotone case all four algo-

rithms are essentially the same: each works by reducing the

given k-modal distribution testing problem to the same testing

problem for arbitrary distributions over [�]. One slight com-

plication is that the partition obtained for distribution p will

generally differ from that for q. In the monotone distribution

setting, the partition was oblivious to the distributions, and

thus this concern did not arise. Naively, one might hope that

the flattened distribution corresponding to any refinement of

a partition will be at least as good as the flattened distribution

corresponding to the actual partition. This hope is easily seen

to be strictly false, but we show that it is true up to a factor of

2, which suffices for our purposes.

The following terminology will be useful: Let I =
{Ii}ri=1 and I ′ = {I ′i}si=1 be two partitions of [n] into r and

s intervals respectively. The common refinement of I and I ′
is the partition J of [n] into intervals obtained from I and I ′
in the obvious way, by taking all possible nonempty intervals

of the form Ii ∩ I ′j . It is clear that J is both a refinement of I
and of I ′ and that the number of intervals |J | in J is at most

r + s. We prove the following lemma in Appendix A:

LEMMA 4.2. Let p be any distribution over [n], let I =
{Ii}ai=1 be a (p, ε, a)-flat decomposition of [n], and let J =
{Ji}bi=1 be a refinement of I. Then J is a (p, 2ε, b)-flat
decomposition of [n].

We describe the TEST-IDENTITY-KNOWN-KMODAL

algorithm below.

TEST-IDENTITY-KNOWN-KMODAL

Inputs: ε, δ > 0; sample access to k-modal distribution p
over [n]; explicit description of k-modal distribution q over

[n]

1. Run CONSTRUCT-FLAT-

DECOMPOSITION(p, ε/2, δ/4) and let I = {Ii}�i=1,
� = O(k log(n)/ε2), be the partition that it outputs.

Construct I ′ = {I ′i}�
′
i=1, a (q, ε/2, �′)-flat decom-

position of [n], where �′ = O(k log(n)/ε). Let

J be the common refinement of I and I ′ and let

�J = O(k log(n)/ε2) be the number of intervals in

J .

2. Let (qr)
J denote the reduced distribution over [�J ]

obtained from q using J .

3. Draw m = sIK(�J , ε/2, δ/2) samples from (pr)
J ,

where (pr)
J is the reduced distribution over [�J ]

obtained from p using J .

4. Run TEST-IDENTITY-KNOWN((pr)
J , (qr)J , ε

2 ,
δ
2 )

using the samples from Step 3 and output what it out-

puts.

We note that Steps 2, 3 and 4 of TEST-IDENTITY-

KNOWN-KMODAL are the same as the corresponding steps

of TEST-IDENTITY-KNOWN-MONOTONE. For the analysis

of TEST-IDENTITY-KNOWN-KMODAL, Lemmas 4.1 and 4.2

give us that with probability 1−δ/2, the partition J obtained

in Step 1 is both a (p, ε, �J )-flat and (q, ε, �J )-flat decompo-

sition of [n]; we condition on this going forward. From this

point on the analysis is essentially identical to the analysis for

TEST-IDENTITY-KNOWN-MONOTONE and is omitted.

The modifications required to obtain algorithms TEST-

IDENTITY-UNKNOWN-KMODAL, L1-ESTIMATE-KNOWN-

KMODAL and L1-ESTIMATE-UNKNOWN-KMODAL, and the

analysis of these algorithms, are completely analogous to the

modifications and analyses of Section 3.2 and are omitted.

4.1 The CONSTRUCT–FLAT–DECOMPOSITION
algorithm. We present CONSTRUCT-FLAT-

DECOMPOSITION(p, ε, δ) followed by an intuitive explana-

tion. Note that it employs a procedure ORIENTATION(p̂, I),
which uses no samples and is presented and analyzed in

Section 4.2.
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CONSTRUCT-FLAT-DECOMPOSITION

INPUTS: ε, δ > 0; sample access to k-modal distribution p
over [n]

1. Initialize I := ∅.
2. Fix τ := ε2/(20000k). Draw r = Θ(log(1/δ)/τ2)

samples from p and let p̂ denote the resulting empirical

distribution (which by Theorem 2.1 has dK(p̂, p) ≤ τ
with probability at least 1− δ).

3. Greedily partition the domain [n] into α atomic inter-
vals {Ii}αi=1 as follows: I1 := [1, j1], where j1 :=
min{j ∈ [n] | p̂([1, j]) ≥ ε/(100k)}. For i ≥ 1,

if ∪i
j=1Ij = [1, ji], then Ii+1 := [ji + 1, ji+1], where

ji+1 is defined as follows: If p̂([ji+1, n]) ≥ ε/(100k),
then ji+1 := min{j ∈ [n] | p̂([ji + 1, j]) ≥
ε/(100k)}, otherwise, ji+1 := n.

4. Construct a set of nm moderate intervals, a set of nh

heavy points, and a set of nn negligible intervals as

follows: For each atomic interval Ii = [a, b],

(a) if p̂([a, b]) ≤ 3ε/(100k) then Ii is declared to be

a moderate interval;
(b) otherwise we have p̂([a, b]) > 3ε/(100k) and we

declare b to be a heavy point. If a < b then we

declare [a, b− 1] to be a negligible interval.

For each interval I which is a heavy point, add I to I.
Add each negligible interval I to I.

5. For each moderate interval I , run procedure ORIEN-

TATION(p̂, I); let ◦ ∈ {↑, ↓,⊥} be its output.

If ◦ = ⊥ then add I to I.
If ◦ =↓ then let JI be the partition of I given by

Theorem 3.1 which is a (p′, ε/4, O(log(n)/ε))-flat

decomposition of I for any non-increasing distribution

p′ over I. Add all the elements of JI to I.
If ◦ =↑ then let JI be the partition of I given

by the dual version of Theorem 3.1, which is a

(p′, ε/4, O(log(n)/ε))-flat decomposition of I for any

non-decreasing distribution p′ over I. Add all the ele-

ments of JI to I.
6. Output the partition I of [n].

Roughly speaking, when CONSTRUCT-FLAT-

DECOMPOSITION constructs a partition I, it initially

breaks [n] up into two types of intervals. The first type are

intervals that are “okay” to include in a flat decomposition,

either because they have very little mass, or because they

consist of a single point, or because they are close to uniform.

The second type are intervals that are “not okay” to include

in a flat decomposition – they have significant mass and are

far from uniform – but the algorithm is able to ensure that

almost all of these are monotone distributions with a known

orientation. It then uses the oblivious decomposition of

Theorem 3.1 to construct a flat decomposition of each such

interval. (Note that it is crucial that the orientation is known

in order to be able to use Theorem 3.1.)

In more detail, CONSTRUCT-FLAT-

DECOMPOSITION(p, ε, δ) works as follows. The algorithm

first draws a batch of samples from p and uses them to

construct an estimate p̂ of the CDF of p (this is straightfor-

ward using the DKW inequality). Using p̂ the algorithm

partitions [n] into a collection of O(k/ε) disjoint intervals in

the following way:

• A small collection of the intervals are “negligible”; they

collectively have total mass less than ε under p. Each

negligible interval I will be an element of the partition

I.

• Some of the intervals are “heavy points”; these are

intervals consisting of a single point that has mass

Ω(ε/k) under p. Each heavy point I will also be an

element of the partition I.

• The remaining intervals are “moderate” intervals, each

of which has mass Θ(ε/k) under p.

It remains to incorporate the moderate intervals into

the partition I that is being constructed. This is done as

follows: using p̂, the algorithm comes up with a “guess”

of the correct orientation (non-increasing, non-decreasing, or

close to uniform) for each moderate interval. Each moderate

interval where the “guessed” orientation is “close to uniform”

is included in the partition I. Finally, for each moderate

interval I where the guessed orientation is “non-increasing”

or “non-decreasing”, the algorithm invokes Theorem 3.1

on I to perform the oblivious decomposition for monotone

distributions, and the resulting sub-intervals are included in

I. The analysis will show that the guesses are almost always

correct, and intuitively this should imply that the I that is

constructed is indeed a (p, ε, �)-flat decomposition of [n]. See

Appendix C.2 for the proof of Lemma 4.1.

4.2 The ORIENTATION algorithm. The ORIENTATION

algorithm takes as input an explicit description of a distribu-

tion p̂ over [n] and an interval I ⊆ [n]. Intuitively, it assumes

that p̂I is close (in Kolmogorov distance) to a monotone dis-

tribution pI , and its goal is to determine the orientation of pI :

it outputs either ↑, ↓ or ⊥ (the last of which means “close to

uniform”). The algorithm is quite simple; it checks whether

there exists an initial interval I ′ of I on which p̂I ’s weight

is significantly different from uI(I
′) (the weight that the uni-

form distribution over I assigns to I ′) and bases its output on

this in the obvious way. A precise description of the algorithm

(which uses no samples) is given below.
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ORIENTATION

INPUTS: explicit description of distribution p̂ over [n];
interval I = [a, b] ⊆ [n]

1. If |I| = 1 (i.e. I = {a} for some a ∈ [n]) then return

“⊥”, otherwise continue.

2. If there is an initial interval I ′ = [a, j] of I that

satisfies uI(I
′) − (p̂)I(I

′) > ε
7 then halt and output

“↑”. Otherwise,

3. If there is an initial interval I ′ = [a, j] of I that

satisfies uI(I
′)− (p̂)I(I

′) < − ε
7 then halt and output

“↓”. Otherwise,

4. Output “⊥”.

We proceed to analyze ORIENTATION. We show that

if pI is far from uniform then ORIENTATION outputs the

correct orientation for it. We also show that whenever

ORIENTATION does not output “⊥”, whatever it outputs is the

correct orientation of pI . The proof is given in Appendix C.3.

LEMMA 4.3. Let p be a distribution over [n] and let interval
I = [a, b] ⊆ [n] be such that pI is monotone. Suppose
p(I) ≥ 99ε/(10000k), and suppose that for every interval
I ′ ⊆ I we have that |p̂(I ′)− p(I ′)| ≤ ε2

10000k . Then
1. If pI is non-decreasing and pI is ε/6-far from the uni-

form distribution uI over I , then ORIENTATION(p̂, I)
outputs “↑”;

2. if ORIENTATION(p̂, I) outputs “↑” then pI is non-
decreasing;

3. if pI is non-increasing and pI is ε/6-far from the uniform
distribution uI over I , then ORIENTATION(p̂, I) outputs
“↓”;

4. if ORIENTATION(p̂, I) outputs “↓” then pI is non-
increasing.

5 Lower Bounds
Our algorithmic results follow from a reduction which shows

how one can reduce the problem of testing properties of

monotone or k-modal distributions to the task of testing prop-

erties of general distributions over a much smaller support.

Our approach to proving lower bounds is complementary; we

give a canonical scheme for transforming “lower bound in-

stances” of general distributions to related lower bound in-

stances of monotone distributions with much larger supports.

A generic lower bound instance for distance estimation

has the following form: there is a distribution D over pairs of

distributions, (p, p′), with the information theoretic guarantee

that, given s independent samples from distributions p and p′,
with (p, p′) ← D, it is impossible to distinguish the case that

dTV (p, p
′) ≤ ε1 versus dTV (p, p

′) > ε2 with any probability

greater than 1 − δ, where the probability is taken over both

the selection of (p, p′) ← D and the choice of samples. In

general, such information theoretic lower bounds are difficult

to prove. Fortunately, as mentioned above, we will be able to

prove lower bounds for monotone and k-modal distributions

by leveraging the known lower bound constructions in a

black-box fashion.

We prove our lower bounds by describing an explicit

transformation that maps a generic distribution into a related

k-modal distribution over a much larger support. This trans-

formation preserves total variation distance: for any pair of

distributions, the variation distance between their transforma-

tions is identical to the variation distance between the origi-

nal distributions. Additionally, we ensure that given access

to s independent samples from an original input distribu-

tion, one can simulate drawing s samples from the related

k-modal distribution yielded by the transformation. Given

any lower–bound construction D for general distributions, the

above transformation will yield a lower–bound instance Dk

for (k − 1)-modal distributions (so monotone distributions

correspond to k = 1) defined by selecting a pair of distribu-

tions (p, p′) ← D, then outputting the pair of transformed

distributions. This transformed ensemble of distributions is a

lower–bound instance, for if some algorithm could success-

fully test pairs of (k − 1)-modal distributions from Dk, then

that algorithm could be used to test pairs from D, by sim-
ulating samples drawn from the transformed versions of the

distributions. In Appendix D we give a formal description of

this transformation (Definitions D.1 and D.2), along with the

proof of the following proposition that summarizes the above

discussion:

PROPOSITION 5.1. Let D be a distribution over pairs of dis-
tributions supported on [n] such that given s samples from
distributions p, p′ with (p, p′) ← D, no algorithm can dis-
tinguish whether dTV (p, p

′) ≤ ε1 versus dTV (p, p
′) > ε2

with probability greater than 1 − δ (over both the draw
of (p, p′) from D and the draw of samples from p, p′).
Let pmax, pmin be the respective maximum and minimum
probabilities with which any element arises in distributions
that are supported in D. Then there exists a distribution
Dk over pairs of (k − 1)-modal distributions supported
on [N ] = [4ke

8n
k (1+log(pmax/pmin))] such that no algo-

rithm, when given s samples from distributions pk, p
′
k, with

(pk, p
′
k) ← Dk, can distinguish whether dTV (pk, p

′
k) ≤ ε1

versus dTV (pk, p
′
k) > ε2 with success probability greater

than 1− δ.

The following corollaries result from applying the above

proposition to known lower-bound constructions for general

distributions. Our first corollary is for the “testing identity, q
is unknown” problem:

COROLLARY 5.1. There exists a constant c such that for suf-
ficiently large N and 1 ≤ k = O(logN), there is a distribu-
tion Dk over pairs of 2(k−1)-modal distributions (p, p′) over

[N ], such that no algorithm, when given c
(

k logN
log logN

)2/3

sam-

ples from a pair of distributions (p, p′) ← D, can distinguish
the case that dTV (p, p

′) = 0 from the case dTV (p, p
′) > .5

with probability at least .6.

This Corollary gives the lower bounds stated in lines 2

and 6 of Table 1. It follows from applying Proposition 5.1 to
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a (trivially modified) version of the lower bound construction

given in [BFR+00, Val08b], summarized by the following

theorem:

THEOREM 5.1. ([BFR+00, VAL08B]) There exists a con-
stant c such that for sufficiently large n, there is a distribution
D over pairs of distributions (p, p′) over [n], such that for any
(p, p′) ← D, the maximum probability with which any ele-
ment occurs in p or p′ is 1

n2/3 , and the minimum probability
is 1

2n . Additionally, no algorithm, when given cn2/3 samples
from (p, p′) ← D, can distinguish whether dTV (p, p

′) = 0,
from dTV (p, p

′) > .5 with probability at least .6.

Our second corollary is for L1 estimation, in the case that

one of the distributions is explicitly given. This trivially also

yields an equivalent lower bound for the setting in which both

distributions are given via samples.

COROLLARY 5.2. For any a, b with 0 < a < b < 1/2, there
exists a constant c > 0, such that for any sufficiently large
N and 1 ≤ k = O(logN), there exists a 2(k − 1)-modal
distribution q of support [N ], and a distribution Dk over
2(k−1)-modal distributions over [N ], such that no algorithm,
when given c k logN

log logN ·log log logN samples from a distribution
p ← D, can distinguish the case that dTV (p, q) < a versus
dTV (p, p

′) > b with probability at least .6.

This Corollary gives the lower bounds claimed in

lines 3, 4, 7 and 8 of Table 1. It follows from applying Propo-

sition 5.1 to the lower bound construction given in [VV11a],

summarized by the following theorem:

THEOREM 5.2. ([VV11A]) For any a, b with 0 < a < b <
1/2, there exists a constant c > 0, such that for any suffi-
ciently large n, there is a distribution D over distributions
with support [n], such that for any p ← D, the maximum

probability with which any element occurs in p is O
(

logn
n

)
,

and the minimum probability is 1
2n . Additionally, no algo-

rithm, when given c n
logn samples from p ← D can distinguish

whether dTV (p, un) < a versus dTV (p, un) > b with prob-
ability at least .6, where un denotes the uniform distribution
over [n].

Note that the above theorem can be expressed in the lan-

guage of Proposition 5.1 by defining the distribution D′ over

pairs of distributions which chooses a distribution according

to D for the first distribution of each pair, and always selects

un for the second distribution of each pair.

Our third corollary, which gives the lower bounds

claimed in lines 1 and 5 of Table 1, is for the “testing identity,

q is known” problem:

COROLLARY 5.3. For any ε ∈ (0, 1/2], there is a constant
c such that for sufficiently large N and 1 ≤ k = O(logm),
there is a k-modal distribution p with support [N ], and a dis-
tribution D over 2(k− 1)-modal distributions of support [N ]
such that no algorithm, when given c(k logm)1/2 samples
from a distribution p′ ← D, can distinguish the case that

dTV (p, p
′) = 0 from the case dTV (p, p

′) > ε with probabil-
ity at least .6.

The above corollary follows from applying Proposi-

tion 5.1 to the following trivially verified lower bound con-

struction:

FACT 5.1. Let D be the ensemble of distributions of support
n defined as follows: with probability 1/2, p ← D is the
uniform distribution on support n, and with probability 1/2,
p ← D assigns probability 1/2n to a random half of the
domain elements, and probability 3/2n to the other half of
the domain elements. No algorithm, when given fewer than
n1/2/100 samples from a distribution p ← D can distinguish
between dTV (p, un) = 0 versus dTV (p, un) ≥ .5 with
probability greater than .6.

As noted previously (after Theorem 5.2), this fact can

also be expressed in the language of Proposition 5.1.

6 Conclusions
We have introduced a simple new approach for tackling dis-

tribution testing problems for restricted classes of distribu-

tions, by reducing them to general-distribution testing prob-

lems over a smaller domain. We applied this approach to get

new testing results for a range of distribution testing prob-

lems involving monotone and k-modal distributions, and es-

tablished lower bounds showing that all our new algorithms

are essentially optimal.

A general direction for future work is to apply our re-

duction method to obtain near-optimal testing algorithms for

other interesting classes of distributions. This will involve

constructing flat decompositions of various types of distribu-

tions using few samples, which seems to be a natural and

interesting algorithmic problem. A specific goal is to de-

velop a more efficient version of our CONSTRUCT-FLAT-

DECOMPOSITION algorithm for k-modal distributions; is it

possible to obtain an improved version of this algorithm that

uses o(k) samples?
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For clarity, the appendix consists of self-contained
proofs and an exposition of the results described in the
body of the paper, following the “Notation and Prelimi-
naries” section.

A Shrinking the domain size: Reductions for
distribution-testing problems

In this section we present the general framework of our

reduction-based approach and sketch how we instantiate this

approach for monotone and k-modal distributions.

We denote by |I| the cardinality of an interval I ⊆ [n],
i.e. for I = [a, b] we have |I| = b− a+ 1. Fix a distribution

p over [n] and a partition of [n] into disjoint intervals I :=
{Ii}�i=1. The flattened distribution (pf )

I corresponding to

p and I is the distribution over [n] defined as follows: for

j ∈ [�] and i ∈ Ij , (pf )
I(i) =

∑
t∈Ij p(t)/|Ij |. That

is, (pf )
I is obtained from p by averaging the weight that p

assigns to each interval over the entire interval. The reduced
distribution (pr)

I corresponding to p and I is the distribution

over [�] that assigns the ith point the weight p assigns to the

interval Ii; i.e., for i ∈ [�], we have (pr)
I(i) = p(Ii). Note

that if p is non-increasing then so is (pf )
I , but this is not

necessarily the case for (pr)
I .

Definition 3.1. Let p be a distribution over [n] and let
I = {Ii}�i=1 be a partition of [n] into disjoint intervals.
We say that I is a (p, ε, �)-flat decomposition of [n] if
dTV (p, (pf )

I) ≤ ε.

The following useful lemma relates closeness of p and q
to closeness of the reduced distributions:

Lemma 3.2 Let I = {Ii}�i=1 be a partition of [n] into
disjoint intervals. Suppose that p and q are distributions
over [n] such that I is both a (p, ε, �)-flat decomposition of
[n] and is also a (q, ε, �)-flat decomposition of [n]. Then∣∣dTV (p, q)− dTV ((pr)

I , (qr)I)
∣∣ ≤ 2ε. Moreover, if p = q

then (pr)
I = (qr)

I .

Proof. The second statement is clear by the definition of

a reduced distribution. To prove the first statement, we

first observe that for any pair of distributions p, q and

any partition I of [n] into disjoint intervals, we have that

dTV ((pr)
I , (qr)I) = dTV ((pf )

I , (qf )I). We thus have that∣∣dTV (p, q)− dTV ((pr)
I , (qr)I)

∣∣ is equal to

|dTV (p, q) − dTV ((pf )
I , (qf )I)

∣∣
= dTV (p, q)− dTV ((pf )

I , (qf )I)
≤ dTV (p, (pf )

I) + dTV (q, (qf )
I),

where the equality above is equivalent to dTV (p, q) ≥
dTV ((pf )

I , (qf )I) (which is easily verified by considering

each interval Ii ∈ I separately and applying triangle inequal-

ity) and the inequality is the triangle inequality. Since I is

both a (p, ε, �)-flat decomposition of [n] and a (q, ε, �)-flat

decomposition of [n], we have that dTV (p, (pf )
I) ≤ ε and

dTV (q, (qf )
I) ≤ ε. The RHS above is thus bounded by 2ε

and the lemma follows.

Lemma 3.2, while simple, is at the heart of our reduction-

based approach; it lets us transform a distribution-testing

problem over the large domain [n] to a distribution-testing

problem over the much smaller “reduced” domain [�]. At

a high level, all our testing algorithms will follow the

same basic approach: first they run a procedure which,

with high probability, constructs a partition I of [n] that

is both a (p, ε, �)-flat decomposition of [n] and a (q, ε, �)-
flat decomposition of [n]. Next they run the appropriate
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general-distribution tester over the �-element distributions

(pr)
I , (qr)I and output what it outputs; Lemma 3.2 guar-

antees that the distance between (pr)
I and (qr)

I faithfully

reflects the distance between p and q, so this output is correct.

We now provide a few more details that are specific to

the various different testing problems that we consider. For

the monotone distribution testing problems the construction

of I is done obliviously (without drawing any samples or any

reference to p or q of any sort) and there is no possibility

of failure – the assumption that p and q are both (say) non-

decreasing guarantees that the I that is constructed is both a

(p, ε, �)-flat decomposition of [n] and a (q, ε, �)-flat decom-

position of [n]. We describe this decomposition procedure

in Section B.1 and present our monotone distribution testing

algorithms that are based on it in Section B.2.

For the k-modal testing problems it is not so straight-

forward to construct the desired decomposition I. This is

done via a careful procedure which uses k2 · poly(1/ε) sam-

ples from p and q. This procedure has the property that with

probability 1− δ/2, the I it outputs is both a (p, ε, �)-flat de-

composition of [n] and a (q, ε, �)-flat decomposition of [n],
where � = O(k log(n)/ε2). Given this, by running a testing

algorithm (which has success probability 1− δ/2) on the pair

(pr)
I , (qr)I of distributions over [�], we will get an answer

which is with probability 1 − δ a legitimate answer for the

original testing problem. The details are given in Section C.

We close this section with a result about partitions and

flat decompositions which will be useful later. Let I =
{Ii}ai=1, I ′ = {I ′j}bj=1 be two partitions of [n]. We say that

I ′ is a refinement of I if for every i ∈ [a] there is a subset

Si of [b] such that ∪j∈Si
I ′j = Ii (note that for this to hold we

must have a ≤ b). Note that {Si}ai=1 forms a partition of [b].
We prove the following useful lemma:

Lemma 4.2. Let p be any distribution over [n], let I =
{Ii}ai=1 be a (p, ε, a)-flat decomposition of [n], and let J =
{Ji}bi=1 be a refinement of I. Then J is a (p, 2ε, b)-flat
decomposition of [n].

Proof. Fix any i ∈ [�] and let Si ⊆ [b] be such that Ii =
∪j∈Si

Jj . To prove the lemma it suffices to show that

(A.1) 2
∑
t∈Ii

|p(t)− (pf )
I(t)| ≥ ∑

j∈S

∑
t∈Jj

|p(t)− (pf )
J (t)|,

since the sum on the LHS is the contribution that Ii makes to

dTV (p, (pf )
I) and the sum on the RHS is the corresponding

contribution Ii makes to dTV (p, (pf )
J ). It may seem intu-

itively obvious that the sum on the LHS (which corresponds

to approximating the sub-distribution pIi using a “global av-

erage”) must be smaller than the sum on the RHS (which cor-

responds to using separate “local averages”). However, this

intuition is not quite correct, and it is necessary to have the

factor of two. To see this, consider a distribution p over [n]
such that p(1) = (1/2) · (1/n); p(i) = 1/n for i ∈ [2, n− 1];
and p(n) = (3/2) · (1/n). Taking I1 = [1, n/2] and

I2 = [n/2 + 1, n], it is easy to check that inequality (A.1)

is essentially tight (up to a o(1) factor).

We now proceed to establish (A.1). Let T ⊆ [n] and

consider a partition of T into k nonempty sets Ti, i ∈ [k].

Denote μ
def
= p(T )/|T | and μi

def
= p(Ti)/|Ti|. Then, (A.1) can

be re-expressed as follows

(A.2) 2
∑
t∈T

|p(t)− μ| ≥
k∑

i=1

∑
t∈Ti

|p(t)− μi|.

We shall prove the above statement for all sequences of

numbers p(1), . . . , p(n). Since adding or subtracting the

same quantity from each number p(t) does not change the

validity of (A.2), for the sake of convenience we may assume

all the numbers average to 0, that is, μ = 0. Consider the i-th
term on the right hand side,

∑
t∈Ti

|p(t)−μi|. We can bound

this quantity from above as follows:∑
t∈Ti

|p(t)− μi| ≤ ∑
t∈Ti

|p(t)|+ |Ti| · |μi|

=
∑
t∈Ti

|p(t)|+ |p(Ti)|

= 2
∑
t∈Ti

|p(t)|

= 2
∑
t∈Ti

|p(t)− μ|,

where the inequality follows from the triangle inequality

(applied term by term), the first equality is by the definition

of μi, the second equality is trivial, and the final equality uses

the assumption that μ = 0. The lemma follows by summing

over i ∈ [k], using the fact that the Ti’s form a partition of T .

B Efficiently Testing Monotone Distributions
B.1 Oblivious decomposition of monotone distributions.
Our main tool for testing monotone distributions is an oblivi-
ous decomposition of monotone distributions that is a variant

of a construction of Birgé [Bir87]. As we will see it enables

us to reduce the problem of testing a monotone distribution to

the problem of testing an arbitrary distribution over a much

smaller domain. The decomposition result is given below:

Theorem 3.1 (discrete analogue of [Bir87]). Fix any n ∈ Z
+

and ε > 0. The partition I := {Ii}�i=1 of [n] in which the
jth interval has size �(1 + ε)j� has the following properties:
� = O ((1/ε) · log(ε · n+ 1)), and for any non-increasing
distribution p over [n], I is a (p,O(ε), �)-flat decomposition
of [n].

There is a dual version of Theorem 3.1, asserting the ex-

istence of an “oblivious” partition for non-decreasing distri-

butions (which is of course different from the “oblivious” par-

tition I for non-increasing distributions of Theorem 3.1); this

will be useful later.

While our construction is essentially that of Birgé, we

note that the version given in [Bir87] is for non-increasing

distributions over the continuous domain [0, n], and it is

phrased rather differently. Adapting the arguments of [Bir87]

to our discrete setting of distributions over [n] is not concep-

tually difficult but requires some care. For the sake of com-

pleteness we provide a self-contained proof of the discrete

version, stated above, that we require in Appendix E.
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B.2 Efficiently testing monotone distributions. Now we

are ready to establish our upper bounds on testing monotone

distributions (given in the first four rows of Table 1). All of

the algorithms are essentially the same: each works by reduc-

ing the given monotone distribution testing problem to the

same testing problem for arbitrary distributions over support

of size � = O(log n/ε) using the oblivious decomposition

from the previous subsection. For concreteness we explicitly

describe the tester for the “testing identity, q is known” case

below, and then indicate the small changes that are necessary

to get the testers for the other three cases.

TEST-IDENTITY-KNOWN-MONOTONE

Inputs: ε, δ > 0; sample access to non-increasing distribu-

tion p over [n]; explicit description of non-increasing distri-

bution q over [n]

1. Let I := {Ii}�i=1, with � = Θ(log(εn + 1)/ε), be

the partition of [n] given by Theorem 3.1, which is

a (p′, ε/8, �)-flat decomposition of [n] for any non-

increasing distribution p′.

2. Let (qr)
I denote the reduced distribution over [�]

obtained from q using I (as defined in Section A).

3. Draw m = sIK(�, ε/2, δ) samples from (pr)
I , where

(pr)
I is the reduced distribution over [�] obtained from

p using I (as defined in Section A).

4. Run TEST-IDENTITY-KNOWN((pr)
I , (qr)I , ε

2 , δ)
using the samples from Step 3 and output what it out-

puts.

We now establish our claimed upper bound for the “test-

ing identity, q is known” case. We first observe that in

Step 3, the desired m = sIK(�, ε/2, δ) samples from (pr)
I

can easily be obtained by drawing m samples from p and

converting each one to the corresponding draw from (pr)
I

in the obvious way. If p = q then by Lemma 3.2 we

have that (pr)
I = (qr)

I , and TEST-IDENTITY-KNOWN-

MONOTONE outputs “accept” with probability at least 1 − δ
by Theorem 2.2. If dTV (p, q) ≥ ε, then by Lemma 3.2

and Theorem 3.1 we have that dTV ((pr)
I , (qr)I) ≥ 3ε/4,

so TEST-IDENTITY-KNOWN-MONOTONE outputs “reject”

with probability at least 1 − δ by Theorem 2.2. For the

“testing identity, q is unknown” case, the algorithm TEST-

IDENTITY-UNKNOWN-MONOTONE is very similar to TEST-

IDENTITY-KNOWN-MONOTONE. The differences are as

follows: instead of Step 2, in Step 3 we draw m =
sIU (�, ε/2, δ) samples from (pr)

I and the same number

of samples from (qr)
I ; and in Step 4, we run TEST-

IDENTITY-UNKNOWN((pr)
I , (qr)I , ε

2 , δ) using the samples

from Step 3. The analysis is exactly the same as above (using

Theorem 2.3 in place of Theorem 2.2).

We now describe the algorithm L1-ESTIMATE-KNOWN-

MONOTONE for the “tolerant testing, q is known” case.

This algorithm takes values ε and δ as input, so the par-

tition I defined in Step 1 is a (p′, ε/4, �)-flat decomposi-

tion of [n] for any non-increasing p′. In Step 3 the algo-

rithm draws m = sE(�, ε/2, δ) samples and runs L1-

ESTIMATE((pr)
I , (qr)I , ε/2, δ) in Step 4. If dTV (p, q) = c

then by Lemma 3.2 we have that dTV ((pr)
I , (qr)I) ∈ [c −

ε/2, c+ ε/2] and L1-ESTIMATE-KNOWN-MONOTONE out-

puts a value within the prescribed range with probability at

least 1 − δ, by Theorem 2.4. The algorithm L1-ESTIMATE-

UNKNOWN-MONOTONE case and its analysis are entirely

similar.

C Efficiently Testing k-modal Distributions
In this section we establish our main positive testing results

for k-modal distributions, the upper bounds stated in the

final four rows of Table 1. The key to all these results is

an algorithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ).
We prove the following performance guarantee about this

algorithm:

Lemma 4.1. Let p be a k-modal distribution over [n]. Algo-
rithm CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) draws
O(k2ε−4 log(1/δ)) samples from p and outputs a (p, ε, �)-flat
decomposition of [n] with probability at least 1 − δ, where
� = O(k log(n)/ε2).

The bulk of our work in this section is to describe

CONSTRUCT-FLAT-DECOMPOSITION(p, ε, δ) and prove

Lemma 4.1, but first we show how Lemma 4.1 easily yields

our claimed testing results for k-modal distributions. As in

the monotone case all four algorithms are essentially the

same: each works by reducing the given k-modal distribution

testing problem to the same testing problem for arbitrary

distributions over [�]. We describe the TEST-IDENTITY-

KNOWN-KMODAL algorithm below, and then indicate the

necessary changes to get the other three testers.

The following terminology will be useful: Let I =
{Ii}ri=1 and I ′ = {I ′i}si=1 be two partitions of [n] into r and

s intervals respectively. The common refinement of I and I ′
is the partition J of [n] into intervals obtained from I and I ′
in the obvious way, by taking all possible nonempty intervals

of the form Ii ∩ I ′j . It is clear that J is both a refinement of I
and of I ′ and that the number of intervals |J | in J is at most

r + s.
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TEST-IDENTITY-KNOWN-KMODAL

Inputs: ε, δ > 0; sample access to k-modal distribution p
over [n]; explicit description of k-modal distribution q over

[n]

1. Run CONSTRUCT-FLAT-

DECOMPOSITION(p, ε/2, δ/4) and let I = {Ii}�i=1,
� = O(k log(n)/ε2), be the partition that it outputs.

Construct I ′ = {I ′i}�
′
i=1, a (q, ε/2, �′)-flat decom-

position of [n], where �′ = O(k log(n)/ε). Let

J be the common refinement of I and I and let

�J = O(k log(n)/ε2) be the number of intervals in

J .

2. Let (qr)
J denote the reduced distribution over [�J ]

obtained from q using J .

3. Draw m = sIK(�J , ε/2, δ/2) samples from (pr)
J ,

where (pr)
J is the reduced distribution over [�J ]

obtained from p using J .

4. Run TEST-IDENTITY-KNOWN((pr)
J , (qr)J , ε

2 ,
δ
2 )

using the samples from Step 3 and output what it out-

puts.

We note that Steps 2, 3 and 4 of TEST-IDENTITY-

KNOWN-KMODAL are the same as the corresponding steps

of TEST-IDENTITY-KNOWN-MONOTONE. For the analysis

of TEST-IDENTITY-KNOWN-KMODAL, Lemmas 4.1 and 4.2

give us that with probability 1−δ/2, the partition J obtained

in Step 1 is both a (p, ε, �J )-flat and (q, ε, �J )-flat decompo-

sition of [n]; we condition on this going forward. From this

point on the analysis is essentially identical to the analysis for

TEST-IDENTITY-KNOWN-MONOTONE and is omitted.

The modifications required to obtain algorithms TEST-

IDENTITY-UNKNOWN-KMODAL, L1-ESTIMATE-KNOWN-

KMODAL and L1-ESTIMATE-UNKNOWN-KMODAL, and the

analysis of these algorithms, are completely analogous to the

modifications and analyses of Appendix B.2 and are omitted.

C.1 The CONSTRUCT – FLAT – DECOMPOSI-
TION algorithm. We present CONSTRUCT-FLAT-

DECOMPOSITION(p, ε, δ) followed by an intuitive explana-

tion. Note that it employs a procedure ORIENTATION(p̂, I),
which uses no samples and is presented and analyzed in

Section C.3.

CONSTRUCT-FLAT-DECOMPOSITION

INPUTS: ε, δ > 0; sample access to k-modal distribution p
over [n]

1. Initialize I := ∅.
2. Fix τ := ε2/(20000k). Draw r = Θ(log(1/δ)/τ2)

samples from p and let p̂ denote the resulting empirical

distribution (which by Theorem 2.1 has dK(p̂, p) ≤ τ
with probability at least 1− δ).

3. Greedily partition the domain [n] into α atomic inter-
vals {Ii}αi=1 as follows: I1 := [1, j1], where j1 :=
min{j ∈ [n] | p̂([1, j]) ≥ ε/(100k)}. For i ≥ 1,

if ∪i
j=1Ij = [1, ji], then Ii+1 := [ji + 1, ji+1], where

ji+1 is defined as follows: If p̂([ji+1, n]) ≥ ε/(100k),
then ji+1 := min{j ∈ [n] | p̂([ji + 1, j]) ≥
ε/(100k)}, otherwise, ji+1 := n.

4. Construct a set of nm moderate intervals, a set of nh

heavy points, and a set of nn negligible intervals as

follows: For each atomic interval Ii = [a, b],

(a) if p̂([a, b]) ≤ 3ε/(100k) then Ii is declared to be

a moderate interval;
(b) otherwise we have p̂([a, b]) > 3ε/(100k) and we

declare b to be a heavy point. If a < b then we

declare [a, b− 1] to be a negligible interval.

For each interval I which is a heavy point, add I to I.
Add each negligible interval I to I.

5. For each moderate interval I , run procedure ORIEN-

TATION(p̂, I); let ◦ ∈ {↑, ↓,⊥} be its output.

If ◦ = ⊥ then add I to I.
If ◦ =↓ then let JI be the partition of I given by

Theorem 3.1 which is a (p′, ε/4, O(log(n)/ε))-flat

decomposition of I for any non-increasing distribution

p′ over I. Add all the elements of JI to I.
If ◦ =↑ then let JI be the partition of I given

by the dual version of Theorem 3.1, which is a

(p′, ε/4, O(log(n)/ε))-flat decomposition of I for any

non-decreasing distribution p′ over I. Add all the ele-

ments of JI to I.
6. Output the partition I of [n].

Roughly speaking, when CONSTRUCT-FLAT-

DECOMPOSITION constructs a partition I, it initially

breaks [n] up into two types of intervals. The first type are

intervals that are “okay” to include in a flat decomposition,

either because they have very little mass, or because they

consist of a single point, or because they are close to uniform.

The second type are intervals that are “not okay” to include

in a flat decomposition – they have significant mass and are

far from uniform – but the algorithm is able to ensure that

almost all of these are monotone distributions with a known

orientation. It then uses the oblivious decomposition of

Theorem 3.1 to construct a flat decomposition of each such

interval. (Note that it is crucial that the orientation is known

in order to be able to use Theorem 3.1.)
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In more detail, CONSTRUCT-FLAT-

DECOMPOSITION(p, ε, δ) works as follows. The algorithm

first draws a batch of samples from p and uses them to

construct an estimate p̂ of the CDF of p (this is straightfor-

ward using the DKW inequality). Using p̂ the algorithm

partitions [n] into a collection of O(k/ε) disjoint intervals in

the following way:

• A small collection of the intervals are “negligible”; they

collectively have total mass less than ε under p. Each

negligible interval I will be an element of the partition

I.
• Some of the intervals are “heavy points”; these are

intervals consisting of a single point that has mass

Ω(ε/k) under p. Each heavy point I will also be an

element of the partition I.
• The remaining intervals are “moderate” intervals, each

of which has mass Θ(ε/k) under p.

It remains to incorporate the moderate intervals into

the partition I that is being constructed. This is done as

follows: using p̂, the algorithm comes up with a “guess”

of the correct orientation (non-increasing, non-decreasing, or

close to uniform) for each moderate interval. Each moderate

interval where the “guessed” orientation is “close to uniform”

is included in the partition I. Finally, for each moderate

interval I where the guessed orientation is “non-increasing”

or “non-decreasing”, the algorithm invokes Theorem 3.1

on I to perform the oblivious decomposition for monotone

distributions, and the resulting sub-intervals are included in

I. The analysis will show that the guesses are almost always

correct, and intuitively this should imply that the I that is

constructed is indeed a (p, ε, �)-flat decomposition of [n].

C.2 Performance of CONSTRUCT-FLAT-
DECOMPOSITION: Proof of Lemma 4.1. The claimed

sample bound is obvious from inspection of the algorithm,

as the only step that draws any samples is Step 2. The bound

on the number of intervals in the flat decomposition follows

directly from the upper bounds on the number of heavy

points, negligible intervals and moderate intervals shown

below, using also Theorem 3.1. It remains to show that the

output of the algorithm is a valid flat decomposition of p.

First, by the DKW inequality (Theorem 2.1) we have that

with probability at least 1− δ it is the case that

|p̂(I)− p(I)| ≤ ε2

10000k
, for every interval I ⊆ [n].

(C.3)

We make some preliminary observations about the

weight that p has on the intervals constructed in Steps 4

and 5. Since every atomic interval Ii constructed in Step 4

has p̂(I) ≥ ε/(100k) (except potentially the rightmost one),

it follows that the number α of atomic intervals constructed

in Step 3 satisfies

α ≤ �100k/ε�.

We now establish bounds on the probability mass that p
assigns to the moderate intervals, heavy points, and negligible

intervals that are constructed in Step 4. Using (C.3), each

interval Ii that is declared to be a moderate interval in

Step 4(a) must satisfy

99ε/(10000k) ≤ p([a, b]) ≤ 301ε/(10000k)(C.4)

(for all moderate intervals [a, b]).

By virtue of the greedy process that is used to construct

atomic intervals in Step 3, each point b that is declared to be

a heavy point in Step 4(b) must satisfy p̂(b) ≥ 2ε/(100k) and

thus using (C.3) again

(C.5) p(b) ≥ 199ε/(10000k) (for all heavy points b).

Moreover, each interval [a, b − 1] that is declared to be a

negligible interval must satisfy p̂([a, b− 1]) < ε/(100k) and

thus using (C.3) again

p([a, b− 1]) ≤ 101ε/(10000k)(C.6)

(for all negligible intervals [a, b− 1]).

It is clear that nm (the number of moderate intervals) and

nh (the number of heavy points) are each at most α. Next we

observe that the number of negligible intervals nn satisfies

nn ≤ k.

This is because at the end of each negligible interval [a, b−1]
we have (observing that each negligible interval must be

nonempty) that p(b − 1) ≤ p([a, b − 1]) ≤ 101ε/(10000k)
while p(b) ≥ 199ε/(10000k). Since p is k-modal, there can

be at most �(k + 1)/2� ≤ k points b ∈ [n] satisfying this

condition. Since each negligible interval I satisfies p(I) ≤
101ε/(10000k) we have that the total probability mass under

p of all the negligible intervals is at most 101ε/10000.
Thus far we have built a partition of [n] into a col-

lection of nm ≤ �100k/ε� moderate intervals (which we

denote M1, . . . ,Mnm ), a set of nh ≤ �100k/ε� heavy

points (which we denote h1, . . . , hnh
) and a set of nn ≤ k

negligible intervals (which we denote N1, . . . , Nnn
). Let

A ⊆ {1, . . . , nm} denote the set of those indices i such

that ORIENTATION(p̂,Mi) outputs ⊥ in Step 6. The parti-

tion I that CONSTRUCT-FLAT-DECOMPOSITION constructs

consists of {h1}, . . . , {hnh
}, N1, . . . , Nnn , {Mi}i∈A, and⋃

i∈([nm]\A) JMi
. We can thus write p as

p =
∑nh

j=1 p(hj) · 1hj +
∑nn

j=1 p(Nj)pNj(C.7)

+
∑

j∈A p(Mj)pMj +
∑

j∈([nm]\A)

∑
I∈JMj

p(I)pI .

Using Lemma F.1 (proved in Appendix F) we can bound the
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total variation distance between p and (pf )
I by

dTV (p, (pf )
I) ≤ 1

2

nh∑
j=1

|p(hj)− (pf )
I(hj)|

+
1

2

nn∑
j=1

|p(Nj)− (pf )
I(Nj)|

+
nn∑
j=1

p(Nj) · dTV (pNj , ((pf )
I)Nj )

+
1

2

∑
j∈A

|p(Mj)− (pf )
I(Mj)|

+
∑
j∈A

p(Mj) · dTV (pMj
, ((pf )

I)Mj
)

+
1

2

∑
j∈([nm]\A)

∑
I∈JMj

|p(I)− (pf )
I(I)|

+
∑

j∈([nm]\A)

∑
I∈JMj

p(I) · dTV (pI , ((pf )
I)I).(C.8)

Since p(I) = (pf )
I(I) for every I ∈ I, this simplifies to

dTV (p, (pf )
I) ≤

nn∑
j=1

p(Nj) · dTV (pNj
, ((pf )

I)Nj
)

+
∑
j∈A

p(Mj) · dTV (pMj
, ((pf )

I)Mj
)

+
∑

j∈([nm]\A)

∑
I∈JMj

p(I) · dTV (pI , ((pf )
I)I).(C.9)

which we now proceed to bound.

Recalling from (C.6) that p(Nj) ≤ 101ε/(10000k) for

each negligible interval Nj , and recalling that nn ≤ k, the

first summand in (C.9) is at most 101ε/10000.
To bound the second summand, fix any j ∈ A so Mj is

a moderate interval such that ORIENTATION(p̂,Mj) returns

⊥. If pMj is non-decreasing then by Lemma 4.3 it must be the

case that dTV (pMj , ((pf )
I)Mj ) ≤ ε/6 (note that ((pf )

I)Mj

is just uMj
, the uniform distribution over Mj). Lemma 4.3

gives the same bound if pMj
is non-increasing. If pMj

is

neither non-increasing nor non-decreasing then we have no

nontrivial bound on dTV (pMj , ((pf )
I)Mj ), but since p is k-

modal there can be at most k such values of j in A. Recalling

(C.4), overall we have that

∑
j∈A

p(Mj)·dTV (pMj
, ((pf )

I)Mj
) ≤ 301εk

10000k
+

ε

6
≤ 1968ε

10000
,

and we have bounded the second summand.

It remains to bound the final summand of (C.9). For each

j ∈ ([nm] \ A), we know that ORIENTATION(p̂,Mj) out-

puts either ↑ or ↓. If pMj is monotone, then by Lemma 4.3

we have that the output of ORIENTATION(p̂,Mj) gives

the correct orientation of pMj
. Consequently JMj

is a

(pMj
, ε/4, O(log(n)/ε))-flat decomposition of Mj , by The-

orem 3.1. This means that dTV (pMj , ((pf )
I)Mj ) ≤ ε/4,

which is equivalent to

1

p(Mj)

∑
I∈JMj

p(I)dTV (pI , ((pf )
I)I) ≤ ε

4
,

i.e.
∑

I∈JMj
p(I)dTV (pI , ((pf )

I)I) ≤ p(Mj) · ε
4 . Let B ⊂

[nm] \ A be such that, for all j ∈ B, pMj
is monotone.

Summing the above over all j ∈ B gives:

∑
j∈B

∑
I∈JMj

p(I)dTV (pI , ((pf )
I)I) ≤

∑
j∈B

p(Mj) · ε
4
≤ ε

4
.

Given that p is k-modal, the cardinality of the set [nm] \ (A∪
B) is at most k. So we have the bound:∑

j∈[nm]\(A∪B)

∑
I∈JMj

p(I)dTV (pI , ((pf )
I)I)

≤ ∑
j∈[nm]\(A∪B)

p(Mj) ≤ 301εk

10000k

So the third summand of (C.9) is at most ε/4 + 301ε/10000,

and overall we have that (C.9) ≤ ε
2 . Hence, we have shown

that I is a (p, ε, �)-flat decomposition of [n], and Lemma 4.1

is proved.

C.3 The ORIENTATION algorithm. The ORIENTATION

algorithm takes as input an explicit distribution of a distribu-

tion p̂ over [n] and an interval I ⊆ [n]. Intuitively, it assumes

that p̂I is close (in Kolmogorov distance) to a monotone dis-

tribution pI , and its goal is to determine the orientation of pI :

it outputs either ↑, ↓ or ⊥ (the last of which means “close to

uniform”). The algorithm is quite simple; it checks whether

there exists an initial interval I ′ of I on which p̂I ’s weight

is significantly different from uI(I
′) (the weight that the uni-

form distribution over I assigns to I ′) and bases its output on

this in the obvious way. A precise description of the algorithm

(which uses no samples) is given below.

ORIENTATION

INPUTS: explicit description of distribution p̂ over [n];
interval I = [a, b] ⊆ [n]

1. If |I| = 1 (i.e. I = {a} for some a ∈ [n]) then return

“⊥”, otherwise continue.

2. If there is an initial interval I ′ = [a, j] of I that

satisfies uI(I
′) − (p̂)I(I

′) > ε
7 then halt and output

“↑”. Otherwise,

3. If there is an initial interval I ′ = [a, j] of I that

satisfies uI(I
′)− (p̂)I(I

′) < − ε
7 then halt and output

“↓”. Otherwise,

4. Output “⊥”.

We proceed to analyze ORIENTATION. We show that

if pI is far from uniform then ORIENTATION outputs the

correct orientation for it. We also show that whenever

ORIENTATION does not output “⊥”, whatever it outputs is

the correct orientation of pI . For ease of readability, for the
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rest of this subsection we use the following notation:

Δ :=
ε2

10000k

Lemma 4.3. Let p be a distribution over [n] and let interval
I = [a, b] ⊆ [n] be such that pI is monotone. Suppose
p(I) ≥ 99ε/(10000k), and suppose that for every interval
I ′ ⊆ I we have that

(C.10) |p̂(I ′)− p(I ′)| ≤ Δ.

Then

1. If pI is non-decreasing and pI is ε/6-far from the uni-
form distribution uI over I , then ORIENTATION(p̂, I)
outputs “↑”;

2. if ORIENTATION(p̂, I) outputs “↑” then pI is non-
decreasing;

3. if pI is non-increasing and pI is ε/6-far from the uniform
distribution uI over I , then ORIENTATION(p̂, I) outputs
“↓”;

4. if ORIENTATION(p̂, I) outputs “↓” then pI is non-
increasing.

Proof. Let I ′ = [a, j] ⊆ I be any initial interval of I. We first

establish the upper bound

(C.11) |pI(I ′)− (p̂)I(I
′)| ≤ ε/49

as this will be useful for the rest of the proof. Using (C.10)

we have

pI(I
′)− (p̂)I(I

′) =
p(I ′)
p(I)

− p̂(I ′)
p̂(I)

≥ p(I ′)
p(I)

− p(I ′) + Δ

p(I)−Δ

= −Δ · p(I ′) + p(I)

p(I)(p(I)−Δ)
.(C.12)

Now using the fact that p(I ′) ≤ p(I) and p(I) ≥
99ε/(10000k), we get that (C.12) is at least

−Δ · 2p(I)

(98/99)p(I)2
= −2 · 99Δ

98p(I)

≥ −2 · 99Δ · 10000k
98 · 99ε = − ε

49
.

So we have established the lower bound pI(I
′)− (p̂)I(I

′) ≥
−ε/49. For the upper bound, similar reasoning gives

pI(I
′)− (p̂)I(I

′) ≤ Δ · p(I ′) + p(I)

p(I)(p(I) + Δ)

≤ Δ · 2p(I)

p(I)2 · (100/99)
≤ Δ · 2 · 10000k · 99

99ε · 100 =
ε

50

and so we have shown that |pI(I ′) − (p̂)I(I
′)| ≤ ε/49 as

desired. Now we proceed to prove the lemma.

We first prove Part 1. Suppose that pI is non-decreasing

and dTV (pI , uI) > ε/6. Since pI is monotone and uI is

uniform and both are supported on I , we have that the pdfs for

pI and uI have exactly one crossing. An easy consequence

of this is that dK(pI , uI) = dTV (pI , uI) > ε/6. By the

definition of dK and the fact that pI is non-decreasing, we

get that there exists a point j ∈ I and an interval I ′ = [a, j]
which is such that

dK(pI , uI) = uI(I
′)− pI(I

′) >
ε

6
.

Using (C.11) we get from this that

uI(I
′)− (p̂)I(I

′) >
ε

6
− ε

49
>

ε

7

and thus ORIENTATION outputs “↑” in Step 3 as claimed.

Now we turn to Part 2 of the lemma. Suppose that

ORIENTATION(p̂, I) outputs “↑”. Then it must be the case

that there is an initial interval I ′ = [a, j] of I that satisfies

uI(I
′) − (p̂)I(I

′) > ε
7 . By (C.11) we have that uI(I

′) −
pI(I

′) > ε
7 − ε

49 = 6ε
49 . But Observation 2.1 tells us that if pI

were non-increasing then we would have uI(I
′)−pI(I

′) ≤ 0;

so pI cannot be non-increasing, and therefore it must be non-

decreasing.

For Part 3, suppose that pI is non-increasing and

dTV (pI , uI) > ε/6. First we must show that ORIENTATION

does not output “↑” in Step 3. Since pI is non-increasing,

Observation 2.1 gives us that uI(I
′) − pI(I

′) ≤ 0 for ev-

ery initial interval I ′ of I . Inequality (C.11) then gives

uI(I
′) − (p̂)I(I

′) ≤ ε/49, so ORIENTATION indeed does

not output “↑” in Step 3 (and it reaches Step 4 in its execu-

tion). Now arguments exactly analogous to the arguments for

part 1 (but using now the fact that pI is non-increasing rather

than non-decreasing) give that there is an initial interval I ′

such that (p̂)I(I
′)−uI(I

′) > ε
6 − ε

49 > ε
7 , so ORIENTATION

outputs “↓” in Step 4 and Part 3 of the lemma follows.

Finally, Part 4 of the lemma follows from analogous

arguments as Part 2.

D Proof of Proposition 5.1
We start by defining the transformation, and then prove the

necessary lemmas to show that the transformation yields k-

modal distributions with the specified increase in support size,

preserves L1 distance between pairs, and has the property that

samples from the transformed distributions can be simulated

given access to samples from the original distributions.

The transformation proceeds in two phases. In the

first phase, the input distribution p is transformed into a

related distribution f with larger support; f has the additional

property that the ratio of the probabilities of consecutive

domain elements is bounded. Intuitively the distribution f
corresponds to a “reduced distribution” from Section A. In

the second phase, the distribution f is transformed into the

final 2(k − 1)-modal distribution g. Both stages of the

transformation consist of subdividing each element of the
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domain of the input distribution into a set of elements of

the output distribution; in the first stage, the probabilities of

each element of the set are chosen according to a geometric

sequence, while in the second phase, all elements of each set

are given equal probabilities.

We now define this two-phase transformation and prove

Proposition 5.1.

DEFINITION D.1. Fix ε > 0 and a distribution p over
[n] such that pmin ≤ p(i) ≤ pmax for all i ∈ [n]. We
define the distribution fp,ε,pmax,pmin

in two steps. Let q be
the distribution on support [c] with c = 1 + �log1+ε pmax −
log1+ε pmin� that is defined by q(i) = (1 + ε)i−1 ε

(1+ε)c−1 .

The distribution fp,ε,pmax,pmin
has support [cn], and for i ∈

[n] and j ∈ [c] it assigns probability p(i)q(j) to domain
element c(i− 1) + j.

It is convenient for us to view the mod r operator as

giving an output in [r], so that “r mod r” equals r.

DEFINITION D.2. We define the distribution gk,p,ε,pmax,pmin

from distribution fp,ε,pmax,pmin
of support [m] via the fol-

lowing process. Let r = �m
k �, and let a1 := 1, and for all

i ∈ {2, . . . , r}, let ai := �(1+ ε)ai−1�. For each i ∈ [m], we
assign probability fp,ε,pmax,pmin

(i)

ai mod r
to each of the aj support

elements in the set {1 + t, 2 + t, . . . , ai mod r + t}, where
t =

∑i−1
�=1 a(� mod r).

LEMMA D.3. Given ε, pmin, pmax, and access to indepen-
dent samples from distribution p, one can generate indepen-
dent samples from fp,ε,pmax,pmin

and from gk,p,ε,pmax,pmin
.

Proof. To generate a sample according to fp,ε,pmax,pmin , one

simply takes a sample i ← p and then draws j ∈ [c] according

to the distribution q as defined in Definition D.1 (note that

this draw according to q only involves ε, pmin and pmax). We

then output the value c(i−1)+j. It follows immediately from

the above definition that the distribution of the output value is

fp,ε,pmax,pmin .
To generate a sample according to gk,p,ε,pmax,pmin

given a sample i ← fp,ε,pmax,pmin
, one simply outputs

(a uniformly random) one of the a(i mod r) support ele-

ments of gk,p,ε,pmax,pmin
corresponding to the element i of

fp,ε,pmax,pmin
. Specifically, if the support of fp,ε,pmax,pmin

is

[m], then we output a random element of the set {1 + t, 2 +

t, . . . , ai mod r + t}, where t =
∑i−1

�=1 a(� mod r), with aj as

defined in Definition D.2, and r = �m
k �.

LEMMA D.4. If pmin ≤ p(i) ≤ pmax for all i ∈ [n], then
the distribution fp,ε,pmax,pmin of Definition D.1, with density
f : [cn] → R, has the property that f(i)

f(i−1) ≤ 1 + ε for all
i > 1, and the distribution gk,p,ε,pmax,pmin

of Definition D.2
is 2(k − 1)-modal.

Proof. Note that the distribution q, with support [c] as defined

in Definition D.1, has the property that q(i)/q(i− 1) = 1+ ε
for all i ∈ {2, . . . , c}, and thus f(�)/f(� − 1) = 1 + ε for

any � satisfying (� mod c) �= 1. For values � that are 1 mod

c, we have

f(�)

f(�− 1)
=

p(i+ 1)

p(i)(1 + ε)c−1
≤ p(i+ 1)pmin

p(i)pmax
≤ 1.

Given this property of fp,ε,pmax,pmin , we now establish

that gk,p,ε,pmax,pmin
is monotone decreasing on each of the k

equally sized contiguous regions of its domain. First consider

the case k = 1; given a support element j, let i be such that

j ∈ {1 +∑i−1
�=1 a�, . . . , ai +

∑i−1
�=1 a�}. We thus have that

g1,p,ε,pmax,pmin(j) =
fp,ε,pmax,pmin

(i)

ai

≤ (1 + ε)fp,ε,pmax,pmin
(i− 1)

ai

≤ fp,ε,pmax,pmin
(i− 1)

ai−1

≤ g1,p,ε,pmax,pmin
(j − 1),

and thus g1,p,ε,pmax,pmin
is indeed 0-modal since it is mono-

tone non-increasing. For k > 1 the above arguments apply

to each of the k equally-sized contiguous regions of the sup-

port, so there are 2(k − 1) modes, namely the local maxima

occurring at the right endpoint of each region, and the local

minima occurring at the left endpoint of each region.

LEMMA D.5. For any distributions p, p′ with support [n],
and any ε, pmax, pmin, we have that

dTV (p, p
′) = dTV (fp,ε,pmax,pmin

, fp′,ε,pmax,pmin
)

= dTV (gk,p,ε,pmax,pmin
, gk,p′,ε,pmax,pmin

) .

Proof. Both equalities follow immediately from the fact that

the transformations of Definitions D.1 and D.2 partition

each element of the input distribution in a manner that is

oblivious to the probabilities. To illustrate, letting c =
1 + �log1+ε pmax − log1+ε pmin�, and letting q be as in

Definition D.1, we have the following:

dTV (fp,ε,pmax,pmin
, fp′,ε,pmax,pmin

) =
∑

i∈[n],j∈[c]
q(j)|p(i)− p′(i)|

=
∑

i∈[n]
|p(i)− p′(i)|.

LEMMA D.6. If p has support [n], then for any ε < 1/2, the
distribution gk,p,ε,pmax,pmin is supported on [N ], where N is

at most k e
8n
k (1+log(pmax/pmin))

ε2 .

Proof. The support of fp,ε,pmax,pmin is n(1+�log1+ε pmax−
log1+ε pmin�) ≤ n

(
2 + log(pmax/pmin)

log(1+ε)

)
. Letting a1 := 1

and b1 := � 1
ε �, and defining ai := �ai−1(1 + ε)�, and bi :=

�bi−1(1 + ε)�, we have that ai ≤ bi for all i. Additionally,

bi+1/bi ≤ 1 + 2ε, since all bi ≥ 1/ε, and thus the ceiling

operation can increase the value of (1 + ε)bi by at most εbi.
Putting these two observations together, we have

m∑
i=1

ai ≤
m∑
i=1

bi ≤ (1 + 2ε)m+1

2ε2
.
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For any ε ≤ 1/2, we have that the support of

gk,p,1/2,pmax,pmin
is at most

k
(1 + 2ε)

⌈
n
k

(
2+

log(pmax/pmin)

log(1+ε)

)⌉

ε2

≤ k
(1 + 2ε)

2n
k

(
2+4

log(pmax/pmin)

2ε

)

ε2

≤ k
(1 + 2ε)

1
2ε (

8n
k (1+log(pmax/pmin)))

ε2

≤ k
e

8n
k (1+log(pmax/pmin))

ε2
.

Proof. [Proof of Proposition 5.1] The proof is now a sim-

ple matter of assembling the above parts. Given a distribu-

tion D over pairs of distributions of support [n], as speci-

fied in the proposition statement, the distribution Dk is de-

fined via the process of taking (p, p′) ← D, then applying

the transformation of Definitions D.1 and D.2 with ε = 1/2
and to yield a pair

(
gk,p,1/2,pmax,pmin

, gk,p′,1/2,pmax,pmin

)
.

We claim that this Dk satisfies all the properties claimed

in the proposition statement. Specifically, Lemmas D.4 and

D.6, respectively, ensure that every distribution in the sup-

port of Dk has at most 2(k − 1) modes, and has support size

at most 4ke
8n
k (1+log(pmax/pmin)). Additionally, Lemma D.5

guarantees that the transformation preserves L1 distance,

namely, for two distributions p, p′ with support [n], we have

L1(p, p
′) = L1(gk,p,1/2,pmax,pmin

, gk,p′,1/2,pmax,pmin
). Fi-

nally, Lemma D.3 guarantees that, given s independent sam-

ples from p, one can simulate drawing s independent sam-

ples according to gk,p,1/2,pmax,pmin
. Assuming for the sake

of contradiction that one had an algorithm that could distin-

guish whether L1(gk,p,1/2,pmax,pmin
, gk,p′,1/2,pmax,pmin

) is

less than ε1 versus greater than ε2 with the desired proba-

bility given s samples, one could take s samples from dis-

tributions (p, p′) ← D, simulate having drawn them from

gk,p,1/2,pmax,pmin
and gk,p′,1/2,pmax,pmin

, and then run the

hypothesized tester algorithm on those samples, and out-

put the answer, which will be the same for (p, p′) as for

(gk,p,1/2,pmax,pmin
, gk,p′,1/2,pmax,pmin

). This contradicts the

assumption that no algorithm with these success parameters

exists for (p, p′) ← D.

E Proof of Theorem 3.1
We first note that we can assume that ε > 1/n. Otherwise,

the decomposition of [n] into singleton intervals Ii = {i},

i ∈ [n], trivially satisfies the statement of the theorem.

Indeed, in this case we have that (1/ε)·log n > n and pf ≡ p.

We first describe the oblivious decomposition and then

show that it satisfies the statement of the theorem. The

decomposition I will be a partition of [n] into � nonempty

consecutive intervals I1, . . . , I�. In particular, for j ∈ [�], we

have Ij = [nj−1+1, nj ] with n0 = 0 and n� = n. The length
of interval Ii, denoted by li, is defined to be the cardinality of

Ii, i.e., li = |Ii|. (Given that the intervals are disjoint and

consecutive, to fully define them it suffices to specify their

lengths.)

We can assume wlog that n and 1/ε are each at least

sufficiently large universal constants. The interval lengths are

defined as follows. Let � ∈ Z
+ be the smallest integer such

that
�∑

i=1

�(1 + ε)i� ≥ n.

For i = 1, 2, . . . , �− 1 we define

li := �(1 + ε)i�.
For the �-th interval, we set

l� := n−
�−1∑
i=1

li.

It follows from the aforementioned definition that the

number � of intervals in the decomposition is at most

O ((1/ε) · log(1 + ε · n)) .
Let p be any non-increasing distribution over [n]. We will

now show that the above described decomposition satisfies

dTV (pf , p) = O(ε)

where pf is the flattened distribution corresponding to p and

the partition I = {Ii}�i=1. We can write

dTV (pf , p) = (1/2)·
n∑

i=1

|pf (i)− p(i)| =
�∑

j=1

dTV

(
(pf )

Ij , pIj
)

where pI denotes the (sub-distribution) restriction of p over

I .

Let Ij = [nj−1 + 1, nj ] with lj = |Ij | = nj − nj−1.

Then we have that

dTV

(
(pf )

Ij , pIj
)
= (1/2) ·

nj∑
i=nj−1+1

|pf (i)− p(i)| .

Recall that pf is by definition constant within each Ij and in

particular equal to p̄jf =
∑nj

i=nj−1+1 p(i)/lj . Also recall that

p is non-increasing, hence p(nj−1) ≥ p(nj−1 + 1) ≥ p̄jf ≥
p(nj). Therefore, we can bound from above the variation

distance within Ij as follows

dTV

(
(pf )

Ij , pIj
) ≤ lj · (p(nj−1 + 1)− p(nj))

≤ lj · (p(nj−1)− p(nj)) .

So, we have

(E.13) dTV (pf , p) ≤
�∑

j=1

lj · (p(nj−1)− p(nj)) .

To bound the above quantity we analyze summands with

lj < 1/ε and with lj ≥ 1/ε separately.

Formally, we partition the set of intervals I1, . . . , I� into

“short” intervals and “long intervals” as follows: If any

interval Ij satisfies lj ≥ 1/ε, then let j0 ∈ Z
+ be the largest

integer such that lj0 < 1/ε; otherwise we have that every
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interval Ij satisfies lj < 1/ε, and in this case we let j0 = �.
If j0 < � then we have that j0 = Θ((1/ε) · log2(1/ε)). Let

S = {Ii}j0i=1 denote the set of short intervals and let L denote

its complement L = I \ S.

Consider the short intervals and cluster them into groups
according to their length; that is, a group contains all intervals

in S of the same length. We denote by Gi the ith group, which

by definition contains all intervals in S of length i; note that

these intervals are consecutive. The cardinality of a group

(denoted by | · |) is the number of intervals it contains; the

length of a group is the number of elements it contains (i.e.

the sum of the lengths of the intervals it contains).

Note that G1 (the group containing all singleton inter-

vals) has |G1| = Ω(1/ε) (this follows from the assumption

that 1/ε < n). Hence G1 has length Ω(1/ε). Let j∗ < 1/ε
be the maximum length of any short interval in S. It is easy

to verify that each group Gj for j ≤ j∗ is nonempty, and that

for all j ≤ j∗ − 1, we have |Gj | = Ω((1/ε) · (1/j)), which

implies that the length of Gj is Ω(1/ε).
To bound the contribution to (E.13) from the short inter-

vals, we consider the corresponding sum for each group, and

use the fact that G1 makes no contribution to the error. In

particular, the contribution of the short intervals is

(E.14)
j∗∑
l=2

l · (p−l − p+l
)

where p−l (resp. p+l ) is the probability mass of the leftmost

(resp. rightmost) point in Gl. Given that p is non-increasing,

we have that p+l ≥ p−l+1. Therefore, we can upper bound

(E.14) by

2 · p+1 +
j∗−1∑
l=2

p+l − j∗ · p+j∗ .

Now note that p+1 = O(ε) · p(G1), since G1 has length

(total number of elements) Ω(1/ε) and p is non-increasing.

Similarly, for l < j∗, we have that p+l = O(ε) · p(Gl), since

Gl has length Ω(1/ε). Therefore, the above quantity can be

upper bounded by

(E.15)

O(ε)·p(G1)+O(ε)·
j∗−1∑
l=2

p(Gl)−j∗·p+j∗ = O(ε)·p(S)−j∗·p+j∗ .

We consider two cases: The first case is that L = ∅. In

this case, we are done because the above expression (E.15)

is O(ε). The second case is that L �= ∅ (we note in passing

that in this case the total number of elements in all short

intervals is Ω(1/ε2), which means that we must have ε =
Ω(1/

√
n)). In this case we bound the contribution of the long

intervals using the same argument as Birgé. In particular, the

contribution of the long intervals is

�∑
j=j0+1

lj · (p(nj−1)− p(nj))

≤ (j∗ + 1) · p+j∗ +
�−1∑

j=j0+1

(lj+1 − lj) · p(nj).(E.16)

Given that lj+1− lj ≤ (2ε) · lj and
∑

j lj ·p(nj) ≤ p(L),
it follows that the second summand in (E.16) is at most

O(ε) · p(L). Therefore, the total variation distance between p
and pf is at most (E.15) + (E.16), i.e.

(E.17) O(ε) · p(S) +O(ε) · p(L) + p+j∗ .

Finally, note that p(L) + p(S) = 1 and p+j∗ = O(ε).

(The latter holds because p+j∗ is the probability mass of the

rightmost point in S; recall that S has length at least 1/ε and

p is decreasing.) This implies that (E.17) is at most O(ε), and

this completes the proof of Theorem 3.1.

F Bounding variation distance
As noted above, our tester will work by decomposing the

interval [n] into sub-intervals. The following lemma will be

useful for us; it bounds the variation distance between two

distributions p and q in terms of how p and q behave on the

sub-intervals in such a decomposition.

LEMMA F.1. Let [n] be partitioned into I1, . . . , Ir. Let p, q
be two distributions over [n]. Then
(F.18)

dTV (p, q) ≤ 1

2

r∑
j=1

|p(Ij)−q(Ij)|+
r∑

j=1

p(Ij) ·dTV (pIj , qIj ).

Proof. Recall that dTV (p, q) = 1
2

∑n
i=1 |p(i) − q(i)|. To

prove the claim it suffices to show that

(F.19)
1

2

∑
i∈I1

|p(i)−q(i)| ≤ 1

2
|p(I1)−q(I1)|+p(I1)·dTV (pI1 , qI1).

We assume that p(I1) ≤ q(I1) and prove (F.19) under

this assumption. This gives the bound in general since if

p(I1) > q(I1) we have

1

2

∑
i∈I1

|p(i)− q(i)| ≤ |p(I1)− q(I1)|+ q(I1) · dTV (pI1 , qI1)

< |p(I1)− q(I1)|+ p(I1) · dTV (pI1 , qI1)

where the first inequality is by (F.19). The triangle inequality

gives us

|p(i)− q(i)| ≤
∣∣∣∣p(i)− q(i) · p(I1)

q(I1)

∣∣∣∣+
∣∣∣∣q(i) · p(I1)q(I1)

− q(i)

∣∣∣∣ .
Summing this over all i ∈ I1 we get

1

2

∑
i∈I1

|p(i)− q(i)| ≤ 1

2

∑
i∈I1

∣∣∣∣p(i)− q(i) · p(I1)
q(I1)

∣∣∣∣
+
1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ .
We can rewrite the first term on the RHS as

1

2

∑
i∈I1

∣∣∣∣p(i)− q(i) · p(I1)
q(I1)

∣∣∣∣ = p(I1) · 1
2

∑
i∈I1

∣∣∣∣ p(i)p(I1)
− q(i)

q(I1)

∣∣∣∣
= p(I1) · 1

2

∑
i∈I1

|pI1(i)− qI1(i)|

= p(I1) · dTV (pI1 , qI1)
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so to prove the desired bound it suffices to show that

1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ ≤ |p(I1)− q(I1)|.(F.20)

We have ∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ = q(i) ·
∣∣∣∣p(I1)q(I1)

− 1

∣∣∣∣
and hence we have

1

2

∑
i∈I1

∣∣∣∣q(i) · p(I1)q(I1)
− q(i)

∣∣∣∣ =
1

2

∑
i∈I1

q(i) ·
∣∣∣∣p(I1)q(I1)

− 1

∣∣∣∣
=

1

2
q(I1) ·

∣∣∣∣p(I1)q(I1)
− 1

∣∣∣∣
=

1

2
|p(I1)− q(I1)|.

So we indeed have (F.20) as required, and the lemma holds.
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