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ABSTRACT
We consider the following basic learning task: given inde-
pendent draws from an unknown distribution over a discrete
support, output an approximation of the distribution that
is as accurate as possible in `1 distance (equivalently, total
variation distance, or “statistical distance”). Perhaps sur-
prisingly, it is often possible to “de-noise” the empirical dis-
tribution of the samples to return an approximation of the
true distribution that is significantly more accurate than the
empirical distribution, without relying on any prior assump-
tions on the distribution. We present an instance optimal
learning algorithm which optimally performs this de-noising
for every distribution for which such a de-noising is possi-
ble. More formally, given n independent draws from a dis-
tribution p, our algorithm returns a labelled vector whose
expected distance from p is equal to the minimum possi-
ble expected error that could be obtained by any algorithm,
even one that is given the true unlabeled vector of probabil-
ities of distribution p and simply needs to assign labels—up
to an additive subconstant term that is independent of p
and goes to zero as n gets large. This somewhat surprising
result has several conceptual implications, including the fact
that, for any large sample from a distribution over discrete
support, prior knowledge of the rates of decay of the tails
of the distribution (e.g. power-law type assumptions) is not
significantly helpful for the task of learning the distribution.

As a consequence of our techniques, we also show that
given a set of n samples from an arbitrary distribution, one
can accurately estimate the expected number of distinct el-
ements that will be observed in a sample of any size up to
n logn. This sort of extrapolation is practically relevant,
particularly to domains such as genomics where it is im-
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portant to understand how much more might be discovered
given larger sample sizes, and we are optimistic that our
approach is practically viable.
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1. INTRODUCTION
Given independent draws from an unknown distribution

over an unknown discrete support, what is the best way to
aggregate those samples into an approximation of the true
distribution? The most obvious and most widely employed
approach is to simply output the empirical distribution of
the sample. To what extent can one improve over this naive
approach? To what extent can one “de-noise” the empiri-
cal distribution, without relying on any assumptions on the
structure of the underlying distribution?

Perhaps surprisingly, there are many settings in which de-
noising can be done without a priori assumptions on the
distribution. We begin by presenting two motivating exam-
ples illustrating rather different settings in which significant
de-noising of the empirical distribution is possible.

Example 1. Suppose you are given 100,000 independent
draws from some unknown distribution, and you find that
there are roughly 1,000 distinct elements, each of which ap-
pears roughly 100 ± 10 times. Furthermore, suppose you
compute the variance in the number of times the different
domain elements occur, and it is close to 100. Based on
these samples, you can confidently deduce that the true dis-
tribution is very close to a uniform distribution over 1,000
domain elements, and that the true probability of a domain
element seen 90 times is roughly the same as that of an ele-
ment observed 110 times. The basic reasoning is as follows:
if the true distribution were the uniform distribution, then
the noise from the random sampling would exhibit the ob-
served variance in the number of occurrences; if there was
any significant variation in the true probabilities of the dif-
ferent domain elements, then, combined with the noise added
via the random sampling, the observed variance would be
noticeably larger than 100. The `1 error of the empirical
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distribution would be roughly 0.1, whereas the “de-noised”
distribution would have error less than 0.01.

Example 2. Suppose you are given 1,000 independent draws
from an unknown distribution, and all 1000 samples are
unique domain elements. You can safely conclude that the
combined probability of all the observed domain elements is
likely to be much less than 1/100—if this were not the case,
one would expect at least one of the observed elements to
occur twice in the sample. Hence the empirical distribution
of the samples is likely to have `1 distance nearly 2 from the
true distribution, whereas this reasoning would suggest that
one should ascribe a total probability mass of at most 1/100
to the observed domain elements.

In both of the above examples, the key to the “de-noising”
was the realization that the true distributions possessed some
structure—structure that was both easily deduced from the
samples, and structure that, once known, could then be
leveraged to de-noise the empirical distribution. Our main
result is an algorithm which de-noises the empirical distri-
bution as much as is possible, whenever such denoising is
possible. Specifically, our algorithm achieves, up to a sub-
constant term that vanishes as the sample size increases, the
best error that any algorithm could achieve—even an algo-
rithm that is given the unlabeled vector of true probabilities
and simply needs to correctly label the probabilities. It is in
this sense that we mean our algorithm is instance-optimal: if
there is any instance-specific algorithm that can take advan-
tage of the structure of the true probabilities to better label
the domain elements, then our general algorithm will essen-
tially match the performance of this specialized algorithm
on this instance, even without knowing the true probabili-
ties ahead of time.

Theorem 1. There is a function err(n) that goes to zero
as n gets large, and an algorithm, which given n independent
draws from any distribution p of discrete support, outputs a
labelled vector q, such that

E [||p− q||1] ≤ opt(p, n) + err(n),

where opt(p, n) is the minimum expected `1 error that any
algorithm could achieve on the following learning task: given
p, and given n samples drawn independently from a distri-
bution that is identical to p up to an arbitrary relabeling of
the domain elements, learn the distribution.

The performance guarantees of the above algorithm can
be equivalently stated as follows: let S ←−

n
p denote that

S is a set of n independent draws from distribution p, and
let π(p) denote a distribution that is identical to p, up to
relabeling the domain elements with arbitrary distinct new
labels given by the mapping π. Our algorithm, which maps
a set of samples S to a labelled vector q = f(S), satisfies the
following: For any distribution p,

E
S←−
n
p

[||p− q||1] ≤ min
algs A

max
π

(
E

S←−
n
π(p)

[π(p)−A(S)]

)
+on(1),

where on(1)→ 0 as n→∞ is independent of p and depends
only on n.

A worst-case bound on the magnitude of the error term
in Theorem 1 is err(n) = 1/ logθ(1) n, and no dependence
better than 1/ logn is possible for worst-case combinations

of p and n. For any fixed distribution p, the error de-
cays much faster in the asymptotic regime in which n is
large in comparison to the support size of p, as err(n) =
Op(1/

√
n). The critical regime in which our theorem yields

the most surprising results is where opt(p, n) is somewhat

larger than err(n) = 1/ logθ(1) n, namely, for a distribution
p and sample size n for which the labeling problem incurs
non-negligible error—for example when p is a distribution
with large support and n is a constant multiple of the sup-
port size.

One surprising implication of the above result is that, for
large samples, prior knowledge of the“shape”of the distribu-
tion, or knowledge of the rate of decay of the tails of the dis-
tribution, cannot significantly improve the accuracy of the
learning task. For example, typical Bayesian assumptions
that the frequency of words in natural language satisfy Zipf
distributions, or the frequencies of different species of bacte-
ria in the human gut satisfy Gamma distributions or various
power-law distributions, etc, can improve the expected error
of the learned distribution by at most a vanishing function
of the sample size.

The key intuition behind this optimal de-noising, and the
core of our algorithm, is the ability to very accurately ap-
proximate the unlabeled vector of probabilities of the true
distribution, given access to independent samples. In some
sense, our result can be interpreted as the following state-
ment: up to an additive subconstant factor, one can always
recover an approximation of the unlabeled vector of proba-
bilities more accurately than one can disambiguate and label
such a vector. That is, if one has enough samples to accu-
rately label the unlabeled vector of probabilities, then one
also has more than enough samples to accurately learn that
unlabeled vector. Of course, this statement can only hold
up to some additive error term, as the following example
illustrates.

Example 3. Given samples drawn from a distribution sup-
ported on two unknown domain elements, if one is told that
both probabilities are exactly 1/2, then as soon as one ob-
serves both domain elements, one knows the distribution ex-
actly, and thus the expected error given n samples will be
opt(p, n) = O(1/2n) as this bounds the probability that one
of the two domain elements is not observed in a set of n sam-
ples. Without the prior knowledge that the two probabilities
are 1/2, the best algorithm will have expected error ≈ 1/

√
n.

(In general, given n samples drawn from a uniform distri-
bution over k elements, opt(Unif [k], n) = Bin(n, 1/k, 0) ≈
e−n/k, namely the expected probability mass consisting of
unseen domain elements.)

The above example illustrates that prior knowledge of the
vector of probabilities can be helpful. Our result, however,
shows that this phenomenon only occurs to a significant ex-
tent for very small sample sizes; for larger samples, no dis-
tribution exists for which prior knowledge of the vector of
probabilities improves the expected error of a learning al-
gorithm beyond a universal subconstant additive term that
goes to zero as a function of the sample size.

1.1 Our Approach
Our algorithm proceeds via two steps. In the first step, the

samples are used to output an approximation of the vector of
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true probabilities. We show that, with high probability over
the randomness of the n independent draws from the dis-
tribution, we accurately recover the portion of the vector of
true probabilities consisting of values asymptotically larger
than 1/(n logn). This is a strengthened version of the results
of [32, 34]. Note that the empirical distribution accurately
estimates probabilities down to ≈ 1/n—indeed the vector of
empirical probabilities are all multiples of 1/n. The charac-
terization of the first phase of our algorithm can be inter-
preted as showing that we recover the vector of probabilities
essentially to the accuracy that the empirical distribution
would have if it were based on n logn samples, rather than
only n samples. Of course, this surprisingly accurate recon-
struction comes with the caveat that we are only recovering
the unlabeled vector of probabilities—we do not know which
domain elements correspond to the various probabilities.

The second step of our algorithm leverages the accurate
approximation of the unlabeled vector of probabilities to
optimally assign probability values to each of the observed
domain elements. For some intuition into this step, first sup-
pose you know the exact vector of unlabelled probabilities.
Consider the following optimization problem: given n inde-
pendent draws from distribution p, and an unlabeled vector
v representing the true vector of probabilities of distribution
p, for each observed domain element x, assign the probability
q(x) that minimizes the expected `1 distance |q(x) − p(x)|.
As the following example illustrates, this problem is more
subtle than it might initially seem; intuitive schemes such
as assigning the ith largest probability in v to the element
with the ith largest empirical probability is not optimal.

Example 4. Consider n independent draws from a dis-
tribution in which 90% of the domain elements occur with
probability 10/n, and the remaining 10% occur with probabil-
ity 11/n. If one assigns probability 11/n to the 10% of the
domain elements with largest empirical frequencies, the `1
distance will be roughly 0.2, because the vast majority of the
elements with the largest empirical frequencies will actually
have true probability 10/n rather than 11/n. In contrast, if
one ignores the samples and simply assigns probability 10/n
to all the domain elements, the `1 error will be exactly 0.1.

This optimization task of assigning probabilities q(x) to
each observed domain element x (as a function of the unla-
belled vector of true probabilities v, and set of n samples) so
as to minimize the expected `1 error is a well-defined opti-
mization problem. Nevertheless, this task seems to be com-
putationally intractable. Part of the computational chal-
lenge is that the optimal probability to assign to a domain
element x might be a function of 1) the true probabilities
v, 2) the number of occurrences of x in the sample, and 3)
the number of occurrences of all the other domain elements.
Nevertheless, we describe a very natural and computation-
ally efficient scheme which assigns a probability q(x) to each
x that is a function of only v and the number of occurrences
of x; we show that this scheme incurs an expected error
within o(1) of the expected error of the optimal scheme
(which assigns q(x) as a function of v and the entire set
of samples). Of course, there is the additional complication
that, in the context of our two step algorithm, we do not
actually have the exact vector of true probabilities—only
an approximation of such a vector—and hence this second
phase of our algorithm must be robust to some noise in the
recovered probabilities.

Beyond yielding a near optimal learning algorithm, there
are several additional benefits to our approach of first ac-
curately reconstructing the unlabeled vector of probabili-
ties. For instance, such an unlabeled vector allows us to
estimate properties of the underlying distribution including
estimating the error of our returned vector, and estimating
the error in our estimate of each observed domain element’s
probability. Additionally, as the following proposition quan-
tifies, this unlabeled vector of probabilities can be leveraged
to produce an accurate estimate of the expected number of
distinct elements that will be observed in sample sizes up to
a logarithmic factor larger:

Proposition 1. Given n samples from an arbitrary dis-

tribution p, with probability 1 − e−n
Ω(1)

over the random-
ness of the samples, one can estimate the expected number
of unique elements that would be seen in a set of k samples

drawn from p, to within error k ·c
√

k
n logn

for some universal

constant c.

This proposition is tight, and it is slightly surprising in
that the factor by which one can accurately extrapolate
increases with the sample size. This ability to accurately
predict the expected number of new elements observed in
larger sample sizes is especially applicable to such settings
as genomics, where data is relatively costly to gather, and
the benefit of data acquisition is largely dependent on the
number of new phenomena discovered.1

1.2 Related Work
Much of the work on correcting the empirical distribution

of a set of samples builds on the seminal work of Turing,
and I.J. Good [22] (see also [23]). In the context of their
work at Bletchley Park as part of the British WWII effort
to crack the German enigma machine ciphers, Turing and
Good developed a simple estimator that corrected the em-
pirical distribution, in some sense to capture the “missing”
probability mass of the distribution. This estimator and its
variants have been employed widely, particularly in the con-
texts of genomics, natural language processing, and other
settings in which significant portions of the distribution are
comprised of domain elements with small probabilities (e.g.
[13]). In its most simple form, the Good-Turing frequency
estimation scheme estimates the total probability of all do-
main elements that appear exactly i times in a set of n sam-

ples as
(i+1)Fi+1

n
, where Fj is the total number of domain

elements that occur exactly j times in the samples. The
total probability mass consisting of domain elements that
are not seen in the samples—the “missing” mass, or, equiv-
alently, the probability that the next sample drawn will be
a new domain element that has not been seen previously—
can be estimated by plugging i = 0 into this formula to
yield F1/n, namely the fraction of the samples consisting of
domain elements seen exactly once.

The Good–Turing estimate is especially suited to estimat-
ing the total mass of elements that appear few times; for
1One of the medical benefits of “genome wide association
studies” is the compilation of catalogs of rare mutations that
occur in healthy individuals; these catalogs are being used
to rule out genetic causes of illness in patients, and help
guide doctors to accurate diagnoses (see e.g. [18, 19]). Un-
derstanding how these catalogs will grow as a function of the
number of genomes sequenced may be an important factor
in designing such future datasets [37].
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more frequently occurring domain elements, this estimate
has high variance—for example, if Fi+1 = 0, as will be the
case for most large i, then the estimate is 0. However, for fre-
quently occurring domain elements, the empirical distribu-
tion will give an accurate estimate of their probability mass.
There is an extremely long and successful line of work, span-
ning the past 60 years, from the computer science, statistics,
and information theory communities, proposing approaches
to “smoothing” the Good–Turing estimates, and combin-
ing such smoothed estimates with the empirical distribution
(e.g. [23, 20, 26, 27, 28, 16, 4]). As was recently shown by
Orlitsky and Suresh [29], for the task of learning a distribu-
tion of known support with respect to KL divergence, such
methods achieve “instance optimal” results analogous to our
results for this different distance/divergence function.

Our approach—to first recover an estimate of the unla-
beled vector of probabilities of the true distribution and then
assign probabilities to the observed elements informed by
this recovered vector of probabilities—deviates fundamen-
tally from this previous line of work. This previous work at-
tempts to accurately estimate the total probability mass cor-
responding to the set of domain elements observed i times,
for each i. Even if one knows these quantities exactly, such
knowledge does not translate into an optimal learning algo-
rithm, and could result in an `1 error that is a factor of two
larger than that of our approach. The following rephrasing
of Example 4 from above illustrates this point:

Example 5. Consider n independent draws from a dis-
tribution in which 90% of the domain elements occur with
probability 10/n, and the remaining 10% occur with proba-
bility 11/n. All variants of the Good-Turing frequency esti-
mation scheme would end up, at best, assigning probability
10.1/n to most of the domain elements, incurring an `1 er-
ror of roughly 0.2. This is because, for elements seen roughly
10 times, the scheme would first calculate that the average
mass of such elements is 10.1/n, and then assign this proba-
bility to all such elements. Our scheme, on the other hand,
would realize that approximately 90% of such elements have
probability 10/n, and 10% have probability 11/n, but then
would assign the probability minimizing the expected error—
namely, in this case, our algorithm would assign the median
probability, 10/n, to all such elements, incurring an `1 error
of approximately 0.1.

Worst-case vs. Instance Optimal Testing and Learn-
ing. Sparked by the seminal work of Goldreich, Goldwasser
and Ron [21] and that of Batu et al. [7, 6], there has been
a long line of work considering distributional property test-
ing, estimation, and learning questions from a worst case
standpoint—typically parameterized via an upper bound on
the support size of the distribution from which the samples
are drawn (e.g. [8, 31, 5, 24, 10, 30, 36, 33, 32, 12, 34]).

The desire to go beyond this type of worst-case analy-
sis and develop algorithms which provably perform better
on “easy” distributions has led to two different veins of fur-
ther work. One vein considers different common types of
structure that a distribution might possess—such as mono-
tonicity, unimodality, skinny tails, etc., and how such struc-
ture can be leveraged to yield improved algorithms (e.g. [14,
9, 15, 11]). While this direction is still within the frame-
work of worst-case analysis, the emphasis is on developing
a more nuanced understanding of why “easy” instances are
easy, leading to sophisticated algorithms with significantly

better performance when the underlying distribution is as-
sumed to be monotonic, unimodal, etc. (We emphasize that
assumptions like “monotonicity”, that a distribution on la-
bels 1 . . . n has probabilities that are a monotonic function
of its labels, fall outside the scope of “knowing the unlabelled
probabilities”against which we benchmark the algorithms of
the current paper: monotonicity requires comparing labelled
probabilities, relative to their labels. Thus our results are
not directly comparable to this line of work.)

The current paper lies in a different vein of very recent
work going beyond worst-case analysis: the aim is to develop
“instance–optimal” algorithms that are capable of exploiting
whatever structure is present in the instance, instead of a
priori designing the algorithm to take advantage of particu-
lar foreseen structure.For the problem of identity testing—
given the explicit description of p, deciding whether a set of
samples was drawn from p versus some distribution with `1
distance at least ε from p—recent work gave an algorithm
and an explicit function of p and ε that represents the precise
sample complexity of this task, for each distribution p [35].
In a similar spirit, with the dual goals of developing optimal
algorithms as well as understanding the fundamental limits
of when such instance–optimality is not possible, Acharya et
al. have a line of work from the perspective of competitive
analysis [1, 2, 3, 4]. Broadly, this work explores the following
question: to what extent can an algorithm perform as well
as if it knew, a priori, the structure of the problem instance
on which it was run? For example, the work [2] considers
the two-distribution identity testing question: given samples
drawn from two unknown distributions, p and q, how many
samples are required to distinguish the case that p = q from
||p− q||1 ≥ ε? They show that if np,q is the number of sam-
ples required by an algorithm that knows, ahead of time, the
unlabeled vector of probabilities of p and q, then the sam-

ple complexity is bounded by n
3/2
p,q , and that, in general, a

polynomial blowup is necessary—there exists p, q for which

no algorithm can perform this task using fewer than n
7/6
p,q

samples.

Relation to [32, 34]. The papers [32, 34] were concerned
with developing estimators for entropy, support size, etc.—
properties that depend only on the unlabeled vector of prob-
abilities of a distribution. The goal in those papers was to
give tight worst-case bounds on these estimation tasks in
terms of a given upper bound on the support size of the
distribution in question. In contrast, this work considers
the question of learning probabilities for each labeled do-
main element, and considers the more ambitious and prac-
tically relevant goal of “instance-optimality”. This present
paper has two technical components corresponding to the
two stages of our algorithm: the first component is recover-
ing an approximation to the unlabeled vector of probabili-
ties, and the second part leverages the recovered unlabeled
vector of probabilities to output a labeled vector. While the
second part is novel, the majority of the technical machinery
that we employ for the first part is based on algorithms and
techniques developed in [32, 34], though analyzed here in a
more nuanced and general way (a main tool from these works
is a Chebyshev polynomial earthmover scheme, which was
also repurposed for a rather different end in [33]; the main
improvement in the analysis is that our results no longer
require any bound on the support size of the distribution,
and the results no longer degrade with increasing support
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size). We are surprised and excited that these techniques,
originally developed for establishing worst-case optimal al-
gorithms for property estimation can be fruitfully extended
to yield tight instance-optimal results for such a fundamen-
tal and classic learning question.

1.3 Definitions
We refer to the unlabeled vector of probabilities of a dis-

tribution as the histogram of the distribution. This is simply
the histogram, in the usual sense of the word, of the vector
of probabilities of the domain elements. We give a formal
definition:

Definition 1. The histogram of a distribution p, with
a finite or countably infinite support, is a mapping hp :
(0, 1] → N ∪ {0}, where hp(x) is equal to the number of
domain elements that occur in distribution p with probabil-
ity x. Formally, hp(x) = |{α : p(α) = x}|, where p(α) is the
probability mass that distribution p assigns to domain ele-
ment α. We will also allow for “generalized histograms” in
which hp does not necessarily take integral values.

In analogy with the histogram of a distribution, it will
be convenient to have an unlabeled representation of the
set of samples. We define the fingerprint of a set of samples,
which essentially removes all the label-information. We note
that in some of the literature, the fingerprint is alternately
termed the pattern, histogram, histogram of the histogram or
collision statistics of the samples.

Definition 2. Given samples X = (x1, . . . , xn), the as-
sociated fingerprint, F = (F1,F2, . . .), is the “histogram of
the histogram” of the sample. Formally, F is the vector
whose ith component, Fi, is the number of elements in the
domain that occur exactly i times in X.

The following earthmover metric will be useful for com-
paring histograms. This metric is similar to that leveraged
in [32], but allows for discrepancies in sufficiently small prob-
abilities to be suppressed. This turns out to be the “right”
metric for establishing our learning result, as well as our
result for the accurate estimation of the expected number
of distinct elements that will be observed for larger sample
sizes (Proposition 1). In both of these settings, we do not
need to worry about accurately estimating extremely small
probabilities, as long as we can accurately estimate the total
aggregate probability mass comprised of such elements.

Definition 3. For two distributions p1, p2 with respec-
tive histograms h1, h2, and a real number τ ∈ [0, 1], we define
the τ -truncated relative earthmover distance between them,
Rτ (p1, p2) := Rτ (h1, h2), as the minimum over all schemes
of moving the probability mass in the first histogram to yield
the second histogram, where the cost per unit mass of mov-
ing from probability x to probability y is | log max(x, τ) −
log max(y, τ)|.

The following fact, whose proof is contained in Appendix B,
relates the τ -truncated relative earthmover distance between
two distributions, p1, p2, to an analogous but weaker state-
ment about the `1 distance between p1 and a distribution
obtained from p2 by choosing an optimal relabeling of the
support:

Fact 1. Given two distributions p1, p2 satisfying

Rτ (p1, p2) ≤ ε,

there exists a relabeling π of the support of p2 such that∑
i

|max(p1(i), τ)−max(p2(π(i)), τ)| ≤ 2ε.

The Poisson distribution will also feature prominently in
our algorithms and analysis:

Definition 4. For λ ≥ 0, we define Poi(λ) to be the
Poisson distribution of parameter λ, where the probability of

drawing j ← Poi(λ) equals poi(λ, j) = e−λλj

j!
.

2. RECOVERING THE HISTOGRAM
This section adapts the techniques of [32, 34] to accu-

rately estimate the histogram of the distribution in a form
that will be useful for Algorithm 2, our ultimate instance-
optimal algorithm for learning the distribution, presented
and analyzed in Section 3.

The first phase of our algorithm, the step in which we
recover an accurate approximation of the histogram of the
distribution from which the samples were drawn, consists of
solving an intuitive linear program. The variables of the lin-
ear program represent the histogram entries h(x1), h(x2), . . .
corresponding to a fine discretization of the set of probability
values 0 < x1 < x2 < . . . < 1. The constraints of the linear
program represent the fact that h corresponds to the his-
togram of a distribution, namely all the probabilities sum
to 1, and the histogram entries are non-negative. Finally,
the objective value of the linear program attempts to ensure
that the histogram h output by the linear program will have
the property that, if the samples had been drawn from a dis-
tribution with histogram h, the expected number of domain
elements observed once, twice, etc., would closely match the
corresponding actual statistics of the sample. Namely, the
objective function tries to ensure that the expected finger-
print of the histogram returned by the linear program is
close to the actual fingerprint of the samples.

One minor subtlety is that we will only solve this linear
program for the portion of the histogram corresponding to
domain elements that are not seen too many times. For
elements seen very frequently (at least nα times for some
appropriately chosen absolute constant α > 0) their empiri-
cal probabilities are likely quite accurate, and we simply use
these probabilities. A similar approach was fruitfully lever-
aged in [32, 34] with the goal of creating worst-case optimal
estimators for entropy, and other distributional properties of
interest, and a related heuristic was proposed in the 1970’s
by Efron and Thisted [17], also with the goal of estimat-
ing properties of the underlying distribution. As discussed
in [34], the fact that our linear program is only responsible
for a small portion of the histogram means that the linear
program will be small, and in practice can be solved in time
sublinear in the number of samples, and thus constitutes
only a small fraction of the total (linear) time needed to
process n samples.

We state the algorithm and its analysis in terms of two
positive constants, B, C, which can be defined arbitrarily pro-
vided the following inequalities hold: 0.1 > B > C > B

2
> 0.
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Algorithm 1.

Input: Fingerprint F obtained from n-samples.
Output: Histogram hLP .

• Define the set X := { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

nB+nC

n
}.

• For each x ∈ X, define the associated variable vx, and
solve the LP:

Minimize

nB∑
i=1

∣∣∣∣∣∣Fi −
∑
x∈X

poi(nx, i) · vx

∣∣∣∣∣∣
Subject to:

·
∑
x∈X x · vx +

∑n
i>nB+2nC

i
n
Fi = 1

(total prob. mass = 1)

· ∀x ∈ X, vx ≥ 0

(histogram entries are non-negative)

• Let hLP be the histogram formed by setting hLP (xi) =
vxi for all i, where (vx) is the solution to the linear

program, and then for each integer i > nB + 2nC , incre-
menting hLP ( i

n
) by Fi.

The following theorem quantifies the performance of the
above algorithm:

Theorem 2. There exists an absolute constant c such
that for sufficiently large n and any w ∈ [1, logn], given
n independent draws from a distribution p with histogram h,

with probability 1 − e−n
Ω(1)

the generalized histogram hLP
returned by Algorithm 1 satisfies

R w
n logn

(h, hLP ) ≤ c√
w
.

This theorem is a stronger and more refined version of
the results in [32], in that these results no longer require any
bound on the support size of the distribution, and the results
no longer degrade with increasing support size. Instead, we
express our results in terms of a lower bound, τ = w

n logn
,on

the probabilities that we are concerned with accurately re-
constructing. As in [32], this theorem also implies the fol-
lowing generic framework for estimating “symmetric” prop-
erties of distributions: return the value of the property on
the distribution output by Algorithm 1. In many cases, this
procedure will emulate the performance of the naive “plu-
gin” estimator applied to n logn samples, thus providing a
generic way to effectively “amplify” the sample size by a
factor of logn. (See also [25] for another perspective on
emulating n logn samples using only n.)

We interpret Theorem 2 as saying that Algorithm 1, when
run on n independent draws from a distribution, will accu-
rately reconstruct the histogram, in the relative earthmover
sense, all the way down to probability 1

n logn
(significantly

below the 1/n threshold where the empirical distribution be-
comes ineffective). One corollary of independent interest is
that this earthmover bound implies that we can accurately
extrapolate the number of unique elements that will be seen
if we run a new, larger experiment, of size up to n logn.
This ability to extrapolate out an extra logn factor is per-
haps unsurprising given the punchline of our earlier work,

that for many distributional properties, one can construct
estimators that can perform as well as the naive estimator
would when given an extra logn factor of samples [32, 34].

Given a histogram h, for each element of probability x, the
probability that it will be seen (at least once) in a sample
of size k equals 1 − (1 − x)k; thus, the expected number of
unique elements seen in a sample of size k for a distribution
with histogram h equals

∑
x:h(x)6=0(1− (1− x)k) ·h(x). The

following lemma, whose proof is given in Appendix C, shows
that this quantity is Lipschitz continuous with respect to
truncated relative earthmover distance.

Lemma 1. Given two (possibly generalized) histograms g
and h, a number of samples k, and a threshold τ ∈ (0, 1],∣∣∣∣∣∣
∑

x:g(x)6=0

(1− (1− x)k) · g(x)−
∑

x:h(x)6=0

(1− (1− x)k) · h(x)

∣∣∣∣∣∣
≤ (0.3(k − 1) + 1)Rτ (g, h) + τ

k

2
.

The above lemma together with Theorem 2 yields Propo-
sition 1, which is tight, in the sense that one cannot expect
meaningful extrapolation beyond sample sizes of n logn, as
shown by the lower bounds in [32].2

Towards our goal of devising an optimal learning algo-
rithm, the following corollary of Theorem 2 formalizes the
sense that the quality of the histogram output by Algo-
rithm 1 will be sufficient to achieve our optimal learning
result, provided that the second phase of our algorithm, de-
scribed in Section 3, is able to successful label the histogram.

Corollary 1. There exists an algorithm such that, for
any function f(n) = ωn(1) that goes to infinity as n gets
large (e.g. f(n) = log logn), there is a function on(1) that
goes to zero as n gets large, such that given n samples drawn
independently from any distribution p, the algorithm outputs

an unlabeled vector, q, such that, with probability 1−e−n
Ω(1)

,
there exists a labeling π(q) of the vector q such that∑
i

∣∣∣∣max

(
p(x),

f(n)

n logn

)
−max

(
π(q)(x),

f(n)

n logn

)∣∣∣∣ < on(1),

where p(x) denotes the true probability of domain element x
in distribution p.

2Namely, for some constant c, there exist two families of
distribution, D1 and D2 such that the distributions in D1

are close to uniform distributions on cn logn elements, and
the distributions in D2 are close to uniform distributions
over 2cn logn elements, yet given n samples drawn from ei-
ther a distribution in D1 selected uniformly at random or
from a distribution in D2 selected uniformly at random, it is
information theoretically impossible to decide whether the
distribution from which the samples were drawn belonged
to D1 versus D2 (with probability of success greater than
some fixed constant less than 1). The indistinguishability
of the families of distributions D1 and D2 demonstrates
the impossibility of extrapolating beyond sample sizes of
O(n logn), since, with 2cn logn samples, the number of dis-
tinct elements observed will—analogously to the correspond-
ing uniform distributions—be either ≈ (1 − 1

e2
)cn logn ≈

0.9cn logn for D1 or ≈ (1 − 1
e
)2cn logn ≈ 1.3cn logn from

D2, which are significantly different from each other.
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This corollary is not immediate: the histogram returned
by the algorithm might be non-integral, however in the full
version, we provide a simple algorithm that rounds a gener-
alized histogram to an (integral) histogram, while changing
it very little in relative earthmover distance R0(·, ·). This
rounding, together with Fact 1, obtains this corollary.

The utility of the above corollary lies in the following ob-
servation: for any function g(n) = o(1/n), the domain el-
ements x that both occur in the n samples and have true
probability p(x) < g(n), can account for at most o(1) prob-
ability mass, in aggregate. In other words, while the true
distribution might have a constant amount, c, of probability
mass consisting of domain elements that occur with proba-
bility o(1/n), we would observe at most a o(1) fraction of
such domain elements in the n samples. Hence, even an
optimal scheme that knows the true probabilities would be
unable to achieve an `1 error less than c − o(1) because it
does not know the labels of the elements that have not been
observed. As we show in the following section, our algorithm
will achieve an `1 error of roughly c.

3. DISAMBIGUATING THE HISTOGRAM
In this section we present our instance-optimal algorithm

for learning a distribution from n samples, making use of Al-
gorithm 1 of Section 2 to first accurately infer the histogram
of the distribution (in the sense of Corollary 1). As a mo-
tivating intuition for the second phase of our algorithm—
the phase in which we assign probabilities to the observed
elements—consider the behavior of an optimal algorithm
that not only knows the true histogram h of the distribu-
tion, but also knows for each positive integer j the entire
multiset of probabilities of elements that appear exactly j
times in the n samples. Since the algorithm has no basis to
distinguish between the different elements that each appear
j times in the samples, the algorithm may as well assign a
single probability mj to all the items that appear j times in
the samples. The optimal mj in this setting is easily seen
to be the median of the multiset of probabilities of items
appearing j times, as the median is the estimate that mini-
mizes the total (`1) error of the probabilities.

Our algorithm aims to emulate this idealized optimal al-
gorithm. Of course, we must do this using only an estimate
of the histogram, and computing medians based on the like-
lihoods that elements of probability x will be seen j times
in the sample, as opposed to actual knowledge of the multi-
set of probabilities of the elements observed j times (which
was an unreasonably strong assumption, that we made in
the previous paragraph because it let us argue about the
behavior of the optimal algorithm in that case).

Because our algorithm needs to work in terms of a his-
togram estimate u, bounded only by the guarantees of Corol-
lary 1, we add an additional “regularization” step that was
not needed in the idealized medians setting described above.
We “fatten” the histogram u to a new histogram ū by adding
a small amount of probability mass across the range [ 1

n
, 1
n

log2 n],
which acts to mollify the effect on the medians of any small
errors in the histogram estimate.

Given this “fattened” approximate histogram, we then ap-
ply the “medians” intuition: we compute, for each integer
j, an appropriate probability with which to label those el-
ements occurring j times in the sample. These estimates
are computed via the following thought experiment: imag-
ining ū to be the true histogram, if we take n samples from

the corresponding distribution, in expectation, what is the
median of the (multiset) of probabilities of those elements
seen exactly j times in the sample? We denote this “ex-
pected median” by mū,j,n, and our algorithm assigns this
probability to each element seen j times in the sample, for
j < log2 n, and assigns the empirical probability j

n
for larger

j. We formalize this process with the following definition for
“Poisson-weighted medians”:

Definition 5. Given a histogram h, let Sh be the mul-
tiset of probabilities of domain elements—that is, for each
probability x for which h(x) is some positive integer i, add i
copies of x to S. Given a number of samples n, and an in-
dex j, consider weighting each element x ∈ Sh by poi(nx, j).
Define mh,j,n to be the median of this weighted multiset.

Explicitly, the median of a weighted set of real numbers
is a number m such that at most half the weight lies on
numbers greater than m, and at most half lies on numbers
less thanm. Taking advantage of the medians defined above,
our learning algorithm follows:

Algorithm 2.

Input: n samples from a distribution h.
Output: An assignment of a probability to each nonzero en-
try of h.

• Run Algorithm 1 to return a histogram u.

• Modify u to create ū by, for each j ≤ log2 n adding
n

j log4 n
elements of probability j

n
and removing corre-

sponding mass arbitrarily from the rest of the distribu-
tion.

• Then to each fingerprint entry j < log2 n, assign those
domain elements probability mū,j,n, (as defined in Defi-

nition 5) and to each higher fingerprint entry j ≥ log2 n
assign those domain elements their empirical probability
j
n

.

Theorem 1 There is a function err(n) that goes to zero
as n gets large, such that Algorithm 2, when given as in-
put n independent draws from any distribution p of discrete
support, outputs a labeled vector q, such that

E [||p− q||1] ≤ opt(p, n) + err(n),

where opt(p, n) is the minimum expected error that any al-
gorithm could achieve on the following learning task: given
p, and given n samples drawn independently from a distri-
bution that is identical to p up to an arbitrary relabeling of
the domain elements, learn the distribution.

The core of the proof of Theorem 1 relies on constructing
an estimate, devj,n(A,mB,j,n), that captures the expected
contribution to the `1 error due to elements that occur ex-
actly j times, given that the true distribution we are try-
ing to reconstruct has histogram A, and our reconstruction
is based on the medians mB,j,n derived from a (possibly
different) histogram B. The proof then has two main com-
ponents. First we show that devj,n(h,mh,j,n) approximately
captures the performance of the optimal algorithm with very
high probability, namely that using the true histogram h to
choose medians mh,j,n lets us estimate the performance of
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the best possible algorithm. This step is slightly subtle, and
implies that, given h, an algorithm to compute the proba-
bility assigned to an element that occurs j times can glean
at most o(1) added benefit by using 1) j, 2) h and 3) the
entire set of samples, rather than just 1) j and 2) h.

Next, we show that the clean functional form of dev(·, ·)
implies that this performance estimate varies slowly with
respect to changes in the histogram used to choose the me-
dian that is input to the second term, and thus that with
only negligible performance loss we may reconstruct distri-
butions using medians derived from an estimate u of the
true histogram (instead of the inaccessible true histogram
itself), thus allowing us to analyze the actual performance
of Algorithm 2.

Beyond these two core steps, the analysis of Algorithm 2
is somewhat delicate—because our algorithm is instance-
optimal to o(1) error, it must reuse samples both for the
Algorithm 1 histogram reconstruction and for the final la-
beling step, and we must carefully separate the probabilistic
portion of the analysis via a clean set of assumptions which
1) will hold with near certainty over the sampling process,
and 2) are sufficient to guarantee the performance of both
stages of our algorithm. The complete proof is contained in
Appendix A.
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APPENDIX
In this appendix we provide complete proofs for the results
of this paper, with the exception of the proof of Theorem 2—
the theorem characterizing the performance of Algorithm 1
that recovers an accurate estimate of the histogram. This
proof leverages the techniques developed in [32, 34], in par-
ticular a Chebyshev polynomial earthmover scheme. This
proof is omitted from this extended abstract due to the space
constraints of the conference proceedings, and is given in the
full version, available at http://arxiv.org/abs/1504.05321.

A. PROOF OF THEOREM 1
In this section we give a self-contained proof of the cor-

rectness of Algorithm 2, establishing Theorem 1.

A.1 Separating the Probabilistic Portion of the
Analysis

Our analysis is somewhat delicate because we reuse the
same samples both to estimate the histogram h, and then to
label the domain elements given an approximate histogram.
For this reason, we will very carefully separate out the prob-
abilistic portion of the sampling process, identifying a list of

convenient properties which happen with very high prob-
ability in the sampling process, and then deterministically
analyze the case when these properties hold, which we will
refer to as a “faithful” set S of samples from the distribution.

We first describe a simple discretization of histograms h,
dividing the domain into buckets which will simplify fur-
ther analysis, and is a crucial component of the definition of
“faithful”.

Definition 6. Given a histogram h, and a number of
samples n, define the kth bucket of h to consist of those
histogram entries with probabilities in the half-open inter-
val ( k

n log2 n
, k+1
n log2 n

]. Letting hk be h restricted to its kth

bucket, define Bpoi(j, k) =
∑
x:hk(x)6=0 h(x)poi(nx, j) to be

the expected number of elements from bucket k that are seen
exactly j times, if Poi(n) samples are taken. Given a set of
samples S, let BS(j, k) be the number of elements in bucket
k of h that are seen exactly j times in the samples S, where
in both cases h and n are implicit in the notation.

Given this notion of “buckets”, we define faithful to mean
1) each domain element is seen roughly the number of times
we would expect to see it, and 2) for each pair (j, k), the
number of domain elements from bucket k that are seen
exactly j times is very close to its expectation (where we
compute expectations under a Poisson distribution of sam-
ples, because “Poissonization” will simplify subsequent anal-
ysis). The first condition of “faithful” gives weak control on
which fingerprint entry each domain element will contribute
to, while the second condition gives much stronger control
over the aggregate contribution to fingerprint entries by all
domain elements within a certain probability “bucket”.

Definition 7. Given a histogram h and a number of sam-
ples n, a set of n samples, S, is called faithful if the following
two conditions are satisfied:

1. Each item of probability x appears in the samples a
number of times j satisfying

|nx− j| < max{log1.5 n,

√
nx log1.5 n}.

2. For each j < log2 n and k, we have

|Bpoi(j, k)−BS(j, k)| < n0.6.

This notion of“faithful”holds with near certainty, as shown
in the following lemma, allowing us to assume (when speci-
fied) in the results in the rest of this section that our learning
algorithm receives a faithful set of samples.

Lemma 2. For any histogram h and number of samples n,
with probability 1−n−ω(1), a set of n samples drawn from h
will be faithful.

Proof. Since the number of times an item of probabil-
ity x shows up in n samples is the binomial distribution
Bin(n, x), the first condition of “faithful”—essentially that

this random variable will be within log3/4 n standard devia-
tions of its mean— follows with probability 1−n−ω(1) from
standard Chernoff/Hoeffding bounds.

For the second condition, since Poi(n) has probability
Θ(1/

√
n) of equaling n, we consider the related process where

Poi(n) samples are drawn. The number of times each do-
main element x is seen is now distributed as Poi(nx), inde-
pendent of each other domain element. Thus the number of
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elements from bucket k seen exactly j times is the sum of in-
dependent Bernoulli random variables, one for each domain
element in bucket k. The expected number of such elements
is Bpoi(j, k) by definition. Since Bpoi(j, k) ≤ n by defini-
tion, we have that the variance of this random variable is
also at most n, and thus Chernoff/Hoeffding bounds imply
that the probability that it deviates from its expectation by
more than n0.6 is at most exp(−n0.1). Thus the probability
of such a deviation is at most a Θ(

√
n) factor higher when

taking exactly n samples than when taking Poi(n) samples;
taking a union bound over all j and k yields the desired
result.

A.2 An Estimate of the Optimal Error
We now introduce the key definition of dev(·, ·), which un-

derpins our analysis of the error of estimation algorithms.
The definition of dev(·, ·) captures the following process:
Suppose we have a probability value mj , and will assign this
probability value to every domain element that occurs ex-
actly j times in the samples. We estimate the expected error
of this reconstruction, in terms of the probability that each
domain element shows up exactly j times. While the below
definition, stated in terms of a Poisson process, is neither
clearly related to the optimal error opt(h, n), nor the ac-
tual error of any specific algorithm, it has particularly clean
properties which will help us show that it can be related to
both opt(h, n) (in this subsection) as well as the expected
error achieved by Algorithm 2 (shown in Section A.3).

Definition 8. Given a histogram h, a real number m, a
number of samples n, and a nonnegative integer j, define
devj,n(h,m) =

∑
x:h(x)6=0 |x−m|h(x)poi(nx, j).

Intuitively, devj,n(h,m) describes the expectation—over
taking Poi(n) samples from h—of the sum of the deviations
between m and each probability x of a element seen j times
among the samples. Namely, devj,n(h,m) describes to what
degree m is a good probability to which we can ascribe all
domain elements seen j times, among ≈ n samples from h.

This definition provides crucial motivation for how Defi-
nition 5 sets the medians mh,j,n used in Algorithm 2, since
mh,j,n is the value of m that minimizes the previous defini-
tion, devj,n(h,m), since both are defined via the same Pois-
son weights poi(nx, j). (The median of a—possibly weighted—
set of numbers is the location m that minimizes the total—
possibly weighted—distance from the set to m.)

We now show the key result of this section, that the defi-
nition of “faithful” induces precise guarantees on the spread
of probabilities of those elements seen j times. Subsequent
lemmas will relate this to the performance of both the opti-
mal algorithm and to our own Algorithm 2.

Lemma 3. Given a histogram h, let S be the multiset of
probabilities of a faithful set of samples of size n. For each
index j < log2 n, consider those domain elements that occur
exactly j times in the samples and let Sj be the multiset
of probabilities of those domain elements. Let σj be the sum
over Sj of each element’s distance from the median (counting
multiplicity) of Sj. Then

∑
j<log2 n |σj−devj,n(h,mh,j,n)| =

O(log−2 n).

Proof. Recall that σ computes the total distance of the
(unweighted) multiset Sj from its median, while devj,n(h,mh,j,n)
is an analogous (weighted) quantity for the true histogram,

with each entry x having multiplicity h(x) and weight poi(nx, j).
In the first case, sampling means that each element of proba-
bility x either shows up exactly j times (with some binomial
probability) and is counted with weight 1, or does not show
up j times and is not counted; in the second case, instead of
sampling, each entry x from the histogram is counted with
weight poi(nx, j) < 1, capturing roughly the average effect of
sampling (except with Poisson instead of binomial weight).
By the definition of “faithful”, the total weight coming from
each bucket k in both cases is within n0.6 of each other
(since j < log2 n). We consider only buckets k ≤ 2 log4 n,
corresponding to probabilities less than 2

n
log2 n, since the

first condition of “faithful” means that no higher probability
elements will be seen j < log2 n times.

Consider transforming one weighted multiset into the other
(where elements of Sj are interpreted as having weight 1
each), maintaining a bound on how much the total distance
from the median changes. We make crucial use of the fact
that the “total distance to the median” is robust to small
changes in the weighted multiset, since the median is the lo-
cation that minimizes this total distance. Moving α weight
by a distance of β can increase the total (weighted) distance
to the median by at most α·β since this is how much the total
weighted distance to the old median changes, and the new
median must be at least as good; conversely, such a move
cannot decrease the total distance by more than α · β as
the inverse move would violate the previous bound. Adding
α weight to the distribution at distance β from the current
median similarly cannot decrease the total distance, but also
cannot increase the total distance by more than α · β, with
the corresponding statements holding for removing α weight.

Thus, transforming all the Sj into the weighted multi-
set where each entry x has multiplicity h(x) and weight
poi(nx, j) requires two types of transformations: 1) moving
up to n samples within their buckets; 2) adding or removing
up to n0.6 weight from buckets for various combinations of
j and k. Since buckets have width 1/(n log2 n), transfor-
mations of the first type change the total distance to the
median by at most log−2 n; since j < log2 n and all buckets
above probability 2

n
log2 n are empty, transformations of the

second type change the total distance by at most the prod-
uct of the weight adjustment n0.6, the number of j, k pairs
2 log6 n, and size of the probability range under considera-
tion which is 2

n
log2 n, yielding a bound of 4

n0.4 log8 n. Thus

in total the change is O(log−2 n) = o(1) as desired.

The above lemma essentially shows that devj,n(h,mh,j,n)
captures how well we could hypothetically estimate the prob-
abilities of all the domain elements seen j times, under the
unrealistically optimistic assumption that we know the (un-
labeled) multiset of probabilities of elements seen j times
and estimate all these probabilities optimally by their me-
dian. Before showing how our algorithm can perform almost
this well based on only the samples, we first formalize this
reasoning.

Definition 9. We call a distribution learner “simple” if
all the domain elements seen exactly j times in the samples
get assigned the same probability.

Given n samples from a distribution p, with p(j) being those
domain elements that occurred exactly j times in the sam-
ple, we note that the probability of obtaining these samples
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is invariant to any permutation of p(j). Thus if a hypo-
thetical learner L assigns different probabilities to different
elements seen j times in the sample, then its average perfor-
mance over a random permutation of the domain elements
can only improve if we simplify L, by having it instead assign
to all the elements seen j times the median of the multiset
that it was originally assigning.

For this reason, when we are discussing an optimal distri-
bution learner, we will henceforth assume it is simple.

Lemma 4. Given a histogram h, let S be the multiset of
probabilities of a faithful set of samples of size n. Given an
index j < log2 n, consider those domain elements that occur
exactly j times in the sample; let Sj be the multiset of prob-
abilities of those domain elements. Let σj be the sum over
Sj of each element’s distance from the median of Sj (count-
ing multiplicity). Then any simple learner, when given the
sample, must have error at least σj on the domain elements
that appear j times in the sample.

Proof. The median of Sj is the best possible estimate
any simple learner can yield—even given the true distribution—
so the error of this estimate bounds the performance of a
simple learner.

Combining this with Lemma 3 immediately yields:

Corollary 2. For any distribution h, the total error of
any simple learning algorithm, given n faithful samples from

h, is at least
(∑

j<log2 n devj,n(h,mh,j,n)
)
−O(log−2 n). Fur-

ther, for any algorithm—simple or not—if we average its
performance over all relabelings of the domain of h and the
corresponding relabeled samples, it will have expected error
bounded by the same expression.

A.3 The Error Estimate is Lipschitz with re-
spect to Mis-estimating the Distribution

We now relate the error bound of Corollary 2 to the per-
formance of our algorithm, via two steps. The bound in
the corollary is in terms of mh,j,n, the medians computed in
terms of the true histogram h which is unknown to the al-
gorithm; instead the algorithm works with an estimate ū of
the true histogram. The next lemma shows that estimating
in terms of ū is almost as good as using h.

Fact 2. For any distribution h, index j ≥ 1, and real pa-
rameter t ≥ 1, weighting each domain element x by poi(nx, j),
the total weight on domain elements that are at least t stan-
dard deviations away from j

n
—namely, for which |nx− j| ≥

t
√
j is at most n · exp(−Ω(t)).

Lemma 5. Given a number of samples n, a histogram h
and a second histogram ū that is 1) close to h in the sense of
Corollary 1, in that there exists distributions p, q correspond-
ing to h, ū respectively for which

∑
i |max(p(i), 1

n
log−0.25 n)−

max(q(i), 1
n

log−0.25 n)| ≤ log−0.25 n, and 2) the histogram ū

is “fattened” in the sense that for each j ≤ log2 n there are
at least n

j log4 n
elements of probability j

n
. Then∑

j<log2 n

devj,n(h,mū,j,n) ≤ o(1) +
∑

j<log2 n

devj,n(h,mh,j,n).

Since for each j, as noted earlier, mh,j,n is the quantity
which minimizes devj,n(h,m), each term devj,n(h, nū,j,n) on

the left hand side is greater than or equal to the correspond-
ing devj,n(h, nh,j,n) on the right hand side, so the lemma
implies that the left and right hand sides of the expression
in the lemma, beyond having related sums, are in fact term-
by-term close to each other.

The proof relies on first comparing mh,j and mū,j to j
n

,
and then showing that devj(h,m) is Lipshitz with respect
to changes in h of the type described by the guarantees of
Corollary 1.

Proof of Lemma 5. We drop the “, n” subscripts here
for notational convenience.

Recall that the quantities mh,j and mū,j are medians com-
puted after weighting by a Poisson function centered at j,
and thus we would expect these medians to be close to j

n
.

We first show that the“fattening”condition makesmū,j well-
behaved (namely, close to j

n
), and then show, given this, that

the lemma works both in the case that mh,j is far from j
n

,
and then for the case where it is close.

By condition 2 of the lemma, the “fattening” assumption,
for any index j < log2 n, we have

∑
x:ū(x)6=0 h(x)poi(nx, j) =

1/ logO(1) n. Thus, by Fact 2, the median mū,j must sat-

isfy |n · mū,j − j| <
√
j logo(1) n, since the fraction of the

Poisson-weighted distribution that is at locations more than
1
n

√
j logΘ(1) n distance from j

n
is (much) less than 1/2.

Given the above bound on mū,j , we now turn to mh,j .
Consider the case |n · mh,j − j| >

√
j log0.1 n. By Fact 2,

weighting each domain element x by poi(nx, j), the total
weight on the far side of the median mh,j from j

n
, is at

most n · exp(−Ω(log0.1 n)). Since (by definition of “me-
dian”) half the weight is on each side of the median, the
total weight

∑
x:h(x)6=0 h(x)poi(nx, j) must also be bounded

by n · exp(−Ω(log0.1 n)). Recall the definition of the left
hand side of the inequality of the lemma, devj(h,mū,j) =∑
x:h(x)6=0 |x−mū,j |h(x)poi(nx, j). Thus for the portion of

this sum where x < 2
n

log2 n, since from the previous para-

graph mū,j is also bounded by 2
n

log2 n for large enough n,
we can bound

∑
x< 2

n
log2 n:h(x)6=0 |x−mū,j |h(x)poi(nx, j) by

the product n·exp(−Ω(log0.1 n))· 2
n

log2 n = exp(−Ω(log0.1 n)).

For those x ≥ 2
n

log2 n, since j < 1
n

log2 n, we have the tail

bounds poi(nx, j) = n−ω(1), implying the total for such x is
also bounded by exp(−Ω(log0.1 n)), which is our final bound
for this case—summing these bounds over all j < log2 n
yields the desired bound

∑
j<log2 n devj(h,mū,j) ≤ o(1),

where the sum is over those j for which this case applies,
|n ·mh,j − j| >

√
j log0.1 n.

Thus it remains to prove the claim when both mh,j and
mū,j are close to j

n
. To analyze this case, we show that

devj(h,m) is Lipschitz with respect to the closeness in h and
ū guaranteed by condition 1 of the lemma, provided |n ·m−
j| ≤

√
j log0.1 n. The guarantee on h and ū means that one

can transform one distribution into the other by two kinds of
transformations: 1) changing the distributions by log−0.25 n
in the `1 sense, and 2) arbitrary mass-preserving transfor-
mation of elements of probability less than 1

n
log−0.25 n. We

thus bound the change in devj(h,m) under both types of
transformations.

To analyze `1 modifications, consider an arbitrary prob-
ability x, and consider the derivative of devj(h,m) as we
take an element of probability x and change x. Recalling
the definition devj(h,m) =

∑
x:h(x)6=0 |x−m|h(x)poi(nx, j),

we see that this derivative equals d
dx
|x−m|poi(nx, j), which
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is bounded (by the product rule and triangle inequality)
as poi(nx, j) + |x − m| d

dx
poi(nx, j), where d

dx
poi(nx, j) =

n ·poi(nx, j−1) ·(1− nx
j

). Rewriting m as mj to indicate its
dependence on j, we want to bound the sum of this deriva-
tive over j < log2 n, since the exact dependence for each
individual j is much harder to talk about than the overall
dependence. We have

∑
j poi(nx, j)+|x−mj |n·poi(nx, j−1)·

(1− nx
j

), where
∑
j poi(nx, j) ≤ 1. To bound the remaining

part of the sum, we first consider the case x < 1
n

, in which

case we bound |x−mj | ≤ 1
n

(1+j+
√
j log0.1 n) and (1−nx

j
) ≤

1, thus yielding the bound
∑
j≥1 |x − mj |n · poi(nx, j −

1) · (1 − nx
j

) ≤
∑
j≥0(2 + j +

√
j + 1 log0.1 n)poi(nx, j) ≤∑

j≥0(2 + j +
√
j + 1 log0.1 n)/j! = O(log0.1 n). For x ≥ 1

n
,

since poi(nx, j − 1) decays exponentially fast for j more
than

√
nx away from nx, we can bound this sum as be-

ing on the order of
√
nx times its maximum value when j

is in this range. In this range we have |x − mj | ≤ |x −
j
n
| + | j

n
− mj | = 1

n
O(
√
nx log0.1 n), and poi(nx, j − 1) =

O( 1√
nx

), and (1− nx
j

) = O(1/
√
nx), yielding a total bound

of O(
√
nx
√
nx 1√

nx
1√
nx

log0.1 n) = O(log0.1 n) as in the pre-

vious case. Thus we conclude that the sum over all j of the
amount devj(h,m) changes with respect to `1 changes in h
is O(log0.1 n).

We next bound the total change to devj(h,m) induced by
the second type of modification, arbitrary mass-preserving
transformations of elements of probability x < 1

n
log−0.25 n.

For j = 1, we bound the components of

devj(h,m) =
∑

x:h(x)6=0

|x−m|h(x)poi(nx, j),

by bounding the two terms in the product: |x−m| ∈ [m−
1
n

log−0.25 n,m+ 1
n

log−0.25 n], and poi(nx, 1) = nx · e−nx ∈
[nx(1− log−0.25 n)2, nx]. Thus for m either mh or mū, since
by the assumption of this case m ≤ 1

n
(1 + log0.1 n), from

the bounds above, the contribution to devj(h,m) from those
x < 1

n
log−0.25 n is within o(1) of mn times the total mass in

the distribution below 1
n

log−0.25 n, showing that arbitrary
modifications of the second type modify dev1(h,m) by o(1).

Analyzing the remaining j ≥ 2 terms, omitting the |x−m|
multiplier for the moment, we have that∑

x< 1
n

log−0.25 n:h(x)6=0

h(x)poi(nx, j) ≤ n(log−0.25 n)j−1.

Because of the bound thatmh,mū are each within 1
n

√
j log0.1 n

of j
n

, we have that |x−m| ≤ 1
n

(log−0.25 n+ j+
√
j log0.1 n).

Thus the change to devj(h,m) from changes of the second
type, summed over all j ≥ 2, is bounded by the sum∑
j≥2

(log−0.25 n)j−1
(

log−0.25 n+ j +
√
j log0.1 n

)
= o(1),

as desired.
Putting the pieces together, the closeness of h and ū im-

plies by the above Lipschitz argument that changing the dis-
tribution between h and ū, under the fixed median mū,j does
not increase dev(·, ·) too much:

∑
j<log2 n devj(h,mū,j) ≤

o(1)+
∑
j<log2 n devj(ū,mū,j). Further, since mū,j minimizes

this last expression, the right hand side can only increase
if we replace devj(ū,mū,j) by devj(ū,mh,j) in this last in-
equality. Finally, a second application of the same Lipschitz

property implies∑
j<log2 n

devj(ū,mh,j) ≤ o(1) +
∑

j<log2 n

devj(h,mh,j).

Combining these three inequalities yields the bound of the
lemma:∑

j<log2 n

devj(h,mū,j) ≤ o(1) +
∑

j<log2 n

devj(h,mh,j).

The following lemma characterizes the effect of“fattening”
in the second step of Algorithm 2, showing that this slight
modification to the histogram keeps the resulting medians
small enough that me may apply the following Lemma 7.

Lemma 6. For sufficiently large n, given a fattened dis-
tribution µ̄, for any j < log2 n, the median mµ̄,j,n is at most
2
n

log2 n.

Proof. Recall that mµ̄,j,n is defined as the median of
the multiset of probabilities of ū after each probability x
has been weighted by poi(xn, j). For x ≥ 2

n
log2 n and j <

log2 n, these weights will each be n−Ω(1) small by Poisson tail
bounds; and because of the fattening, the elements added at
probability j

n
will contribute inverse polylogarithmic weight.

Since the median must have at most half the weight to its
left, the median cannot be as large as our bound 2

n
log2 n,

as desired.

Given the above bound on the size of medians for small
j, the following lemma shows that our dev(·, ·) estimates
accurately capture the performance of these medians on any
faithful set of samples.

Lemma 7. Given a histogram h, a number of samples
n, and for each fingerprint entry j < log2 n a probability
mj <

2
n

log2 n to which we attribute each domain element
that shows up j times in the sample, then for any faithful set
of samples from h, the total error made for all j < log2 n is
within o(1) of

∑
j<log2 n devj,n(h,mj).

Proof. Recalling the “buckets” from Definition 6, con-
sider for arbitrary integer k, those elements of h in bucket k,
which we denote hk—namely, those probabilities of h lying
in the interval ( k

n log2 n
, k+1
n log2 n

], where by the first condition

of “faithful”, none of these probabilities are above 2
n

log2 n
for large enough n. Further, let Sj,k be the multiset of prob-
abilities of those domain elements from bucket k of h that
each get seen exactly j times in the sample. The total er-
ror of our estimate mj on bucket k is thus

∑
x∈Sj,k

|mj −
x|, which since buckets have width 1/(n log2 n), is within
|Sj,k|/(n log2 n) of |Sj,k| · |mj − k/(n log2 n)|, where we have
approximated each x by the left endpoint of the bucket
containing x. By the second condition of “faithful”, Sj,k
is within n0.6 of its expectation, Bpoi(j, k), and since by
assumption mj <

2
n

log2 n, we have that our previous er-

ror bound |Sj,k| · |mj − k/(n log2 n)| is within 2
n0.4 log2 n of

Bpoi(j, k) · |mj − k/(n log2 n)|. We rewrite this final expres-
sion via the definition of Bpoi as∑

x:hk(x)6=0

|m− k/(n log2 n)|h(x)poi(nx, j).
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We compare this final expression to the portion of the devi-
ation devj,n(h,mj) that comes from bucket k, namely∑

x:hk(x)6=0

|mj − x|h(x)poi(nx, j),

where since
∑
x:hk(x)6=0 |mj − x|h(x)poi(nx, j) = Bpoi(j, k)

and x is within 1/(n log2 n) of k/(n log2 n), the difference
between them is clearly bounded by Bpoi(j, k)/(n log2 n).
Using the triangle inequality to add up the three error terms
we have accrued yields that our estimate for the `1 error we
make for elements seen j times from bucket k is accurate to
within

|Sj,k|/(n log2 n) +
2

n0.4
log2 n+Bpoi(j, k)/(n log2 n).

We sum this error bound over all 2 log4 n buckets k and all
indices j < log2 n. The middle term 2

n0.4 log2 n clearly sums
up to o(1) over all j, k pairs. Further, since Sj,k is within
n0.6 of Bpoi(j, k) by the definition of faithful, the sum of the
first term is within o(1) of the sum of the third term and it
remains only to analyze the third term involving Bpoi(j, k).
From its definition,

∑
j,k Bpoi(j, k) is the expected number

of distinct items seen, when making Poi(n) draws from the
distribution, throwing out those elements which violate the
j and k constraints; hence this sum over all j, k pairs is at
most n, bounding the total error of our “dev” estimates by
O(1/ log2 n), as desired.

A.4 Proof of Theorem 1
We now assemble the pieces and prove Theorem 1.

Proof of Theorem 1. Consider the output of Algorithm 1
as run in the first step of Algorithm 2. Corollary 1 out-
lines two cases: with o(1) probability the closeness property
outlined in the proposition fails to hold, and in this case,
Algorithm 2 may output a distribution up to `1 distance 2
from the true distribution; because this is a low-probability
event, this contributes 2 · o(1) = o(1) to the expected error.
Otherwise, u is close to h, and the fattened version ū is sim-
ilarly close, which lets us apply Lemma 5 to conclude that∑
j<log2 n devj,n(h,mū,j,n) ≤ o(1)+

∑
j<log2 n devj,n(h,mh,j,n).

Corollary 2 says that
∑
j<log2 n devj,n(h,mh,j,n) essentially

lowerbounds the optimal error opt(h, n), which we combine
with the previous bound to yield∑

j<log2 n

devj,n(h,mū,j,n) ≤ opt(h, n) + o(1).

Lemma 2 guarantees that the samples will be faithful ex-
cept with o(1) probability, which, as above, means that even
if these unfaithful cases contribute the maximum possible
distance 2 to the `1 error, the expected contribution from
these cases is still o(1), and thus we will assume a faithful set
of samples below. Lemmas 6 and 7 imply that for any faith-
ful sample, the error made by Algorithm 2 on attributing
those elements seen fewer than log2 n times is within o(1)
of
∑
j<log2 n devj,n(h,mū,j,n), and hence at most o(1) worse

than opt(h, n).
Condition 1 of the definition of faithful (Definition 7)

implies that all of the elements seen at least log2 n times
originally had probability at least 1

n
(log2 n − log1.75 n) and

that the relative error between the number of times each of
these elements is seen and its expectation is thus at most

log−1/4 n. Thus using the empirical estimate on those ele-
ments appearing at least log2 n times—as Algorithm 2 does—
contributes O(log−1/4 n) total error on these elements. Thus
all the sources of error add up to at most o(1) worse than
opt(h, n) in expectation, yielding the theorem.

B. PROOF OF FACT 1

For convenience, we restate Fact 1:

Fact 1 Given two distributions p1, p2 satisfying Rτ (p1, p2) ≤
ε, there exists a relabeling π of the support of p2 such that∑

i

|max(p1(i), τ)−max(p2(π(i)), τ)| ≤ 2ε.

Proof of Fact 1. We relate relative earthmover distance
to the minimum L1 distance between relabled histograms,
with a proof that extends to the case where both distances
are defined above a cutoff threshold τ . The main idea is
to point out that “minimum rearranged” L1 distance can
be expressed in a very similar form to earthmover distance.
Given two histograms h1, h2, the minimum L1 distance be-
tween any labelings of h1 and h2 is clearly the L1 distance
between the labelings where we match up elements of the
two histograms in sorted order. Further, this is seen to equal
the (regular, not relative) earthmover distance between the
histograms h1 and h2, where we consider there to be h1(x)
“histogram mass” at each location x (instead of h1(x) · x
“probability mass” as we did for relative earthmover dis-
tance), and place extra histogram entries at 0 as needed so
the two histograms have the same total mass.

Given this correspondence, consider an optimal relative
earthmoving scheme between h1 and h2, and in particular,
consider an arbitrary component of this scheme, where some
probability mass α gets moved from some location x in one
of the distributions to some location y in the other, at cost

α log max(x,τ)
max(y,τ)

, and suppose without loss of generality that
x ≥ y.

We now reinterpret this move in the L1 sense, translating
from moving probability mass to moving histogram mass. In
the non-relative earthmover problem, α probability mass at
location x corresponds to α

x
“histogram mass”at x, which we

then move to y at cost (max(x, τ) −max(y, τ))α
x

; however,
to simulate the relative earthmover scheme, we need the full
α
y

mass to appear at y, so we move the remaining α
y
− α

x

mass up from 0, at cost (α
y
− α

x
)(max(y, τ)− τ).

To relate these 3 costs (the original relative earthmover
cost, and the two components of the non-relative histogram
earthmover cost), we note that if both x and y are less
than or equal to τ then all 3 costs are 0. Otherwise, if
x, y > τ then the first component of the histogram cost
equals (1− y

x
)α and the second is bounded by this, as (α

y
−

α
x

)(max(y, τ) − τ) < (α
y
− α

x
)y = (1 − y

x
)α. Further, for

the case under consideration where τ < y ≤ x, we have
(1 − y

x
)α ≤ α log x

y
, which equals the relative earthmover

cost. Thus the histogram cost in this case is at most twice
the relative earthmover cost.

In the remaining case, y ≤ τ < x, and the second compo-
nent of the histogram cost equals 0 because max(y, τ) −
τ = 0. The first component simplifies as (max(x, τ) −
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max(y, τ))α
x

= (x − τ)α
x

= (1 − τ
x

)α ≤ α log x
τ

, where this
last expression is the relative earthmover cost. Thus in all
cases, the histogram cost is at most twice the relative earth-
moving cost.

Since the histogram cost was one particular “histogram
moving scheme”, and as we argued above, the “minimum
permuted L1 distance”is the minimum over all such schemes,
we conclude that this L1 distance is at most twice the rela-
tive earthmover distance, as desired.

C. PROOF OF LEMMA 1
For convenience, we restate the lemma:

Lemma 1 Given two (possibly generalized) histograms g, h,
a number of samples k, and a threshold τ ∈ (0, 1],∣∣∣∣∣∣
∑

x:g(x)6=0

(1− (1− x)k) · g(x)−
∑

x:h(x)6=0

(1− (1− x)k) · h(x)

∣∣∣∣∣∣
≤ (0.3(k − 1) + 1)Rτ (g, h) + τ

k

2
.

Proof. We prove the inequality by considering each step
of an earthmoving scheme that transforms g to h, and show
that if in one stepm probability mass is moved, at τ -truncated
relative earthmover cost r, then the sum

∑
x:g(x)6=0(1− (1−

x)k)·g(x) changes by at most (1+0.3(k−1))·r+mkτ , mean-
ing that an entire earthmoving scheme to transform g into h
with total cost Rτ (g, h) and total mass at most 1 changes the
g term on the left hand side into the h term on the left hand
side by changing it at most (1 + 0.3(k − 1)) ·Rτ (g, h) + kτ .

To prove this we first analyze the region of probability
below τ . By the definition of a histogram, m units of prob-
ability mass at probability x corresponds to a histogram en-
try h(x) = m

x
, and binomial bounds yield m

x
(1− (1−x)k) ∈

[km(1−x k−1
2

), km], which means that when an earthmoving
scheme moves m mass in the range x ∈ (0, τ ], the expression
m
x

(1−(1−x)k) changes by at most km k−1
2
τ . Thus, summed

over the entire earthmoving scheme, where the mass moved
sums to at most 1, the change in

∑
x:g(x)6=0(1−(1−x)k)·g(x)

from changes below probability τ is at most k k−1
2
τ .

To bound the remaining term, changes in
∑
x:g(x)6=0(1 −

(1 − x)k) · g(x) from changes in probability above τ in the
earthmoving scheme, we note that to move probability mass
m from probability value x to y costs m| log x− log y| in the
earthmoving scheme, and changes the sum by∣∣∣∣mx (1− (1− x)k

)
− m

y

(
1− (1− y)k

)∣∣∣∣ .

We bound the ratio of these last two expressions by 1 +
0.3(k − 1), in order to bound the total contribution of the
portion of the earthmoving scheme above probability τ by
(1 + 0.3(k− 1))Rτ (g, h), yielding the desired overall bound.

We thus seek to bound the maximum change in

1

x

(
1− (1− x)k

)
relative to the change in log x as x changes, namely the
maximum ratio of their derivatives, where we add a negative
sign since 1

x

(
1− (1− x)k

)
is a decreasing function. Since

d
dx

log x = 1/x, the ratio of derivatives is

−x d

dx

(
1− (1− x)k

)
x

=
1− (1− x)k−1((k − 1)x+ 1)

x
(1)

Consider the approximation (1− x)k−1 ≈ e−x(k−1). Tak-
ing logarithms of both sides, and using the fact that, for
x ≤ 1

2
, we have log 1 − x ≥ −x − x2, we have that for

x ≤ 1
2

the inequality (k − 1) log(1− x) ≥ −(k − 1)(x+ x2);

exponentiating yields (1 − x)k−1 ≥ e−x(k−1) · e−x
2(k−1) ≥

e−x(k−1)(1− x2(k − 1)).
Thus for x ≤ 1

2
the ratio of derivatives is bounded as

−x d

dx

(
1− (1− x)k

)
x

≤ 1− (e−x(k−1)(1− x2(k − 1)))((k − 1)x+ 1)

x

=
1− e−x(k−1)((k − 1)x+ 1)

x

+
e−x(k−1)x2(k − 1)((k − 1)x+ 1)

x
.

The first term of the right hand side, after dividing by k−
1, can be reexpressed in terms of y = x(k−1) as 1−e−y(y+1)

y
,

which has a global maximum less then 0.3; the second term
in the right hand side, after the same variable substitution,
equals e−yy(y+1), which has a global maximum less than 1.
Thus, for x ≤ 1

2
, the absolute value of the ratio of derivatives

is bounded as 0.3(k − 1) + 1. For x ≥ 1
2
, the right hand

side of Equation 1 is 1
x

minus some positive quantity, and
is hence at most 2. Since 0.3(k − 1) + 1 ≥ 2 for any k ≥ 5,
all that remains is to checking the k = 2, 3, 4 cases where
0.3(k − 1) + 1 < 2 by hand to confirms that 0.3(k − 1) + 1
is in fact a global bound.
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